Skip to main content
Log in

Mathematical Modelling of Angiogenesis

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Angiogenesis, the formation of blood vessels from a pre-existing vasculature, is a process whereby capillary sprouts are formed in response to externally supplied chemical stimuli. The sprouts then grow and develop, driven initially by endothelial cell migration, and organize themselves into a branched, connected network. Subsequent cell proliferation near the sprout-tips permits further extension of the capillaries and ultimately completes the process. Angiogenesis occurs during embryogenesis, wound healing, arthritis and during the growth of solid tumours. In this article we first of all present a review of a variety of mathematical models which have been used to describe the formation of capillary networks and then focus on a specific recent model which uses novel mathematical modelling techniques to generate both two- and three-dimensional vascular structures. The modelling focusses on key events of angiogenesis such as the migratory response of endothelial cells to exogenous cytokines (tumour angiogenic factors, TAF) secreted by a solid tumour; endothelial cell proliferation; endothelial cell interactions with extracellular matrix macromolecules such as fibronectin; capillary sprout branching and anastomosis. Numerical simulations of the model, using parameter values based on experimental data, are presented and the theoretical structures generated by the model are compared with the morphology of actual capillary networks observed in in vivo experiments. A final conclusions section discusses the use of the mathematical model as a possible angiogenesis assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Graham CH, Lala PK: Mechanisms of placental invasion of the uterus and their control. Biochem Cell Biol 70: 867-874, 1992

    Google Scholar 

  2. Arnold F, West DC: Angiogenesis in wound healing. Pharmac Ther 52: 407-422, 1991

    Google Scholar 

  3. Folkman J, Klagsbrun M: Angiogenic factors. Science 235: 442-447, 1987

    Google Scholar 

  4. Folkman J: Tumor angiogenesis. Adv Cancer Res 43: 175-203, 1985

    Google Scholar 

  5. Folkman J: Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Medi 1: 21-31, 1995

    Google Scholar 

  6. Folkman J, Brem H: Angiogenesis and inflammation. In: JI Gallin, IM Goldstein, R Snyderman (eds) Inflammation: Basic Principles and Clinical Correlates Second Edition. New York: Raven Press, 1992

    Google Scholar 

  7. Madri JA, Pratt BM: Endothelial cell-matrix interactions: in vitro models of angiogenesis. J Histochem Cytochem 34: 85-91, 1986

    Google Scholar 

  8. Paweletz N, Knierim M: Tumor-related angiogenesis. Crit Rev Oncol Hematol 9: 197-242, 1989

    Google Scholar 

  9. Pettet G, Chaplain MAJ, McElwain DLS, Byrne HM: On the role of angiogenesis in wound healing. Proc Roy Soc Lond B 263: 1487-1493, 1996

    Google Scholar 

  10. Byrne HM, Chaplain MAJ, Pettet GJ, McElwain DLS: A mathematical model of trophoblast invasion. J Theor Med 2: 1999

  11. Chaplain MAJ, Byrne HM: The mathematical modelling of wound healing and tumour growth: Two sides of the same coin. Wounds 8: 42-48, 1996

    Google Scholar 

  12. Paku S, Paweletz N: First steps of tumor-related angiogenesis. Lab Invest 65: 334-346, 1991

    Google Scholar 

  13. Terranova VP, Diflorio R, Lyall RM, Hic S, Friesel R, Maciag T: Human endothelial cells are chemotactic to endothelial cell growth factor and heparin. J Cell Biol 101: 2330-2334, 1985

    Google Scholar 

  14. Sholley MM, Ferguson GP, Seibel HR, Montour JL, Wilson JD: Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells. Lab Invest 51: 624-634, 1984

    Google Scholar 

  15. Ausprunk DH, Folkman J: Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumour angiogenesis. Microvasc Res 14: 53-65, 1977 50

    Google Scholar 

  16. Schor SL, Schor AM, Brazill GW: The effects of fibronectin on the migration of human foreskin fibroblasts and syrian hamster melanoma cells into three-dimensional gels of lattice collagen fibres. J Cell Sci 48: 301-314, 1981

    Google Scholar 

  17. Hynes RO: Fibronectins. New York: Springer-Verlag, 1990

    Google Scholar 

  18. Schor AM, Schor SL, Bailey R: Angiogenesis: Experimental data relevant to theoretical analysis. In: Chaplain MAJ, Singh GD, McLachlan JC (eds) On Growth and Form: Spatio-temporal Pattern Formation in Biology. Wiley, Chichester, 1999, pp 201-224

    Google Scholar 

  19. Albini A, Allavena G, Melchiori A, Giancotti F, Richter H, Comoglio PM, Parodi S, Martin GR, Tarone G: Chemotaxis of 3T3 and SV3T3 cells to fibronectin is mediated through the cell-attachment site in fibronectin and fibronectin cell surface receptor. J Cell Biol 105: 1867-1872, 1987

    Google Scholar 

  20. Quigley JP, Lacovara J, Cramer EB: The directed migration of B-16 melanoma-cells in response to a haptotactic chemotactic gradient of fibronectin. J Cell Biol 97: A450-451, 1983

    Google Scholar 

  21. Lacovara J, Cramer EB, Quigley JP: Fibronectin enhancement of directed migration of B16 melanoma cells. Cancer Res 44: 1657-1663, 1984

    Google Scholar 

  22. McCarthy JB, Furcht LT: Laminin and fibronectin promote the directed migration of B16 melanoma cells in vitro. J Cell Biol. 98: 1474-1480, 1984

    Google Scholar 

  23. Carter SB: Principles of cell motility: The direction of cell movement and cancer invasion. Nature 208: 1183-1187, 1965

    Google Scholar 

  24. Carter SB: Haptotaxis and the mechanism of cell motility. Nature 213: 256-260, 1967

    Google Scholar 

  25. Bowersox JC, Sorgente N: Chemotaxis of aortic endothelial cells in response to fibronectin. Cancer Res 42: 2547-2551, 1982

    Google Scholar 

  26. Chaplain MAJ: Avascular growth, angiogenesis and vascular growth in solid tumours: the mathematical modelling of the stages of tumour development. Mathl Comput Modelling 23: 47-87, 1996

    Google Scholar 

  27. Chaplain MAJ, Anderson ARA: The mathematical modelling, simulation and prediction of tumour-induced angiogenesis. Invas Metast 16: 222-234, 1997

    Google Scholar 

  28. Anderson ARA, Chaplain MAJ: Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol 60: 857-899, 1998

    Google Scholar 

  29. Chaplain MAJ, Anderson ARA: Modelling the growth and form of capillary networks. In: Chaplain MAJ, Singh GD, McLachlan JC (eds) On Growth and Form: Spatio-temporal Pattern Formation in Biology. Wiley, Chichester, 1999, pp 225-249

    Google Scholar 

  30. Baum M, Chaplain MAJ, Anderson ARA, Douek M, Vaidya JS: Does breast cancer exist in a state of chaos? Eur J Cancer 35: 886-891, 1999

    Google Scholar 

  31. Thompson DW: On Growth and Form, Cambridge University Press, Cambridge, 1917

    Google Scholar 

  32. Zawicki DF, Jain RK, Schmid-Schoenbein GW, Chien S: Dynamics of neovascularization in normal tissue. Microvasc Res 21: 27-47, 1981

    Google Scholar 

  33. Balding D, McElwain DLS: A mathematical model of tumour-induced capillary growth. J Theor Biol 114: 53-73, 1985

    Google Scholar 

  34. Chaplain MAJ, Stuart AM: A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor. IMA J Math Appl Med Biol 10: 149-168, 1993

    Google Scholar 

  35. Byrne HM, Chaplain MAJ: Mathematical models for tumour angiogenesis: numerical simulations and nonlinear wave solutions. Bull Math Biol 57: 461-486, 1995

    Google Scholar 

  36. Orme ME, Chaplain MAJ: A mathematical model of the first steps of tumour-related angiogenesis: capillary sprout formation and secondary branching. IMA J Math App Med Biol 13: 73-98, 1996

    Google Scholar 

  37. Anderson ARA, Chaplain MAJ: A mathematical model for capillary network formation in the absence of endothelial cell proliferation. Appl Math Letters 11: 109-114, 1998

    Google Scholar 

  38. Chaplain MAJ: The mathematical modelling of tumour angiogenesis and invasion. Acta Biotheor 43: 387-402, 1995

    Google Scholar 

  39. Orme ME, Chaplain MAJ: Two-dimensional models of tumour angiogenesis and anti-angiogenesis strategies. IMA J Math App Med Biol 14: 189-205, 1997

    Google Scholar 

  40. Chaplain MAJ, Orme ME: Mathematical modelling of tumor-induced angiogenesis. In: Little CD, Mironov V, Sage EH (eds) Vascular Morphogenesis: In vivo, in vitro, in mente. Birkhäuser, Boston, 1998, pp 205-240

    Google Scholar 

  41. Olsen L, Sherratt JA, Maini PK, Arnold F: A mathematical model for the capillary endothelial cell-extracellular matrix interactions in wound-healing angiogenesis. IMA J Math Appl Med Biol 14: 261-281, 1997

    Google Scholar 

  42. Mannoussaki D, Lubkin SL, Vernon RB, Murray JD: A mechanical model for the formation of vascular networks in vitro. Acta Biotheor 44: 271-282, 1996

    Google Scholar 

  43. Murray JD, Mannoussaki D, Lubkin SL, Vernon RB: A mechanical theory of in vitro vascular network formation. In: Little CD, Mironov V, Sage EH (eds) Vascular Morphogenesis: In vivo, in vitro, in mente. Birkhäuser, Boston, 1998, pp 173-188

    Google Scholar 

  44. Murray JD, Swanson KR: On the mechanochemical theory of biological pattern formation with applications to wound healing and angiogenesis. In: Chaplain MAJ, Singh GD, McLachlan JC (eds) On Growth and Form: Spatio-temporal Pattern Formation in Biology. Wiley, Chichester, 1999, pp 251-285

    Google Scholar 

  45. Kiani M, Hudetz A: Computer simulation of growth of anastomosing microvascular networks. J Theor Biol 150: 547-560, 1991

    Google Scholar 

  46. Landini G, Misson G: Simulation of corneal neovascularization by inverted diffusion limited aggregation. Invest Opthalmol Visual Sci 34: 1872-1875, 1993

    Google Scholar 

  47. Nekka F, Kyriacos S, Kerrigan C, Cartilier L: A model of growing vascular structures. Bull Math Biol 58: 409-424, 1996

    Google Scholar 

  48. Stokes CL, Lauffenburger DA: Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J Theor Biol 152: 377-403, 1991

    Google Scholar 

  49. Gimbrone MA, Cotran RS, Leapman SB, Folkman J: Tumor growth and neovascularization: An experimental model using the rabbit cornea. J Natn Cancer Inst 52: 413-427, 1974

    Google Scholar 

  50. Muthukkaruppan VR, Kubai L, Auerbach R: Tumor-induced neovascularization in the mouse eye. J Natn Cancer Inst 69: 699-705, 1982

    Google Scholar 

  51. Little CD, Mironov V, Sage EH (eds): Vascular morphogenesis: In vivo, in vitro, in mente. Birkhäuser, Boston, 1998

    Google Scholar 

  52. Folkman J, Haudenschild C: Angiogenesis in vitro. Nature 288: 551-556, 1980

    Google Scholar 

  53. Jain RK, Schlenger K, Höckel M, Yuan F: Quantitative angiogenesis assays: Progress and problems. Nature Med 3: 1203-1208, 1997

    Google Scholar 

  54. Stokes CL, Rupnick MA, Williams SK, Lauffenburger DA: Chemotaxis of human microvessel endothelial cells in response to acidic fibroblast growth factor. Lab Invest 63: 657-668, 1990

    Google Scholar 

  55. Stokes CL, Lauffenburger DA, Williams SK: Migration of individual microvessel endothelial cells: stochastic model and parameter measurement. J Cell Sci 99: 419-430, 1991

    Google Scholar 

  56. Hanahan D: Signaling vascular morphogenesis and maintenance. Science 227: 48-50, 1997

    Google Scholar 

  57. Rupnick MA, Stokes CL, Williams SK, Lauffenburger DA: Quantitative analysis of human microvessel endothelial cells using a linear under-agarose assay. Lab Invest 59: 363-372, 1988

    Google Scholar 

  58. Bray D: Cell Movements. Garland Publishing, New York, 1992

    Google Scholar 

  59. Williams SK: Isolation and culture of microvessel and large-vessel endothelial cells; their use in transport and clinical studies. In: McDonagh P (ed) Microvascular Perfusion and Transport in Health and Disease. Karger, Basel, 1987, pp 204-245

    Google Scholar 

  60. Duh EJ, King GL, Aiello LP: Identification of a VEGF receptor (KDR/FLK) promoter element which binds an endothelial cell-specific protein conferring endothelial selective expression. Invest Opthalmol Vis Sci 38: 1124-1125, 1997

    Google Scholar 

  61. Dumont DJ, Gradwohl G, Fong GH, Puri MC, Gertsenstein M, Auerbach A, Breitman ML: Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, TEK, reveal a critical role in vasculogenesis of the embryo. Genes Dev 8: 1897-1909, 1994

    Google Scholar 

  62. Fong GH, Rossant J, Gertsenstein M, Breitman ML: Role of the FLT-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376: 66-70, 1995

    Google Scholar 

  63. Hewett PW, Murray JC: Coexpression of FLT-1, FLT-4 and KDR in freshly isolated and cultured human endothelial-cells. Biochem Biophys Res Commun 221: 697-702, 1996

    Google Scholar 

  64. Millauer B, Wizigman-Voos Schnürch H, Martinez R, Müller NPH, Risau W, Ullrich A: High-affinity VEGF binding and developmental expression suggest FLK-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72: 835-846, 1993

    Google Scholar 

  65. Sato TN, Tozawa Y, Deutsch U, Wolburgbuchholz K, Fujiwara Y, Gendronmaguire M, Gridley T, Wolburg H, Risau W, Qin, Y: Distinct roles of the receptor tyrosine kinases TIE-1 and TIE-2 in blood-vessel formation. Nature 376: 70-74, 1995

    Google Scholar 

  66. O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J: Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79: 315-328, 1994

    Google Scholar 

  67. Yamada KM, Olden K: Fibronectin-adhesive glycoproteins of cell surface and blood. Nature 275: 179-184, 1978

    Google Scholar 

  68. Harris AL: Antiangiogenesis for cancer therapy. Lancet 349 (Suppl II): 13-15, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaplain, M.A. Mathematical Modelling of Angiogenesis. J Neurooncol 50, 37–51 (2000). https://doi.org/10.1023/A:1006446020377

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006446020377

Navigation