Skip to main content
Log in

Activity Coefficients of HCl + GdCl3 + H2O System from 5 to 55°C. Application of Pitzer Formalism

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The emf of the cell

$${\text{Pt, H}}_{\text{2}} ({\text{g, 1 atm}})|{\text{HCI(}}m_{\text{A}} {\text{),GdCl}}_{\text{3}} (m_B )|{\text{AgCl, Ag}}$$

without a liquid junction was used to investigate the HCl + GdCl3 + H2O mixedelectrolyte system. The emf of the cell was measured for HCl + GdCl3 + H2Osolutions at ionic strengths of 0.025, 0.05, 0.1, 0.5, 1.0, 1.5, and 2.0 mol-kg−1and at eleven temperatures ranging from 5 to 55°C at 5°C intervals. The meanactivity coefficients for HCl in the mixtures were determined using the Nernstequation. About 793 experimental emf data points were treated by the Harnedequations. Results show that hydrochloric acid follows Harned's rule at all ionicstrengths, but the quadratic term is needed for I = 1.5 mol-kg−1. Theion-interaction treatment of Pitzer was used to evaluate the results. The binary andternary mixing parameters at 25°C were found to be ΘH,Gd = 0.07 ± 0.03 andΨH,Gd,Cl = 0.14 ± 0.03. These values were determined using literature values ofβ(0), β(1), and C ψ for GdCl3 at 25°C and estimates of the effect of temperaturefrom 5 to 55°C using enthalpy and heat capacity data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. A. Robinson, R. N. Roy, and R. G. Bates, J. Solution Chem. 74, 837 (1974).

    Google Scholar 

  2. R. N. Roy, J. J. Gibbons, D. P. Bliss, Jr., R. C. Casebolt, and B. K. Baker, J. Solution Chem. 9, 911 (1980).

    Google Scholar 

  3. R. N. Roy, J. J. Gibbons, L. K. Ovens, G. A. Bliss, and J. J. Hartley, J. Chem. Soc. Faraday Trans. I 78, 1405 (1981).

    Google Scholar 

  4. R. N. Roy, L. N. Roy, G. D. Farwell, K. A. Smith, and F. J. Millero, J. Phys. Chem. 94, 7321 (1990).

    Google Scholar 

  5. R. N. Roy, L. N. Roy, D. R. Gregory, S. A. Kiefer, B. Das, and K. S. Pitzer, J. Solution Chem., 1999, in press.

  6. K. S. Pitzer, J. Solution Chem. 4, 249 (1975).

    Google Scholar 

  7. R. N. Roy, J. J. Gibbons, J. C. Peiper, and K. S. Pitzer, J. Phys. Chem. 87, 2365 (1983).

    Google Scholar 

  8. H. L. Friedman, Ionic Solution Theory [Wiley (Interscience), New York, 1962].

    Google Scholar 

  9. K. S. Pitzer, J. Phys. Chem. 77, 268 (1973).

    Google Scholar 

  10. K. S. Pitzer and J. J. Kim, J. Amer. Chem. Soc. 96, 5701 (1974).

    Google Scholar 

  11. K. S. Pitzer and G. Mayorga, J. Phys. Chem. 77, 2300 (1973).

    Google Scholar 

  12. G. Scatchard, J. Amer. Chem. Soc. 91, 2410 (1969).

    Google Scholar 

  13. R. G. Bates, Determination of pH, 2nd edn., (Wiley, New York, 1973), p. 283.

    Google Scholar 

  14. R. G. Bates, NBS Tech Note (U.S.), No. 271, 18 (1965).

    Google Scholar 

  15. R. Gary, R. G. Bates, and R. A. Robinson, J. Phys. Chem. 68, 1186 (1964).

    Google Scholar 

  16. R. N. Roy, C. P. Moore, M. N. White, L. N. Roy, K. M. Vogel, D. A. Johnson, and F. J. Millero, J. Phys. Chem. 96, 403 (1992).

    Google Scholar 

  17. R. N. Roy, K. M. Vogel, C. E. Good, W. B. Davis, L. N. Roy, D. A. Johnson, A. R. Felmy, and K. S. Pitzer, J. Phys. Chem. 96, 11065 (1992)

    Google Scholar 

  18. R. G. Bates, E. A. Guggenheim, H. S. Harned, D. J. G. Ives, D. Janz, C. B. Monk, J. E. Prue, R. A. Robinson, R. H. Stokes, and W. F. K. Wynne-Jones, J. Chem. Phys. 25, 361 (1956); J. Chem. Phys. 26, 222 (1957).

    Google Scholar 

  19. D. M. Campbell, F. J. Millero, R. N. Roy, L. Roy, M. Lawson, K. Vogel, and C. P. Moore, Mar. Chem. 44, 221 (1993).

    Google Scholar 

  20. H. S. Harned and R. A. Robinson, Multicomponent Electrolyte Solutions (Pergamon, Oxford, 1968), p. 60.

    Google Scholar 

  21. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, revised edn. (Butterworths, London, 1970), p. 438.

    Google Scholar 

  22. J. Ananthaswamy and G. Atkinson, J. Chem. Eng. Data 29, 81 (1984).

    Google Scholar 

  23. D. J. Bradley and K. S. Pitzer. J. Phys. Chem. 83, 1599 (1979)

    Google Scholar 

  24. G. S. Kell, J. Chem. Eng. Data. 20, 97 (1975)

    Google Scholar 

  25. K. S. Pitzer, J. R. Peterson, and L. F. Silvester, J. Solution Chem. 7, 45 (1978).

    Google Scholar 

  26. K. S. Pitzer, in Activity Coefficients in Electrolyte Solutions, 2nd ed., Vol. I (CRC Press, Boca Raton, FL, 1991), pp. 75–153.

    Google Scholar 

  27. C. M. Criss and F. J. Millero, J. Solution Chem. 28, 849 (1999).

    Google Scholar 

  28. C. M. Criss and F. J. Millero, J. Phys. Chem. 100, 1288 (1996).

    Google Scholar 

  29. K. S. Pitzer, R. N. Roy, and P. Wang, J. Phys. Chem. B 101, 4120 (1997).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, R.N., Gregory, D.R., Roy, L.N. et al. Activity Coefficients of HCl + GdCl3 + H2O System from 5 to 55°C. Application of Pitzer Formalism. Journal of Solution Chemistry 29, 619–631 (2000). https://doi.org/10.1023/A:1005129407455

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005129407455

Navigation