Skip to main content
Log in

Preparative and spectroscopic features of ferricenium tetrachloroferrate(III). Interconversion to diferricenium μ-oxo-bis[trichloroferrate(III)]

  • Full Papers
  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Summary

Ferricenium tetrachloroferrate(III)(1), one of the more frequently cited ferricenium salts, has recently attracted biomedical interest because of its pronounced antineoplastic activity against Ehrlich ascites murine tumor. In this paper, synthetic methods are reinvestigated in an effort to prepare pure(1) free from a common contaminant, diferriceniumμ-oxo-bis(trichloroferrate)(3). The oxodiferrate, or mixtures of this salt with(1), can readily be converted into pure(1) under acidic conditions. Conversely, dimerization of(1) with participation of water to give the oxodiferrate(3) is brought about by recrystallization of the former from moist acetonitrile/methanol in the presence of base; this reaction thus represents a simple procedure for the preparation of pure(3) from crude(1) readily obtainable by the long known interaction of ferrocene and iron(III) chloride in indifferent media. The i.r. and electronic absorption spectra of(1) are presented, as are the Mössbauer and x-ray photoelectron spectra. The room-temperature effective magnetic moment, 6.40μ B, of the salt is lower than would be expected on the basis of typical ferricenium cation (2.4μ B) and tetrachloroferrate(III) anion (5.9μ B) moments determined for related salts. This suggests the possibility of weak inter- or intra-molecular antiferromagnetic interaction in the crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Köpf-Maier, H. Köpf and E. W. Neuse,Angew. Chem., 96, 446 (1984);J. Cancer Res. Clin. Oncol, in press.

    Google Scholar 

  2. R. Prins, A. R. Korswagen and A. G. T. G. Kortbeek,J. Organometal. Chem., 39, 335 (1972).

    Google Scholar 

  3. J. Spilners,J. Organometal. Chem., 11, 381 (1968).

    Google Scholar 

  4. A. N. Nesmeyanov, E. G. Perevalova, R. V. Golovnya, T. V. Nikitina and N. A. Simukova,Izv. Akad. Nauk SSSR, Old. Khim. Nauk, 739 (1956).

  5. L. P. Motz and R. P. Pinnell,J. Organometal. Chem., 54, 255 (1973).

    Google Scholar 

  6. H. P. Fritz and L. Schäfer,Z. Naturforsch., 19b, 169 (1964).

    Google Scholar 

  7. O. Traverso, R. Rossi and V. Carassiti,Synth. React. Inorg. Metal-Org. Chem., 4, 309 (1974).

    Google Scholar 

  8. L. Wilputte-Steinert,J. Mol. Catal, 4, 113 (1978).

    Google Scholar 

  9. R. Prins and A. G. T. G. Kortbeek,J. Organometal. Chem., 33, C33 (1971).

    Google Scholar 

  10. P. Sohár and J. Kuszmann,J. Mol. Struct., 3, 359 (1969). Although the salt prepared by these authors was indeed the tetrachloroferrate(1), the structure assigned in that work was later proven incorrect (see refs. 13 and 31).

    Google Scholar 

  11. M. R. Churchill, A. G. Landers and A. L. Rheingold,Inorg. Chem., 20, 849 (1981).

    Google Scholar 

  12. A. N. Nesmeyanov, E. G. Perevalova and L. P. Yureva,Chem. Ber., 93, 2729 (1960).

    Google Scholar 

  13. R. A. Stukan and L. P. Yureva,Dokl. Akad. Nauk SSR, 167, 1311 (1966).

    Google Scholar 

  14. P. Maitlis and J. D. Brown,Z. Naturforsch., 20b, 597 (1965).

    Google Scholar 

  15. Room-temperature data for FeCl2 · H2O and FeCl2 · 2H2O are, respectively,δ = 1.13 and 1.03 mms−1, ΔEq = 2.03 and 2.50 mms−1: N. N. Greenwood and T. C. Gibb,Mössbauer Spectroscopy, Chapman and Hall Ltd., London, 1971, p. 119. In contrast, a hexachlorodiferrate anion structure, implying an average-valence FeII/FeIII system, should produce more negative isomer shifts and appreciably smaller quadrupole splittings. Thus, ferrous/ferric electron delocalization in ilvaite, melanite and other minerals possessing suitable Fe2+ and Fe3+ sites causes room-temperature isomer shifts in the vicinity of 0.7–0.8 mms−1, with quadrupole splittings in the range of 1.5–1.8 mms−1:

    Google Scholar 

  16. D. A. Nolet and R. G. Burns,Geophys. Res. Lett., 5, 821 (1978);Phys. Chem. Minerals, 4, 221 (1979).

    Google Scholar 

  17. K. B. Schwartz, D. A. Nolet and R. G. Burns,Amer. Mineral, 65, 142 (1980).

    Google Scholar 

  18. Room-temperature data reported for FeCl2 areδ = 1.26 rams−1 and ΔEq = 0.80 mms−1: K. Ôno, A. Ito and T. Fujita,J. Phys. Soc. Jap., 19, 2119 (1964).

    Google Scholar 

  19. J. C. A. Boeyens, P. C. Lalloo, E. W. Neuse and H. H. Wei,S. Afr. J. Chem., 37, 32 (1984).

    Google Scholar 

  20. J. C. A. Boeyens, F. B. D. Khan and E. W. Neuse,S. Afr. J. Chem., 37, 187 (1984).

    Google Scholar 

  21. Preliminary measurements place the room-temperature effective magnetic moment of(3) in the vicinity of 3.3 μB.

  22. The formation of(3) from ferrocene and FeCl3 becomes feasible if the reaction is performed in a mutual solvent for product and reactants under anaerobic conditions, followed by oxidation of intermediary ferricenium trichloroferrate(II) (Ref. 17; see also S. M. Aharoni and M. H. Litt,J. Organometal. Chem., 22, 171 (1970)).

    Google Scholar 

  23. C. A. McCammon and R. G. Burns,Amer. Mineral, 65, 301 (1980); E. Mattievich and J. Danon,J. Inorg. Nucl. Chem., 39, 569 (1977).

    Google Scholar 

  24. T. B. Swanson and V. W. Laurie,J. Phys. Chem., 69, 244 (1965).

    Google Scholar 

  25. I. Pavlík and J. Klikorka,Coll. Czech. Chem. Commun., 30, 664 (1965). These authors list additional medium-strong to strong maxima at 1594, 1192, 1114 and 412 cm−1 (determined on Nujol mulls), which in our spectra are absent or, at best, of very low intensity (1114, 412 cm−1).

    Google Scholar 

  26. B. F. Gächter, J. A. Koningstein and V. T. Aleksanjan,J. Chem. Phys., 62, 4628 (1975).

    Google Scholar 

  27. Y. S. Sohn, D. N. Hendrickson and H. B. Gray,J. Am. Chem. Soc., 93, 3603 (1971).

    Google Scholar 

  28. E. W. Neuse and M. G. Meirim,Transition Met. Chem., 9, 205 (1984).

    Google Scholar 

  29. T. N. Mzimela and E. W. Neuse,S. Afr. J. Chem., 34, 47 (1981); binding energies recalculated with Eb(Cls) = 284.6 eV used for calibration.

    Google Scholar 

  30. T. Birchall and I. Drummond,Inorg. Chem., 10, 399 (1971).

    Google Scholar 

  31. I. Motoyama, M. Watanabe and H. Sano,Chem. Lett., 513 (1978).

  32. P. R. Edwards and C. E. Johnson,J. Chem. Phys., 49, 211 (1968).

    Google Scholar 

  33. C. A. Clausen and M. L. Good,Inorg. Chem., 9, 220 (1970).

    Google Scholar 

  34. G. M. Bancroft, A. G. Maddock, W. K. Ong and R. H. Prince,J. Chem. Soc., A., 723 (1966).

    Google Scholar 

  35. E. F. Paulus and L. Schäfer,J. Organometal Chem., 144, 205 (1978).

    Google Scholar 

  36. R. Prins,Mol. Phys., 19, 603 (1970).

    Google Scholar 

  37. A. P. Ginsberg and M. B. Robin,Inorg. Chem., 2, 817 (1963).

    Google Scholar 

  38. A. Earnshaw,Introduction to Magnetochemistry, Academic Press, London, 1968.

    Google Scholar 

  39. Assessed by comparison with spectra of synthetic mixtures of (1) and (3) at various mixing ratios.

  40. Attempts to achieve enhanced recoveries were frustrated by the tendency of ferricenium salts to degrade in aged solutions, thus crystallizing from the final mother-liquors in a highly impure state.

  41. The precipitation of Prussian Blue in the presence of K3Fe(CN)6, similarly observed with (3), is entirely unexpected for the ferric iron in the anion of (1). As no rapid precipitation occurs with other tetrachloroferrates(III), such as NMe4FeCl4 or PhCH2N(Me)3FeCl4, one is led to conclude that the ferricenium cation plays a vital part in some rapid redox mechanism generatingin situ the FeII" species required for Prussian Blue formation. Cyanide anion reduces ferricenium cation to ferrocene, which conceivably may be reoxidized with concomitant reduction of FeIIICl 4 to FeIICl 2−4 .

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neuse, E.W., Mojapelo, B.S. & Ensling, J. Preparative and spectroscopic features of ferricenium tetrachloroferrate(III). Interconversion to diferricenium μ-oxo-bis[trichloroferrate(III)]. Transition Met Chem 10, 135–141 (1985). https://doi.org/10.1007/BF00641583

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00641583

Keywords

Navigation