Skip to main content
Log in

GLACIAL VARVE THICKNESS AND 127 YEARS OF INSTRUMENTAL CLIMATE DATA: A COMPARISON

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Annually laminated sediments (glacial varves) from Lake Silvaplauna, a High Alpine proglacial lake in the Central Swiss Alps, were compared with glacier monitoring data and instrumental climate data from 1864 to 1990. Long-term and short-term responses to climatic change as well as anthropogenic influence can be traced separately in the varve succession. Economic development in the lake catchment has resulted in higher autochthonous production in recent years. Autochthonous components contribute around 10% to the total amount of sediment accumulated annually since 1960 but their contribution is negligible before this date. Decadal-scale varve thickness trends correlate with glacier size-variations. A stepwise, running multiple regression analysis demonstrates that interannual changes in varve thickness are strongly correlated with changes in mean summer temperatures, but cannot be sufficiently explained without considering summer precipitation and the number of days with snow per year. The wide range of observed correlation coefficients reveals the sensitivity of the archive to temporal variability of the climatic forcing factors and makes the development of transfer functions ambiguous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Bosli-Pavoni, M.: 1971, ‘Ergebnisse der limnologischen Untersuchungen der Oberengadiner Seen’, Schweiz. Z. Hydrol. 33, 386–409.

    Google Scholar 

  • Brückner, E.: 1889, ‘In wie weit ist das heutige Klima konstant?’, in Verhandlungen des VIII. Deutschen Geographentages in Berlin, Verlag von Dietrich Reimer, Berlin, pp. 101–115.

    Google Scholar 

  • Bundesamt für Wasserwirtschaft: 1991, ‘Ursachenanalyse der Hochwasser 1987; Schlussbericht’, Mitteilungen des Bundesamtes für Wasserwirtschaft 5, Bern, EDMZ, p. 47.

    Google Scholar 

  • Collins, D. N. and Taylor, D. P.: 1990, ‘Variability of Runoff from Partially-Glacierised Alpine Basins’, IAHS Publ. 193, 365–373.

    Google Scholar 

  • Collins, D. N.: 1990, ‘Seasonal and Annual Variations of Suspended Sediment Transport in Meltwaters Draining from an Alpine Glacier’, IAHS Publ. 193, 439–446.

    Google Scholar 

  • de Geer, G.: 1912, ‘A Geochronology of the Last 12,000 Years’, XI Internat. Geol. Congr. Stockholm 1910 Compte Rendue 1, 241–258.

    Google Scholar 

  • Dean Jr., W. E. and Anderson, R. Y.: 1974, ‘Application of Some Correlation Coefficient Techniques to Time-Series Analysis’, Math. Geol. 6, 363–372.

    Google Scholar 

  • Desloges, J. R.: 1994, ‘Varve Deposition and the Sediment Yield Record at Three Small Lakes of the Southern Canadian Cordillera’, Arctic Alpine Res. 26, 130–140.

    Google Scholar 

  • Fountain, A. G. and Tangborn, W. V.: 1985, ‘The Effect of Glaciers on Streamflow Variations’, Water Resour. Res. 21, 579–586.

    Google Scholar 

  • Gamper, M. and Suter, J.: 1978, ‘Der Einfluss von Temperaturänderungen auf die Länge von Gletscherzungen’, Geogr. Helv. 4, 183–189.

    Google Scholar 

  • Gilbert, R.: 1975, ‘Sedimentation in Lilooet Lake, British Columbia’, Can. J. Earth Sci. 12, 1697–1711.

    Google Scholar 

  • Glenn, C. R. and Kelts, K.: 1991, ‘Sedimentary Rhythms in Lake Deposits’, in Einsele, G., Ricken, W., and Seilacher, A. (eds.), Cycles and Events in Stratigraphy, Springer-Verlag, Berlin and Heidelberg, pp. 188–221.

    Google Scholar 

  • Granar, L.: 1956, ‘Dating of Recent Fluvial Sediments from the Estuary of the Ångerman River’, Geol. Fören. Förhandl. 78, 654–658.

    Google Scholar 

  • Hölzle, M.: 1994, ‘Permafrost und Gletscher im Oberengadin, Grundlagen und Anwendungsbeispiele für automatisierte Schätzverfahren’, Ph.D. Thesis ETH Zürich, p. 130.

    Google Scholar 

  • Itkonen, A. and Salonen, V.-P.: 1994, ‘The Response of Sedimentation in Three Varved Lacustrine Sequences to Air Temperature, Precipitation and Human Impact’, J. Paleolim. 11, 323–332.

    Google Scholar 

  • Jerikowic, J. L., Sonett, C. P., Stihler, S. D., Stone, D. B., and Beget, J. E.: 1993, ‘“Varve” Counting vs. Tephrochronology and 137Cs and 210Pb Dating: A Comparative Test at Skilak Lake, Alaska: Comment and Reply’, Geology 21, 763–764.

    Google Scholar 

  • Jones, J. G.: 1982, ‘Activities of Aerobic and Anaerobic Bacteria in Lake Sediments and their Effect on the Water Column’, in Nedwell, D. B. and Brown, C. M. (eds.), Sediment Microbiology, Academic Press, London, pp. 107–145.

    Google Scholar 

  • Karlén, W.: 1981, ‘Lacustrine Sediment Studies. A Technique to Obtain a Continuous Record of Holocene Glacier Variations’, Geografiska Annaler 63 A, 273–281.

    Google Scholar 

  • Kelts, K., Briegel, U., Ghilardi, K., and Hsü, K.: 1986, ‘The Limnogeology-ETH Coring System’, Schweiz. Z. Hydrol. 48, 104–115.

    Google Scholar 

  • Lang, C.: 1885, ‘Der säculare Verlauf der Witterung als Ursache der Gletscherschwankungen in den Alpen’, Z. Öster. Ges. Meteorol. 20, 443–457.

    Google Scholar 

  • Leemann, A. and Niessen, F.: 1994a, ‘Varve Formation and the Climatic Record in an Alpine Proglacial Lake’, The Holocene 4, 1–8.

    Google Scholar 

  • Leemann, A. and Niessen, F.: 1994b, ‘Holocene Glacial Activity and Climatic Variations in the Swiss Alps: Reconstructing a Continuous Record from Proglacial Lake Sediments’, The Holocene 4, 259–268.

    Google Scholar 

  • Leemann, A.: 1993, ‘Rhythmite in Alpinen Vorgletscherseen-Warvenstratigraphie und Aufzeichnung von Klimaveränderungen’, Ph.D. Thesis ETH Zürich, p. 129.

    Google Scholar 

  • Leonard, E. M.: 1985a, ‘Glaciological and Climatic Controls on Lake Sedimentation, Canadian Rocky Mountains’, Z. Gletscherk. Glazialgeol. 21, 35–42.

    Google Scholar 

  • Leonard, E. M.: 1985b, ‘Use of Lacustrine Sedimentary Sequences as Indicators of Holocene Glacial History, Banff National Park, Alberta, Canada’, Quatern. Res. 26, 218–231.

    Google Scholar 

  • Leonard, E. M.: 1986, ‘Varve Studies in Hector Lake, Alberta, Canada, and the Relationship between Glacial Activity and Sedimentation’, Quatern. Res. 25, 199–214.

    Google Scholar 

  • Lister, G. S.: 1984, ‘Deglaciation of the Lake Zürich Area: A Model Based on the Sedimentological Record’, Contr. Sediment. 13, 177–185.

    Google Scholar 

  • Maisch, M.: 1992, ‘Die Gletscher Graubündens’, in Habil. Schrift, Geogr. Inst. Univ. Zürich, Teil A und B, p. 428.

  • Müller, P. J. and Schneider, R.: 1993, ‘An Automated Leaching Method for the Determination of Opal in Sediments and Particulate Matter’, Deep-Sea Res. 40, 435–444.

    Google Scholar 

  • Nesje, A., Johannessen, T., and Birks, H. J. B.: 1995, ‘Briksdalsbreen, Western Norway: Climatic Effects on Terminal Response of a Temperate Glacier between 1901 and 1994’, The Holocene 5, 343–347.

    Google Scholar 

  • Niessen, F., Wick, L., Bonani, G., Chondrogianni, C., and Siegenthaler, C.: 1992, ‘Aquatic System Response to Climatic and Human Changes: Productivity, Bottom Water Oxygen Status, and Sapropel Formation in Lake Lugano over the Last 10 000 Years’, Aquatic Sci. 54, 257–276.

    Google Scholar 

  • Ohlendorf, C., Leemann, A., and Niessen, F.: 1995, ‘High Alpine Lake Sediments as Continuous Archives Recording Glacier and Climate History’, in INQUA XIV International Congress, Berlin, Schriften der Alfred-Wegener-Stiftung 2, p. 203.

    Google Scholar 

  • Østrem, G.: 1975, ‘Sediment Transport in Glacial Meltwater Streams’, in Jopling, A. V. and McDonald, B. C. (eds.), Glaciofluvial and Glaciolacustrine Sedimentation, SEPM Spec. Publ. 23, pp. 101–122.

  • Patzelt, G. and Aellen, M.: 1990, ‘Gletscher’, in Vischer, D. (ed.), Schnee, Eis und Wasser in einer wärmeren Atmosphäre, Mitteilung der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie 108, pp. 49–69.

    Google Scholar 

  • Patzelt, G.: 1985, ‘The Period of Glacier Advances in the Alps 1965 to 1980’, Z. Gletscherk. Glazialgeol. 21, 403–407.

    Google Scholar 

  • Perkins, J. A. and Sims, J. D.: 1983, ‘Correlation of Alaskan Varve Thickness with Climatic Parameters and Use in Palaeoclimatic Reconstruction’, Quatern. Res. 20, 308–321.

    Google Scholar 

  • Pfister, C.: 1992, ‘Monthly Temperature and Precipitation in Central Europe 1525–1979: Quantifying Documentary Evidence on Weather and Its Effects’, in Bradley, R. S. and Jones, P. D. (eds.), Climate Since A.D. 1500, Routledge, London, pp. 118–142.

    Google Scholar 

  • Renberg, I., Segerström, U., and Wallin, J.-E.: 1984, ‘Climatic Reflection in Varved Lake Sediments’, in Mörner, N.-A. and Karlén, W. (eds.), Climatic Changes on a Yearly to Millennial Basis, D. Reidel Publishing Company, Dordrecht, pp. 249–256.

    Google Scholar 

  • Saarnisto, M.: 1983, ‘Päijänteen Kinisselän lustosedimentit 1900-luvulla’, in Simola, H. (ed.), Suomalaista Sedimenttitutkimusta, Symposio Kolilla 1983, Joensuun korkeakoulu, Karjalan tutkimuslaitoksen julkaisuja 55, pp. 59–60.

  • SANW: 1986–1994, ‘Die Gletscher der Schweizer Alpen’, Jahrbuch der Gletscherkommission der Schweizerischen Akademie der Naturwissenschaften/SANW 99–112, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, Zürich.

    Google Scholar 

  • Sils, Jahresbericht: 1993/94, ‘Jahresbericht des Kur-und Verkehrsvereins Sils, Engadin’.

  • Silvaplana, Jahresbericht: 1993/94, ‘Jahresbericht des Kur-und Verkehrsvereins Silvaplana-Surlej-Champfer, Engadin’.

  • SMA: 1964–1994, Annalen der Schweizerischen Meteorologischen Anstalt, Zürich.

  • Stihler, S. D., Stone, D. B., and Beget, J. E.: 1992, ‘“Varve” Counting vs. Tephrochronology and 137Cs and 210Pb Dating: A Comparative Test at Skilak Lake, Alaska’, Geology 20, 1019–1022.

    Google Scholar 

  • Sweeney, R. E. and Kaplan, I. R.: 1973, ‘Pyrite Framboid Formation: Laboratory Synthesis and Marine Sediments’, Econ. Geol. 68, 618–634.

    Google Scholar 

  • Tangborn, W.: 1980, ‘Two Models for Estimating Climate-Glacier Relationships in the North Cascades, Washington, USA’, J. Glaciol. 25, 3–21.

    Google Scholar 

  • Teranes, J. L. and McKenzie, J. A.: 1995, ‘Evidence for Rapid Climate Changes during the 20th Century from High-Resolution Oxygen Isotope Stratigraphy in Chemically Varved Lacustrine Sediments’, Terra Nova 7, 218.

    Google Scholar 

  • Thompson, R.: 1995, ‘Complex Demodulation and the Estimation of the Changing Continentality of Europe's Climate’, Int. J. Climatol. 15, 175–185.

    Google Scholar 

  • Wendler, G. and Weller, G.: 1974, ‘A Heat-Balance Study on McCall Glacier, Brooks Range, Alaska: A Contribution to the International Hydrological Decade’, J. Glaciol. 13, 13–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

OHLENDORF, C., NIESSEN, F. & WEISSERT, H. GLACIAL VARVE THICKNESS AND 127 YEARS OF INSTRUMENTAL CLIMATE DATA: A COMPARISON. Climatic Change 36, 391–411 (1997). https://doi.org/10.1023/A:1005376913455

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005376913455

Keywords

Navigation