Skip to main content
Log in

Non-neuronal cells in the spinal cord of nude and heterozygous mice. I. Ventral horn neuroglia

  • Published:
Journal of Neurocytology

Summary

A quantitative light microscopic analysis of the ventral grey matter in the lumbar spinal cord of homozygous nude (nu/nu) and heterozygous (nu/+) mice was performed to determine the possible contribution of lymphocytes to normal C.N.S. tissue. If lymphocytes were present in the neuropil, they could be mistaken for neuroglial cells. Athymic nude mice offer a good model, since they lack T-lymphocytes and symptoms of neurological involvement. Mean cell counts from 1 μm sections were tested by analysis of variance. There were no strain differences for the area and number of neurons. The total neuroglial cell count was also similar, but the number of oligodendrocytes decreased 28%, astrocytes increased 51% and microglia were unchanged in the nude compared with the heterozygous mouse. There were no qualitative differences at the ultrastructural level among the neuroglia of either strain. Either the genetic defect retards and alters neuroglial cell development, or some of the small, round dark nuclei belong to lymphocytes, which have earlier migrated into the C.N.S. parenchyma. Lymphocytes could then participate in a cell-mediated immune response with brain macrophages, which are thought to be primarily derived from mononuclear leukocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • åström, K. E., Webster, H. deF. &Arnason, B. G. (1968) The initial lesion in experimental allergic neuritis. A phase and electron microscopic study.Journal of Experimental Medicine 128, 469–96.

    Google Scholar 

  • Besedovsky, H. &Sorkin, E. (1977) Network of immune-neuroendocrine interactions.Clinical and Experimental Immunology 27, 1–12.

    Google Scholar 

  • Besedovsky, H., Sorkin, E., Felix, D. &Haas, H. (1977) Hypothalamic changes during the immune response.European Journal of Immunology 7, 323–5.

    Google Scholar 

  • Blinzinger, K. H. &Kreutzberg, G. W. (1968) Displacement of synaptic terminals from regenerating motoneurons by microglial cells.Zeitschrift für Zellforschung und mikroskopische Anatomie 85, 145–57.

    Google Scholar 

  • Bunge, R. P. (1968) Glial cells and the central myelin sheath.Physiological Reviews 48, 197–251.

    Google Scholar 

  • Cammermeyer, J. (1960) Is the perivascular oligodendrocyte another element controlling the blood supply to neurons?Angiology 11, 508–17.

    Google Scholar 

  • Cantor, H., Simpson, E., Sato, V. L., Rathman, C. G. &Herzenberg, L. A. (1975) Characterization of subpopulations of thymus derived lymphocytes. I. Separation and functional studies of peripheral thymus derived cell binding different amounts of fluorescent anti thy-1.2 theta antibody using a fluorescence activated cell sorter.Cellular Immunology 15, 180–96.

    Google Scholar 

  • Chew-Lim, M. (1979) Brain viral persistence and myelin damage in nude mice.Canadian Journal of Comparative Medicine 43, 39–43.

    Google Scholar 

  • del Cerro, M. &Monjan, A. A. (1979) Unequivocal demonstration of the hematogenous origin of brain macrophages in a stab wound by a double-label technique.Neuroscience 4, 1399–404.

    Google Scholar 

  • del Rio Hortega, P. (1928) Tercera aportacion al conocimiento morfologico e interpretacion functional de la oligodendroglia.Memorias de la Revista Sociedad Española de Historia Natural 14, 5–122.

    Google Scholar 

  • del Rio Hortega, P. (1932) Microglia. InCytology and Cellular Pathology of the Nervous System, Vol. 2 (edited byPenfield, W.), pp. 483–534. New York: Hoeber.

    Google Scholar 

  • Fontana, A., Grieder, A., Arrenbrecht, ST. &Grob, P. (1980)In vitro stimulation of glia cells by a lymphocyte-produced factor.Journal of the Neurological Sciences 46, 55–62.

    Google Scholar 

  • Fujita, S. &Kitamura, T. (1976) Origin of brain macrophages and the nature of the microglia. In Progressin Neuropathology, Vol III (edited byZimmerman, H. M.), pp. 1–50. New York: Grune and Stratton.

    Google Scholar 

  • Galambos, R. (1964) Glial cells. InNeurosciences Research Program Bulletin, Vol. II (edited bySchmitt, F. O.), pp. 1–63. Cambridge: MIT Press.

    Google Scholar 

  • Galambos, R. (1971) The glia-neuronal interaction: some observations.Journal of Psychiatric Research 8, 219–24.

    Google Scholar 

  • Gershwin, M. E., Merchant, B., Gelfand, M. C., Vickers, J., Steinberg, A. D. &Hansen, C. T. (1975) The natural history and immunopathology of outbred athymic (nude) mice.Clinical Immunology and Immunopathology 4, 324–40.

    Google Scholar 

  • Gilad, G. M., Gilad, V. H. &Kopin, I. J. (1979) Reaction of the mutant mouse nude to axonal injuries of the central nervous system.Experimental Neurology 65, 87–98.

    Google Scholar 

  • Golub, E. (1972) The distribution of brain associated theta-antigen cross-reactive with mouse in the brain of other species.Journal of Immunology 109, 168–70.

    Google Scholar 

  • Hydén, H. (1967) RNA in brain cells. InThe Neurosciences. A Study Program (edited byQuarton, G. C., Melnechuk, T. &Schmitt, F. O.), pp. 248–66. New York: Rockefeller University Press.

    Google Scholar 

  • Imamoto, K., Paterson, J. A. &Leblond, C. P. (1978) Radioautographic investigation of gliogenesis in the corpus callosum of young rats, I. Sequential changes in oligodendrocytes.Journal of Comparative Neurology 180, 115–38.

    Google Scholar 

  • Kaplan, M. M., Wiktor, T. J. &Koprowski, H. (1975) Pathogenesis of rabies in immunodeficient mice.Journal of Immunology 114, 1761–5.

    Google Scholar 

  • Kerns, J. M. &Hinsman, E. J. (1973a) Neuroglial response to sciatic neuroectomy. I. Light microscopy and autoradiography.Journal of Comparative Neurology 151, 237–54.

    Google Scholar 

  • Kerns, J. M. &Hinsman, E. J. (1973b) Neuroglial response to sciatic neuroectomy. II. Electron microscopy.Journal of Comparative Neurology 151, 255–80.

    Google Scholar 

  • Kerns, J. M. &Nierzwicki, S. A. (1981) Non-neuronal cells in the spinal cord of nude and heterozygous mice. II. Agranular leukocytes in the subarachnoid and perivascular space.Journal of Neurocytology 10, 819–31.

    Google Scholar 

  • Kerns, J. &Peters, A. (1974) Ultrastructure of a large ventro-lateral dendritic bundle in the rat ventral horn.Journal of Neurocytology 3, 533–55.

    Google Scholar 

  • Konigsmark, B. W. &Sidman, R. L. (1963) Origin of brain macrophages in the mouse.Journal of Neuropathology and Experimental Neurology 22, 643–76.

    Google Scholar 

  • Kraus-Ruppert, R., Herschkowitz, N. &Fürst, S. (1973) Morphological studies on neuroglial cells in the corpus callosum of the Jimpy mutant mouse.Journal of Neuropathology and Experimental Neurology 32, 197–202.

    Google Scholar 

  • Ling, E. A. &Leblond, C. P. (1973) Investigation of glial cells in semi-thin sections. II. Variations with age in the numbers of the various glial cell types in rat cortex and corpus callosum.Journal of Comparative Neurology 149, 73–82.

    Google Scholar 

  • Ling, E. A., Paterson, J. A., Privat, A., Mori, S. &Leblond, C. P. (1973) Investigation of glial cells in semi-thin sections. I. Identification of glial cells in the brain of young rats.Journal of Comparative Neurology 149, 43–72.

    Google Scholar 

  • Ludwin, S. K. (1979) The perineuronal satellite oligodendrocyte. A role in remyelination.Acta Neuropathologica (Berlin) 47, 49–53.

    Google Scholar 

  • Mirsky, R. &Thompson, E. J. (1975) Thy-1-(theta)-antigen on the surface of morphologically distinct brain cell types.Cell 4, 95–101.

    Google Scholar 

  • Mori, S. (1972) Light and electron microscopic features and frequencies of the glial cells present in the cerebral cortex of the rat brain.Archivium Histologicum Japonicum 34, 231–44.

    Google Scholar 

  • Mori, S. &Leblond, C. P. (1970) Electron microscopic identification of three classes of oligodendrocytes and a preliminary study of their proliferative activity in the corpus callosum of young rats.Journal of Comparative Neurology 139, 1–30.

    Google Scholar 

  • Nelson, D. S. (1972) Macrophages as effectors of cell-mediated immunity.CRC Critical Reviews in Microbiology 1, 353–84.

    Google Scholar 

  • Oehmichen, M. (1978)Mononuclear Phagocytes in the Central Nervous System. New York: Springer-Verlag.

    Google Scholar 

  • Oehmichen, M., Wiethölter, H. &Greaves, M. F. (1979) Immunological analysis of human microglia: Lack of monocytic and lymphoid membrane differentiation antigens.Journal of Neuropathology and Experimental Neurology 38, 99–103.

    Google Scholar 

  • Paterson, J. A., Privat, A., Ling, E. A. &Leblond, C. P. (1973) Investigation of glial cells in semi-thin sections. III. Transformation of subependymal cells into glial cells, as shown by radioautography after3H-thymidine injection into the lateral ventricle of the brain of young rats.Journal of Comparative Neurology 149, 83–102.

    Google Scholar 

  • Pelletier, M. &Montplaisir, S. (1975) The nude mouse: a model of deficient T-cell function. InMethods and Achievements in Experimental Pathology, Vol. 7, (edited byJasmin, G. &Cantin, M.), pp. 149–66. New York: Karger.

    Google Scholar 

  • Penfield, W. (1924) Oligodendroglia and its relation to classical neuroglia.Brain 47, 430–52.

    Google Scholar 

  • Peters, A. (1964) Observations on the connections between myelin sheaths and glial cells in the optic nerve of young rats.Journal of Anatomy 98, 125–34.

    Google Scholar 

  • Pierpaoli, W., Kopp, H. G., Muller, J. &Keller, M. (1977) Interdependence between neuroendocrine programming and the generation of immune recognition in ontogeny.Cellular Immunology 26, 16–27.

    Google Scholar 

  • Pruss, R. (1979) Thy-1 antigen on astrocytes in long-term cultures of rat central nervous system.Nature 280, 688–9.

    Google Scholar 

  • Raviola, E. &Karnovsky, M. J. (1972) Evidence for a blood-thymus barrier using electron-opaque tracers.Journal of Experimental Medicine 136, 466–98.

    Google Scholar 

  • Reif, A. E. &Allen, J. M. V. (1964) The AKR thymic antigen and its distribution in leukemias and nervous tissues.Journal of Experimental Medicine 120, 413–34.

    Google Scholar 

  • Sharkis, S. J., Wiktor-Jedrzajczak, W., Ahmed, A., Santos, G. W., Mckee, A. &Sell, K. W. (1978) Antitheta-sensitive regulatory cell (TSRC) and hematopoiesis: regulation of differentiation of transplanted stem cells in W/Wv anemic and normal mice.Blood 52, 802–17.

    Google Scholar 

  • Simionescu, N. &Simionescu, M. (1976) Galloylglucoses of low molecular weight as mordant in electron microscopy. I. Procedure and evidence for mordanting effect.Journal of Cell Biology 70, 608–21.

    Google Scholar 

  • Skoff, R. P. (1977) Dysmyelination in Jimpy mouse due to astroglial hyperplasia?Nature 268, 177–8.

    Google Scholar 

  • Stensaas, L. J. &Stensaas, S. S. (1968) Astrocytic neuroglial cells, oligodendrocytes and microgliacytes in the spinal cord of the toad. I. Light microscopy.Zeitschrift für Zellforschung und mikroskopische Anatomie 84, 473–89.

    Google Scholar 

  • Stenwig, A. E. (1972) The origin of brain macrophages in traumatic lesions, Wallerian degeneration and retrograde degeneration.Journal of Neuropathology and Experimental Neurology 31, 696–704.

    Google Scholar 

  • Stewart, R. M. &Rosenberg, R. N. (1979) Physiology of glia: glial-neuronal interactions.International Review of Neurobiology 21, 275–309.

    Google Scholar 

  • Sturrock, R. R. (1974) Histogenesis of the anterior limb of the anterior commissure of the mouse brain. III. An electron microscopic study of gliogenesis.Journal of Anatomy 117, 37–53.

    Google Scholar 

  • Sturrock, R. R. (1976) Light microscopic identification of immature glial cells in semi-thin sections of the developing mouse corpus callosum.Journal of Anatomy 122, 521–37.

    Google Scholar 

  • Sturrock, R. R. (1978) Development of the indusium griseum. II. A semi-thin light microscopic and electron microscopic study.Journal of Anatomy 123, 433–45.

    Google Scholar 

  • Szeligo, F. &Leblond, C. P. (1977) Response of the three main types of glial cells of cortex and corpus callosum in rats handled during suckling or exposed to enriched, control and impoverished environments following weaning.Journal of Comparative Neurology 172, 247–64.

    Google Scholar 

  • Torvik, A. &Söreide, A. J. (1972) Nerve cell regeneration after axon lesions in newborn rabbits. Light and electron microscopic study.Journal of Neuropathology and Experimental Neurology 31, 683–95.

    Google Scholar 

  • Vaughn, J. E. (1969) An electron microscopic analysis of gliogenesis in rat optic nerves.Zeitschrift für Zellforschung und mikroskopische Anatomie 94, 293–324.

    Google Scholar 

  • Vaughn, J. E. &Pease, D. C. (1970) Electron microscopic studies of Wallerian degeneration in rat optic nerves. II. Astrocytes, oligodendrocytes and adventitial cells.Journal of Comparative Neurology 140, 207–26.

    Google Scholar 

  • Vaughn, D. &Peters, A. (1978) Neuroglia cells in the cerebral cortex of rats from young adulthood to old age: an electron microscope study.Journal of Neurocytology 3, 405–29.

    Google Scholar 

  • Zar, J. H. (1974) Multisample hypotheses.Biostatistical Analysis, pp. 144–48. Englewood Cliffs: Prentice Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerns, J.M., Frank, M.J. Non-neuronal cells in the spinal cord of nude and heterozygous mice. I. Ventral horn neuroglia. J Neurocytol 10, 805–818 (1981). https://doi.org/10.1007/BF01262654

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01262654

Keywords

Navigation