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Adaptive telecommunication network
operation with a limited number of
reconfigurations

Frank Pfeuffer* Axel Werner*
August 3, 2015

Rising traffic in telecommunication networks lead to rising energy costs
for the network operators. Meanwhile, increased flexibility of the network-
ing hardware may help to realize load-adaptive operation of the networks to
cut operation costs. To meet network operators’ concerns over stability, we
propose to switch network configurations only a limited number of times per
day. We present a method for the integrated computation of optimal switch-
ing times and network configurations that alternatingly solves mixed-integer
programs and constrained shortest cycle problems in a certain graph. Simi-
larly to the Branch & Bound Algorithm, it uses lower and upper bounds on
the optimum value and allows for pivoting strategies to guide the computa-
tion and avoid the solution of irrelevant subproblems. The algorithm can act
as a framework to be adapted and applied to suitable problems of different
origin.

1 Introduction

Due to a forecasted increase in data traffic, telecommunication network op-
erators are faced with rising operation costs, of which energy consumption is
one of the main contributing factors. Conventionally, networks are operated
statically, even though the traffic volumes change considerably over the day.
The emergence of flexible hardware operation modes (sleep mode, flexible
bit-rate) enables immediate adaptation of capacities to actual network loads
and saves resources during low-demand times. As long as such flexible net-
works are not yet an established technology, network operators likely prefer
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to choose from a limited number of thoroughly tested configurations for em-
ployment at carefully chosen time points instead of freely and incessantly
reconfiguring the network.

Some efforts to reduce energy-consumption through load-adaptiveness have
been taken recently, see, e.g., [2] and the references therein. While it is of-
ten assumed that networks can be reconfigured freely, the need to consider
constraints on the dynamism of the applied network configurations has also
been recognized by some: In [1], a partitioning of the time horizon into in-
tervals in which the network should not be reconfigured is part of the input
for computing energy-minimal network configurations. A model based on
random graph theory and a simple traffic profile for a day is used in [3] to
choose a limited number of reconfiguration time points and to estimate the
optimal power consumption between reconfigurations. Here, we address the
problem of finding such reconfiguration time points and network configura-
tions, optimal w.r.t. energy consumption, simultaneously by an integrated
approach.

More precisely, the problem addressed is the following: Given a demand
vector for each time point in a finite time period [0, 7™**[ and a minimum
time 7V to wait between reconfigurations of the network, find at most N
(N < %) disjoint time intervals [r;, 7;41] with duration A(7;, 7541) > 7V
partitioning [0, 7%*[, as well as associated network configurations with power
consumption P(7;,7;4+1) that are able to route all demands within the time
interval [7;, 7;41[ such that total energy consumption is minimized:

E‘Opt = gg}r\} Z P(Ti,TZ'+1)A(Ti,TZ’+1). (1)
T0< <1 0<i<n
Tn=T0

In the following we consider the discretized problem with time points 7;
chosen from the set T' := [0, 7™**[ N g Z, with time granularity g € R;. We
also use an extended notation of intervals and interval lengths suitable for
the periodic setting: For 7 > 7/ define

=10, 7[Ur, 7™ and  A(r,7) =
[7,7'[:=[0,7'[U [T, 7% n (r,7") S

{7'/ -7 if 7 <7,

In Section 2 we explain how to compute the minimal power consumption
P(1,7') of the network for a time interval [r,7/[ and in Section 3 we use
the power consumption values to obtain optimal time points for switching
the network to minimize energy consumption. In Section 4 we describe an
approach to compute time points and power consumption simultaneously and
present results from computations using the method.



2 Optimization of network configurations

Although our approach will also work with other models, we briefly state
the network configuration model we use: a network design problem for an
IP-over-WDM core network with capacity modules for IP routers and optical
channels. Let V' be the set of IP router sites, L a set of possible IP links,
and (di(7))kex the demand vector at time 7 € [7,7'[N gZ. The IP layer is
modeled as

S (fE-fHy=0F VieVikek,
lel

STdn(F) (fF+ ) <te WeL#elrnT[NgZ, (2)
keK

where 52"’ = 1 if ¢ is the source of demand k € K, —1 if it is the target, and
0 otherwise. The variables ff, f;k € Zy indicate the IP flow and ¢, € Ry the
maximum traffic on IP link ¢ € L within the time interval |7, 7'[. Let E be
a set of possible optical links, P a set of paths through F on which optical
channels can be established, and N, a set of possible modulations for optical
channels on path p. C,, denotes the capacity of module n and W, its spectral
width. Then the optical layer is modeled by

Z Crnypn >t VO€ L and Z WnYpn = 2. Ve€ L,
pEP;nEN, pEPe,nEN,

where we denote by P, the set of paths in P having the same end points as £
and by P, the set of paths in P using edge e. The variables y, , € Z, count
the number of modules of type n used on path p and z, € Z; the consumed
spectral width on optical link e. Let M; be a set of IP router modules for site
1 € V, Y, the number of line cards provided by module m, A; the number
of line cards at ¢ connecting the non-core network parts, and S the spectrum
available on one fiber. The IP hardware and fibers are then modeled as

> Yu@im> Y. YpmtA VieV and S >z VecE,
meM; pEP; nEN)

where we denote the set of paths in P with one end point in ¢ by P;. The
variables z;,, € {0,1} indicate the IP router module used, and variables
(e € Z4 indicate the number of fibers used on optical link e. We minimize
total power consumption of the used hardware:

P(r,r)=min Y EnZim+ > Entpn+ > Eel, (3)
i€eV,meM; pEPNEN, ecE

where FE,,, E,, and FE. denote the power consumption of the corresponding
modules m, n and link e, respectively. Computing P(7,7’) then amounts to
solving a mixed-integer program (MIP).



The following helpful property is a consequence of Eq. (2):
[7,7'[ C [7,7] implies P(r,7") < P(7,7), (4)

since the optimization problem for computing P(7,7’) relaxes the problem
for computing P(7,7’). We also remark that

P(r,7)>0 V7,7 €T, (5)

since the coeflicients in the objective are power consumption values, which
are non-negative.

3 Optimization of time intervals

We assume in this section that the power consumption of an optimal network
configuration for the time interval [r,7'[, P(7,7’), is known for all 7,7’ € T.
We construct a directed graph G = (V, A) with node set V =T and arc set
A={(r,7) €T x T : A(1,7') > 7%}, and we define arc weights

wp : (1,7") = P(r,7') AT, 7).

We can relate partitions of the time horizon T into at most N inter-
vals to certain hop constrained cycles in the graph G, i.e., to sequences
(10,71, ..,7Tn) of at least two and at most N + 1 nodes where consecutive
nodes are connected by an arc, (74, 7;41) € Afori =0,...,n—1, and which is
closed, 7, = 79: Since arcs in G correspond to time intervals, the correspon-
dence between cycles and sets of time points as limits of intervals covering T’
is obvious. For a cycle C' = (19, 71,. .., Tn—1,Tn) with n < N to induce a par-
tition (and not just a cover) of T, it has to contain exactly one arc (7, 7i11)
for which 7; > 741. Finding a energy-optimal partition of the time horizon
T then amounts to finding an N-hop constrained shortest cycle satisfying

Hi:mi>7ma} =1 (6)

We show next that in the optimum the latter condition is not necessary
because we can reduce an optimal cycle having [{i : 7; > 7;41}| > 2 to one
that has the property (6).

Theorem 1. For each N-hop constrained shortest cycle C' in the weighted
graph (G,wp) with |{i : 7, > Tix1}| > 2 there is an N-hop constrained
shortest cycle C" with weight wp(C") < wp(C) that satisfies Eq. (6).

Proof. Assume that C' = (79, 71,...,Tn—1,Tn) with n < N is a N-hop con-
strained shortest cycle in (G, wp) with [{i : 73 > 7;41} > 2. Then

n—1

ZA(Ti7Ti+1) - |{'L LT Z Ti+l}| TmaX 2 2Tmax
=0



implies that A(7j,7j41) > %Tmax > 27Vt for some j; by periodic shift of
the order of the arcs in C' and of the demands we can w.l.o.g. assume that
j =0, 70 =0 and consequently 7, > 2 7Vait,

Let 2 < n — 1 be the smallest index such that 7, > 7;4;. Define 7 :=
min{7;41, L% 71]} and the cycle C' := (7, 71,...,7,7) with i + 1 < n hops.
The cycle C’ only uses arcs of C except for (7,71) and (7;,7); the definition
of 7 makes sure that A(7, ) > 7V and A(7;,7) > 7%t and thus all arcs
of ¢’ lie in G. For the weight of the new cycle holds

i-1
wp(C') = wp(7, 1) + ZUJP(TMiH) + wp(7, 7)
i=1
i-1
< wp(r0,71) + Y wp (T, Tay1) + wp(7i, Tig1)
i=1
n—1
< ZwP<7—iaTi+l)
=0
=wp(C)

since [T, 71[ C [10, 71 and [r3, T[ C [1, 741[ imply, with the help of Eq. (4),
wp(7,m) < wp(10,71) and wp(n,7) < wp(n, Tiv1), and since by Eq. (5)
wp(7i, Tig1) > 0 for all 4 with 2+ 1 <i <n.

Thus, we have verified that C’ uses only arcs of GG, that it has less hops as
C and therefore also satisfies the N-hop constraint, and that it is at most as
long as C. Finally, the construction makes sure that only one arc (7,7’) on
C' has 7/ > 7 such that C’ corresponds to a partition of 7. O

Theorem 1 implies that any generic algorithm for computing hop-con-
strained shortest cycles can be used to solve the problem to find an energy-
optimal set of configurations.

4 Integrated optimization approach

To obtain all arc weights wp(7,7') of G, we would have to solve |A| = O(|T'|?)
NP-hard network design problems. To avoid this, we need some mechanism
to distinguish relevant edges from those that are not needed in an optimal
solution or for proving its optimality. To this end, let L and U be lower and
upper bounds of P: L(7,7") < P(r,7") < U(r,7') for all 7,7’ € T. Then wy,
and wy can be defined analogous to wp in Section 3 as

wy: (1, 7)) = L(r,7)A(r,7) and wy : (r,7) = U(r,7) A(r, 7).

For the sake of brevity we call an N-hop constrained shortest cycle with
respect to wp an N-hop P-shortest cycle (analogous for L and U). For an



N-hop L-shortest cycle C, and an N-hop U-shortest cycle Cy, together with
an N-hop P-shortest cycle Cp, which achieves the optimum E°P' in (1), we
have

wr(Cr) < wr(Cp) < wp(Cp) = B
and
E°" = wp(Cp) < wp(Cy) < wy(Cu).

Proposition 2. An N-hop L-shortest cycle gives a lower bound on E°Pt and,
analogously, an N-hop U-shortest cycle gives an upper bound on E°Pt.

This justifies Algorithm 1 for simultaneously finding time intervals and
network configurations that solve (1) up to a relative target gap . Simi-
larly to the Branch & Bound Algorithm for solving mixed-integer programs,
it maintains upper and lower bounds for wp on the arcs of G together with
the N-hop U-shortest and L-shortest cycles. The algorithm successively im-
proves up to the target gap € the upper and lower bounds on arcs that belong
to the shortest cycles. If the weights of the shortest cycles with respect to
the updated bounds have a gap below ¢, the algorithm returns the upper
bound cycle; the time intervals corresponding to the cycle are optimal up to
E.

Algorithm 1 Integrated optimization of intervals and configurations
Input: number of configurations N, relative target gap e, arc set A, data necessary to
compute P(7,7") for all (7,7') € A (see Section 2)
Output: at most N time intervals and configurations
1: for all (1,7') € A do

2. U(r,7') := generic upper bound on P(7,7’), e.g., from a heuristic
3: (7, 7') := the network configuration realizing U (1, 7")

4: L(t,7') := generic lower bound on P(7,7’), e.g., from LP relaxation
5: end for

6: loop

7. Cy := N-hop U-shortest cycle

8: (' := N-hop L-shortest cycle

9:  if the relative gap between lengths of Cyy and Cp, is below € then
10: return Cy, z(7,7') for all (7,7") € Cy

11:  end if

12:  Choose a pivot element (7,7') € Cy U CY,

13:  Improve U(r,7"), L(7,7") for (7,7") up to relative gap e

(e.g., by using an integer programming solver)
and let z(7,7’) be the network configuration realizing U (T, /)
14: end loop




4.1 Implementation details and improvements

Algorithm 1 is formulated rather generically and several issues are subject to
further, more precise specification. The critical subtasks are the initialization
and improvement of the bounds. Every upper or lower bound on an arc (7, 1)
implies an upper or lower bound, respectively, on other arcs as well due to

Eq. (4):

Proposition 3. A lower bound for P(r,7') is also a lower bound for P(T,7)
for all [7,7'[ 2 [r,7']. An upper bound for P(r,7') is also an upper bound
for P(7,7") for all [7,7'[ C [r,7'].

In other words, in the partially ordered set P built from the arc set A
and ordered by the set inclusion relation of the associated time intervals,
lower bounds propagate from minimal towards maximal elements while upper
bounds propagate from maximal towards minimal elements.

Initialization. Due to Proposition 3, for obtaining lower bounds on all arcs,
it is sufficient to initialize lower bounds on arcs whose corresponding time
interval does not contain the time interval of any other arc (minimal elements
of P). Analogously, for upper bounds on all arcs, initialization is sufficient
for those arcs whose time interval is not contained in the time interval of
any another arc (maximal elements of P). Likewise, the improvement of the
bounds on one arc may allow to update the bounds on other arcs, which
helps to avoid the explicit computation of bounds on some arcs.

In our implementation we obtain initial upper and lower bounds on an arc
by solving the root node of the associated mixed-integer program (3) with
a start solution computed by a shortest path heuristic. In a first step, only
the arcs whose associated time intervals are minimal w.r.t. set inclusion are
initialized this way. By propagation, this implicitly initializes lower bounds
on all arcs, but upper bounds only on these minimal arcs. In fact, it may
yet be impossible for the algorithm to find an initial N-hop U-shortest cycle
Cy with finite weight assuming arcs with uninitialized upper bounds have
the trivial upper bound +o0o. To avoid this situation, we have to make sure
that a cycle with finite U-weight exists. This can be done by simply solving
the root node (with heuristic start solution) on the arc corresponding to the
whole time horizon, which naturally contains the time intervals of all other
arcs and implies upper bounds there. The disadvantage is that all cycles C'
end up with the same weight wy (C) = U(7,7") A(7,7"), which results in a
completely arbitrary initial choice of Cy.

We choose a different procedure, which is inspired by the observation that
power consumption P(7,7") roughly depends (affinely) linear on the demand
sum of the component-wise maximum demand vector over the time period
[1,7'[, see Fig. 1. Thus, we first compute the N-hop shortest cycle C; with
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Figure 1: Power consumption P(7,7') as a function of the demand sum of the maxi-
mum traffic demand vector wgy(7,7’) for various time intervals [r,7'[ in the
two networks abilene (gray) and geant_eulb (black) (data from [4, 5, 7],
cf. Section 4.2)

respect to the edge weights

which are trivial to obtain, and then solve the root node (with heuristic start
solution) on each arc of the cycle Cjy.

Choice of pivot elements. A further decision is the choice of the pivot
element in Step 12 of Algorithm 1. We consider the following criteria to
determine priorities for the time intervals in Cy U Cp:

1. whether (7,7') € Cy;

2. whether the associated mixed-integer program’s root node has not yet
been solved on (7,7');

3. whether the relative gap

between upper and lower bound on (7, 7’) is above &;
4. and the magnitude of the relative gap (7, 7’) itself.

Let A(7,7"), p(1,7'), a(r,7") € {0,1} indicate with a 1 whether Criterion 1,
2, and 3, respectively, hold true. This defines a priority vector

m(r,7') == (M7, 7, p(7,7'), o7, 7), (7, 7));



we choose the arc with lexicographically largest m-vector as our pivot element.
This prioritizes improving the lower bound cycle C; and the global lower
bound wp,(C}), while first improving the gap on arcs whose initial bounds
came from propagation from another arc and then on the remaining arcs
with high gap. To improve the bounds on arcs with yet unsolved root node,
we solve the root node, otherwise we use a MIP solver to improve the bounds
up to the target gap ¢.

Early termination of solvers. While the algorithm is improving bounds, it
becomes apparent that more and more arcs do not have to be considered fur-
ther, because they either have bounds of satisfactory quality or their bounds
indicate that they have become obsolete. More precisely, an arc (7,7’) be-
comes obsolete if the N-hop L-shortest cycle C' through this arc has a weight
above the cutoff value (1 — ¢)wy(Cy). An arc can already become obso-
lete while a MIP solver is improving the bounds on it, since changing the
bounds affects the weights of C' and Cp. In this case the solver can be ter-
minated early to save solver time, in particular during the final iterations of
the algorithm.

Computation of cycles. In each iteration, Algorithm 1 needs to compute
N-hop constrained shortest cycles with respect to wy and wy. Note that
due to Eq. (5) we can assume that the arc weights w; and wy are non-
negative. Therefore, computing the cycles can be done in polynomial time by
the following procedure: First, compute (N — 1)-hop shortest paths between
all pairs of nodes with a suitable algorithm, as in [6, Ch. 3, Sec. 12], for
instance. Then, for each node pair (7,7’) add the additional arc (7', 7) to the
(N — 1)-hop shortest path from 7 to 7" and thus form cycles. Finally, choose
the shortest of these cycles. This procedure completes within O(|T'|3 log N)
steps.

Alternatively, as remarked, due to Theorem 1, a generic algorithm for
solving N-hop shortest path problems can be used, together with a postpro-
cessing step that ensures the computed cycle has the property (6).

4.2 Computational Results

For computational studies on practical instances, we adopted two exemplary
networks from SNDIib [7], abilene (12 nodes) and geant, which we trans-
formed into a 15-node version geant_eulb5. For both networks, measured
demand curves are available, which were averaged to yield day curves with
1h or %2 h granularity and scaled to match the capacities of today’s hardware.
Technical data on network devices, such as link length restrictions and power
consumption, were taken from [4, 5].

Solutions for these instances with N = 1,...,6 and a waiting time of
4 hours as well as the maximum number of configurations allowed by the



demand granularity (N = 24 or N = 48) were computed, optimal up to a
target gap of ¢ = 1% for abilene and ¢ = 2% for geant_eul5. Table 1
lists for each instance the number of arcs in the corresponding graph G, the
number of arcs for which initial lower and upper bounds were computed by
solving only the branch-and-bound root node of the network design problem,
the number of arcs for which the network design problem was solved aiming
at the target gap, the number of arcs on which the solution process was
terminated before reaching the target gap, the total time spent by the MIP
solver!, and the energy consumption of the computed solution.

The results show that by employing Algorithm 1, the computationally ex-
pensive network design problems have to be solved up to the target gap for
only a small fraction of all arcs of G, maximally for about 2% in the cases
where N < 6 and still less than 4 % when unlimited reconfiguration is allowed.
For a number of these arcs, the solver could be terminated before the target
gap was reached due to the arc becoming obsolete while the solver was im-
proving the bounds; this is particularly true for the abilene instances, where
about one third of the solver runs were terminated early. The less expensive
computation of lower and upper bounds by heuristics and LP relaxations
was necessary for maximally 9 % of all arcs for the geant_eu15 network and
up to 25% of all arcs for abilene. As for the total computation time, no
clear trend can be derived. It is obvious, however, that refining the granular-
ity results in substantially higher computation times. For the slightly larger
geant_eulb network, the algorithm consumes more time on average than for
abilene, even though aiming at a higher target gap.

Figure 2 visualizes the effort spent on solving the individual problems
associated with different arcs of the graph G for a typical run. During the
total running time of 1612s, less than 10% of all arcs in the graph had to
be touched and the time for solving the respective subproblem exceeded one
minute only for five arcs. For a number of arcs, a solution with large gap
(drawn in red), mostly from solving only the root node, was sufficient to
obtain an overall near-optimal solution.

Figure 3 shows the power consumption of the optimal solutions (w.r.t.
target gap) for N = 6 for abilene and geant_eul5 with Y2 h granularity, as
well as the traffic curves in these networks. Compared to the total energy
consumption of a static network over the day, dynamic reconfiguration allows
for considerable energy savings, given by the difference of the integrals of the
dashed and solid lines. For abilene this amounts to savings of about 12%
and for geant_eul5 of about 29%. Table 1 lists the energy consumption
of all considered instances. With increasing number of configurations N
the energy savings increase, where the biggest increase in savings happens
already for small N. Comparing the fully dynamic networks (N = 24 or

The MIP solver used was CPLEX 12.6; all computations were carried out on Ubuntu 14.04 Linux
systems using Intel Xeon E3-1245 3.4 GHz quad-core CPUs, 32 GB of memory.
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geant_eulb 1 - 1 1 0 98s 21.1 MW
granularity: 1h 2 4h 28 1 0 1705s 17.1 MW
# arcs: 409 3 4h 36 2 0 1740s 16.4 MW
target gap: 2% 4 4h 35 4 0 5196s 15.7 MW
5 4h 33 5 0 5644 s 15.3 MW
6 4h 24 4 0 11420s 15.2 MW
24 — 24 14 1 9497 s 14.1 MW
geant_eulb 1 - 1 1 0 5385s 20.7TMW
granularity: Y2h 2 4h 62 2 1 10664 s 16.5 MW
# arcs: 1585 3 4h 91 12 7 39643 s 15.9 MW
target gap: 2% 4 4h 59 4 0 26744 s 15.1 MW
5 4h 59 5 0 16624 s 14.8 MW
6 4h 49 1 10053 s 14. 7MW
48 - 48 35 1 25566 s 13.5 MW
abilene 1 - 1 1 0 3137s 28.4 MW
granularity: 1h 2 4h 99 7 4 3593 s 26.6 MW
# arcs: 409 3 4h 64 8 3 1903 s 25.6 MW
target gap: 1% 4  4h 47 5 2 958 s 24.9 MW
) 4h 32 6 1 1167 s 24.5 MW
6 4h 31 8 1 1612s 24.5 MW
24 - 24 13 1 999 22.TMW
abilene 1 - 1 1 0 2479 25.9 MW
granularity: 2h 2 4h 264 29 21 20631 s 24.5 MW
# arcs: 1585 3 4h 131 21 11 13257s 23.5 MW
target gap: 1% 4 4h 130 33 17 8652 23.1 MW
5 4h 90 22 7 7195 22.8 MW
6 4h 81 23 2 8492 22.8 MW
48 - 48 38 1 2881s 20.7TMW

Table 1: Computational results for four instances and different maximum number of
configurations N, and minimum time to wait between reconfigurations 7%t
the number of arcs on which initial upper and lower bounds were computed,
the number of arcs on which the network design problem was solved aiming at
the target gap, the number of arcs on which the latter was terminated before
the target gap was reached, the total time spent by the MIP solver, and the

optimized energy consumption
11



Figure 2: Computational effort to solve the various subproblems in the graph G for net-
work abilene (granularity 1h, 6 configurations, waiting time 4 h, target gap
1%); broader arcs indicate longer solution times for the respective subprob-
lems, red arcs indicate subproblems that were solved up to large gap, green
arcs such with gaps near or below the target gap €, shaded arcs represent sub-
problems that need not be considered at all; the final upper bound cycle is
marked by dots, the final lower bound cycle by circles

N = 48) to those with the highest possible number of configurations with
a 4 hour waiting time (N = 6), it turns out that the benefit of having to
obey no waiting times amounts to about 5-8 percentage points of additional
savings.

5 QOutlook

In Algorithm 1, the specific nature of the optimization problems providing
the values P(7,7') is more or less irrelevant. Hence the algorithm can be
applied not only in network design, but also for other subproblems that
satisfy certain conditions. More precisely, Theorem 1 and Algorithm 1 are
applicable for all problems, for which the total objective is expressible as the
sum of the objectives of the subproblems and these objectives satisfy the
conditions in Eqgs. (4) and (5).

To generalize this even further, assume the overall objective can be ex-

12
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pressed as
opt __ .
E°P* = 713%1]1\} D(10,...,7Tn)
T0<-<Tpn—-1
Tn=T0
with

D(10,...,7n) = Z(V(70,71), - Y(Th—-1,Tn))

for functions ¥ : 7?2 — X and = : X<V — R, where X C R and X=V is
the set of all n-tuples, with n < N, of elements of X. We define the graph
G = (V, A) as in Section 3 but set the weight of an arc (7,7) to

wy(7,7) = V(r,7)
and the weight of a cycle C' = (19,...,7,) to
w57\I’(C) = E(’LU\I/(T(), 7—1)7 s 7w\11(7—n717 Tn))

Then Theorem 1 holds, provided that the following monotonicity conditions
are satisfied.
e = is monotonic: for all (zo,...,Tn_1), (2., 2", ;) € XN with n <
n

~

v, <, Vi=0,....n—1
= E(20,-- s Tn-1) < (- Ty _q). (7)

e U is monotonic: for all 7,7/, 7,7 € T

13



Monotonicity of = also implies that lower and upper bounds on ¥ lead to
lower and upper bounds on E°P! in analogy to Proposition 2, while mono-
tonicity of ¥ ensures that bounds can be propagated between arcs in analogy
to Proposition 3.

For the objective considered in this paper,

n—1

O(19,...,Tn) i= Z P(7i, Tix1) A(Ti, Tit1),
=0

we have ¥ : (1,7") — P(r,7") A(7,7"), X := R4, and = is the summation.
The monotonicity of ¥ and Z is due to Eqgs. (4) and (5).

Another setting in which Algorithm 1 can be applied, originates from the
context of network fault tolerance. Assume that we want to design a net-
work configuration schedule with a limited number of reconfigurations and
minimum waiting times between these that minimizes the probability of a
network failure. Suppose that with each network configuration there is asso-
ciated a normalized failure probability, which represents the probability that
a failure occurs in said configuration within a unit time interval of duration 1.
For a given time period |7, 7'[, let p(7,7") be the minimal normalized failure
probability of all network configurations that are able to route all demands in
[7,7/[. Then the total failure probability of a schedule over the time horizon

1S
n—1

O(19,...,7) i=1— H (1 = p(73, Tig1)) 240
i=0

where we assume that failure probabilities for different configurations and
intervals are independent. Since a configuration for a time interval [7, 7| is
also able to route the demands of any contained time interval [, 7'[ C [T, 7],
we have p(7,7") < p(7,7'). Hence, if we define = : (zg,...,ZTn_1)

1y (—2i), X == [~1,0], and ¥ : (1,7') = —(1 — p(r, T'))A(T’T/), = and ¥
again satisfy the monotonicity conditions.

Other objectives that would satisfy the necessary condition might be of
interest, such as bottleneck problems minimizing the value of ® (g, ..., 7,) =
max?z_ol v(7;, Ti4+1) for some suitable function v. Objectives like these may
arise in multilayer network design when the number of hops of logical links
in the physical network or the number of used lightpaths on optical links
should be minimized.

Algorithm 1 provides a framework for computing an optimal collection
of solutions to the subproblem considered, and as such it can be extended
with all kinds of heuristics and efficient methods to compute lower bounds
and (close-to) optimal solutions for the problem at hand. Additionally, the
proposed procedure for choosing the pivot arc (7,7’) in Step 12 is only one
possibility; various other strategies for this step are devisable. Such improve-
ments might speed up the general algorithm considerably.
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