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Abstract

The subduction of H2O is inherently related to the hydrogeology of the oceanic

lithosphere entering the trench. Water transported within the subducting oceanic

plate affects a number of processes, such as intraslab earthquakes and arc magmatism.

Bending related faulting in the subducting lithospheres may intensify hydrothermal

flow through aged crust and provide pathways for seawater to reach lower crustal and

upper mantle depths. A number of seismic wide-angle reflection and refraction ex-

periments were conducted offshore of Nicaragua to investigate the impact of bending

related normal faulting on the seismic properties of the oceanic lithosphere prior to sub-

duction. Based on the reflectivity pattern of multi-channel seismic reflection (MCS)

data collected offshore of Nicaragua it has been suggested that bending-related faulting

facilitates hydration and serpentinization of the incoming oceanic plate. First seismic

wide-angle and refraction data were collected along the profile p50 which extends from

the region well seaward of the outer rise, not yet affected by subduction, into the trench

northwest of the Nicoya Peninsula, where multibeam bathymetric data show promi-

nent normal faults on the seaward trench slope. A tomographic joint inversion of the

seismic refraction and wide-angle reflection data yields a decrease in P-wave velocities

in the crust and uppermost mantle as the plate approaches the trench. Seaward of the

outer rise velocities are typical for ∼24 Myr old oceanic lithosphere. In the near-trench

region, however, crustal velocities are reduced by 0.2-0.5 km/s compared to normal

mature oceanic crust. Seismic velocities of the uppermost mantle are 7.6-7.8 km/s

and hence 5-7% lower than the typical velocity of mantle peridotite. These systematic

changes in P-wave velocity indicate an evolutionary process in the subducting slab

consistent with percolation of seawater through the faulted and fractured lithosphere

and serpentinization of mantle peridotites. Two other profiles, located northwest of the

profile p50, are parallel to the trench axis. This geometry was chosen to reveal if ser-

pentinization is a common process in the subducting Cocos plate offshore of Nicaragua

and not just a local feature. Tomographic inversion of both data sets indeed has shown

that seismic velocities are profoundly reduced along the entire lenght of the profiles,

both in the crust and uppermost mantle. Upper crustal velocities are not higher than

3.8-4.0 km/s, and the upper mantle is characterized by strong alteration that has
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caused a reduction of the seismic velocities by 8-10%. The anomalous behaviour is

more profound here than in the profile p50, but this observation is most likely due to

the geometry of the lines, i.e. fault density is higher along a line parallel to the trench

than along one which lies perpendicular. The modeling of the impact of water-filled

microcracks on the elastic properties of rocks shows that they could significantly influ-

ence the seismic behavior of fractured media. The modeling of the S-wave velocities of

the profile p50 has revealed that velocities in the crust are more profoundly reduced

than in the P-wave structure. This is an indication that fracture porosity is extensively

developed and, thus, has a significant impact on the seismic properties of the crust.

One can assume a similar scenario for the upper mantle within a few kilometers just

below the Moho. As both processes, hydration and fracturing, are related to each

other, it is difficult to separate their effects on seismic properties. Thus, an estimate of

12-17% serpentinization in the uppermost 3-4 km of the mantle is just an upper limit

of hydration, i.e. if the reduced velocities we observe in our velocity models were due

solely to hydration.
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Zussammenfassung

Die Subduktion von Wasser bestimmt wesentlich das hydrogeologische Verhalten

ozeanischer Lithosphäre im Bereich des Tiefseegrabens. Wasser, welches als Teil der

subduzierten ozeanischen Platte transportiert wird, beeinflusst dabei maßgeblich Proze-

sse wie die Seismizität innerhalb dieser Platte sowie im weiteren Verlauf der Subduktion

Schmelzvorgänge im darüber liegenden Mantel. Durch die Biegung der subduzierten

ozeanischen Lithosphäre hervorgerufene Störungssysteme können dabei den hydrother-

malen Fluss verstärken und dadurch für Meerwasser den Weg bereiten bis in Tiefenbere-

iche der unteren Kruste und des oberen Mantels. Mehrere refraktionsseismische Mes-

sungen vor Nicaragua wurden durchgefürt um den Einfluss dieser Störungssysteme auf

die seismischen Eigenschaften ozeanischer Lithosphäre unmittelbar vor ihrer Subduk-

tion zu untersuchen. Das Reflektionsverhalten seismischer Mehrkanal-Streamerdaten

vor Nicaragua hat bereits gezeigt, dass Biegungsbrüche die Hydration und Serpentin-

isierung der subduzierten ozeanischen Platte ermöglichen. Zum ersten mal wurden jetzt

seismische Refraktionsdaten entlang eines Profils aufgenommen, welches seewärts vom

Outer Rise weit vor dem Bereiche beginnt, der durch Biegungsbrüche geprägt ist, und

bis zum Tiefseegraben nordwestlich der Nicoya Halbinsel verläuft, wo Fächerecholotdaten

deutliche Dehnungsbrüche seewärts des Tiefseegrabens zeigen. Eine gemeinsame to-

mographische Inversion von Weitwinkelreflexions- und Refraktionsdaten zeigt eine Re-

duzierung der P-Wellengeschwindigkeit innerhalb der Kruste und des oberen Mantels

im Bereich in Richtung des Tiefseegrabens. Im Gegensatz dazu zeigen entsprechende

P-Wellengeschwindigkeiten seewärts des Outer Rise typische Werte für 24 Ma alte

ozeanische Lithosphäre. Die beobachtete Geschwindigkeitsreduzierung innerhalb der

Kruste im Bereich des Tiefseegrabens beträgt 0.2-0.5 km/s. Geschwindigkeiten von

7.6-7.8 km/s im oberen Mantel sind hier 5-7% niedriger als typische Geschwindigkeiten

für Mantelperidotit. Diese systematischen Änderungen der P-Wellengeschwindigkeit

deuten auf Prozesse innerhalb der subduzierten Platte hin, die mit der Durchsickerung

von Meerwasser durch tektonisch beanspruchte Bereiche der Lithosphäre und der damit

zusammenhängenden Serpentinisierung von Mantelperidotit erklärt werden können.

Zwei weitere refraktionsseismische Profile wurden weiter nördlich parallel zum Tiefsee-

graben aufgenommen. Mit Hilfe dieser Profile sollte geklärt werden, ob es sich bei der
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Serpentinisierung um ein örtlich begrenztes Phänomen handelt oder ob größere Bere-

iche der Cocos Platte vor Nicaragua davon geprägt sind. Die tomographische Inversion

beider Datensätze zeigt deutlich erniedrigte seismische Geschwindigkeiten sowohl inner-

halb der Kruste als auch im oberen Mantel jeweils entlang der gesamten Länge der Pro-

file. Die Geschwindigkeiten in der oberen Kruste betragen maximal 3.8-4.0 km/s, und

der obere Mantel ist gekennzeichnet durch starke Alterationsprozesse, die sich in einer

Geschwindigkeitsreduktion von 8-10% manifestieren. Die Geschwindigkeitsanomalien

sind hier stärker ausgeprägt als auf Profil P50, was sehr wahrscheinlich mit dem

grabenparallelen Profilverlauf und der damit einhergehenden größeren Störungsdichte

zusammenhängt. Die Modellierung des Einflusses von wassergefüllten Mikrobrüchen

im Gestein auf die elastischen Eigenschaften zeigt, dass dieses die seismischen Geschwi-

ndigkeiten sehr stark beeinflusst. Die Modellierung der S-Wellengeschwindigkeiten

auf Profil P50 zeigt, dass die beobachtete Geschwindigkeitsreduzierung in der Kruste

stärker ausgeprägt ist als im entsprechenden P-Wellenmodell. Das ist ein Hinweis auf

eine stark entwickelte Zerklüftungsporosität im Gestein und hätte somit einen deut-

lichen Einfluss auf die seismischen Eigenschaften der Kruste. Ein ähnliches Szenario

wäre für die obersten Kilometer des Mantels vorstellbar. Weil Hydration und Zerklüftung

unmittelbar mit einander zusammenhängen, ist es mit dem zur Verfügung stehenden

Datensatz unmöglich, den jeweiligen Einfluss auf die seismischen Geschwindigkeiten

zu trennen. Eine ermittelte Serpentinisierung von 12-17% in den obersten 3-4 km des

Mantels ist demzufolge nur als Maximalwert in einem Szenario anzusehen, in dem die

beobachteten Geschwindigkeitsanomalien ausschließlich auf die Hydration des Gesteins

zurückzuführen sind.
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Chapter 1

Introduction

The understanding of the Earth’s water cycle is inherently linked to the sub-

duction of water at subducting plate boundaries. The transfer of water into the deep

Earth’s interior is related to the alteration and hydration of the incoming lithosphere.

The release of water from subducting lithospheres affects the composition of the mantle

wedge, enhances partial melting and triggers intermediate-depth earthquakes. Water

is transferred with the incoming plate into the subduction zone as water trapped in

sediments and void spaces in the igneous crust and as chemically bound water in hy-

drous minerals in sediments and oceanic crust [e.g., Staudigel et al., 1996; Jarrad,

2003]. However, if water reaches upper mantle rocks prior to subduction, significant

amounts can be transferred into the deep subduction zone as water-bearing mineral

serpentine [Morgan, 2001; Peacock, 2001; 2004]. Serpentinites have nearly the same

chemical composition as mantle peridotite except that they contain approximately 13

wt% water in mineral structures and are less dense.

The mechanism by which dehydration reactions trigger intermediate-depth earth-

quakes is based upon a pore pressure increase that reduces effective normal stress and

hence can promote seismic rupture [Raleigh and Paterson, 1965; Meade and Jeanloz,

1991]. Serpentinized mantle generally dehydrates at higher temperature and pressure

than sediment and hydrothermally altered crust. The most stable serpentine mineral

antigorite dewaters progressively down to appoximately 200 km depth, suggesting that

serpentines may be the primary agent to deliver water into the mantle.

This work has been done as a part of the project SFB 574 ”Volatiles and Fluids in
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CHAPTER 1. INTRODUCTION

subduction zones”, whose scientific aim is to investigate the role of fluid and volatile

recycling in subduction zones.

1.1 Normal Faulting and Outer Rise Earthquakes

The bending of the plate is associated with tension in the upper ∼20 km [Chris-

tensen and Ruff, 1983]. Outer rise earthquakes have been attributed to plate bending

tensional stresses [Chapple and Forsyth, 1979]. Fault plane solutions of events seaward

of the trench axis indicate normal faulting mechanisms [Ranero et al., 2005; Chapple

and Forsyth, 1979] and are therefore consistent with the idea that plate bending is gov-

erning the fault pattern in the incoming oceanic lithosphere. In addition, bathymetric

observations of abundant faults on the seaward side of the trench axis [e.g. Masson,

1991; Dmowska et al., 1996; Kobayashi et al., 1998] suggest that plate bending and

normal faulting are inherently related. Multi-channel seismic reflection (MCS) data

indicate that a number of these faults cut through the crust into the uppermost man-

tle [Ranero et al., 2003; Grevemeyer et al., 2005]. Large amounts of seawater may

percolate through these faults into the oceanic lithosphere and change its chemical

composition and mechanical and seismic properties. It has been suggested that most

of the hydration by this mechanism occurs at the outer rise [e.g., Ranero et al., 2003;

Pecock, 2004], where seismological studies suggest that faults cut >20 km into the litho-

sphere [Kanamori, 1971; Christensen and Ruff, 1988; Hasegawa et al., 1994], providing

potential pathways for seawater to infiltrate and react with the underlying mantle.

However, so far evidence for an impact of serpentinization on the seismic properties

has only been found within tectonically dominated ultraslow spreading crust by [Osler

and Louden, 1995; Grevemeyer et al., 1997].

However, seismic wide-angle and refraction data recently collected offshore of Nica-

ragua along the line p302 [Grevemeyer et al., 2007] (Fig. 2.2) where Ranero et al.

[2003] imaged faults that cut up to 20 km into the mantle suggest that seismic velocity

in the uppermost mantle are anomalously low (<7.7 km/s). Existing datasets, however,

cover only the area trenchward of the outer rise bulge and hence fail to show that crust

cutting faults and low mantle velocities are related to an evolutionary process caused

2



1.1. NORMAL FAULTING AND OUTER RISE EARTHQUAKES

Figure 1.1: Schematic description of hydration and dehydration processes occurring
from the trench-outer rise down to ∼120 km where the generation of arc magmas
occurs (modified from Ranero et al., 2005).

3



CHAPTER 1. INTRODUCTION

by bending-related faulting as the plate approaches the deep sea trench. Thus, the

observed features may have been inherited at the spreading center.

In order to determine whether low velocities in the mantle are indeed caused by

processes related to the plate bending and faulting prior to subduction, additional data

were collected offshore of Nicaragua aboard of the German research vessel Sonne. Our

profile p50 crosses the trench-outer rise, extending from far seaward of the outer-rise,

where the lithosphere is still not affected by bending stresses and hence faulting, to

the trench axis. Additionally, two profiles located northwest of the profile p50 and

laying parallel to the trench axis, were conducted to reveal lateral changes of the

subducting Cocos lithosphere, i.e. to show if serpentinization is a common process

in the subducting Cocos plate offshore of Nicaragua and not just a local feature. In

the end, all the seismic experiments carried out offshore of Nicaragua should help to

determine the amount of water carried by the incoming oceanic lithosphere into the

deep subduction zone, what is a crucial element in understanding the subduction zone

dynamics.

1.2 Serpentinization

Serpentinization is a process whereby rock, usually ultramafic, is changed, by the

addition of water into the crystal structure of the minerals found within the rock. Ser-

pentinite forms when uppermost-mantle rocks peridotite (or dunite) come into contact

with seawater or groundwater at low pressures and temperatures (< 500˚C). Peri-

dotite hydration occurs along mid-oceanic ridges, transform fracture zones, subduction

zones and non-volcanic (or magma poor) continental margins (where mantle rocks are

exhumed at the ocean-continent transition, [e.g. Whitmarsh et al., 2001], because sea-

water can access the uppermost mantle in each of these tectonic settings. An important

characteristic of serpentinization is that the hydration reactions in the mantle rocks

are exothermic - that is, they consume water and produce a significant amount of heat

during the transformation of olivine to serpentine and magnetite. The amount of heat

produced is directly proportional to the amount of water that is taken up to form the

mineral serpentine. The heat released by a complete serpentinization reaction of 1

4



1.2. SERPENTINIZATION

kilo of peridotite is 250 joules, enough to bring the temperature of 1 liter of water up

by 50 degrees under normal temperature and pressure conditions. Because peridotite

hydration reactions are generally exothermic they can be self-propagating, powering

their own hydrothermal cell, sustaining seawater access and continued hydration. Ser-

pentinization is also accompanied by a change of the physical properties of the rock.

The volume increases by up to 30 %, with concomitant decrease of density. Serpentine

is indeed a much less dense mineral than olivine and pyroxenes. A non-serpentinized

peridotite has a density of 3300 kg/m3 whereas a serpentinite has a density of approx-

imately 2600 kg/m3. Hydration of peridotite not only causes volume expansion but

also mechanical weakening. Localised deformation in the brittle regime and distributed

deformation in the ductile regime are accommodated in serpentinite by intragranular

and grain boundary shear micro-cracks. Because of this micro-structural behaviour, a

serpentinised body can behave as a weak inclusion [Koyi and Skelton, 2001; Skelton

et al., 2005], capable of vertical and/or lateral viscous flow in response to deformation

and/or volume expansion. Escartin et al. [2001] showed that this change in rheological

properties occurs at a serpentine content of 10-15% or less. Thus slightly serpentinised

peridotites are as weak as completely serpentinised peridotite. Serpentinization also

affects other geophysical properties of the oceanic crust by lowering the seismic veloc-

ities of the rocks, changing their gravity signatures and mechanical properties, and by

increasing their degree of magnetism. In parallel, the speed of propagation of seismic

waves decreases during serpentinization: from nearly 8 km/s in non serpentinized peri-

dotites, to 5.5 km/s in serpentinites. In the recent years, several investigators have

measured the seismic properties of serpentinized peridotites [Christensen, 1966; Kern

and Tubia, 1993; Horen et al., 1996; Iturrino et al., 1996; Carlson and Miller, 2003].

Peridotites are low-silica rocks that contain olivine and pyroxenes, a mineral group high

in magnesium as well as iron. At relatively cool temperatures, these minerals oxidize to

serpentinite plus brucite (Mg(OH)2), magnetite (Fe3O4), and leftover hydrogen ions.

The resulting fluid is alkaline rather than acidic, and rich in calcium.

MgSiO3 + Mg2SiO4 + 2H2O −→ Mg3Si2O5(OH)4

pyroxene + olivine + water −→ serpentine

31.47 cm3 43.79 cm3 108.5 cm3

5



CHAPTER 1. INTRODUCTION

Figure 1.2: Fluid release with subduction depth from sediments (green), crust (blue)
and serpentinized mantle (yellow) (from Rüpke et al., 2002).

∆ Vsolids = +33.2 cm3 (approx. 40% bulk expansion )

∆ H0 = -16 kcalmol−1

or,

2Mg2SiO4 + 3H2O −→ Mg3Si2O5(OH)4 + Mg(OH)2

olivine + water −→ serpentine + brucite

87.58 cm3 108.5 cm3 24.63 cm3

∆ Vsolids = +45.5 cm3 (approx. 50% bulk expansion)

∆ H0 = -19.5 kcalmol−1

If tectonic forces move it nearer to the surface, the reduction in T&P cause that

minerals pyroxene and olivine change to mineral serpentine. When oceanic plates

undergo subduction, the heat and pressure reverse the serpentinization reaction and

release the water into the deep lithosphere, where it gives rise to volcanoes. In this way

dehydration of the subducting slab controls forearc fluid venting and arc magmatism.

6



1.3. OUTLINE AND OBJECTIVES OF THE THESIS

However, the mechanism by which oceanic lithospheric mantle is serpentinized is still

unclear. It has been proposed by a number of authors [Peackok, 2001; Ranero et al.,

2003] that plate bending outboard of the trench causes extension and normal faulting

on the incoming plate, allowing water to infilitrate and serpentinize the uppermost

mantle. Yet, it has been little known about the real amounts of water stored within

the upper mantle of the subducting lithospheres, even though it could be the main slab

fluid, as one of the most stable serpentine minerals, antigorite, dewaters progressively

after ∼200 km depth, whereas the sediment and crust release water at much shallower

depths (Fig. 1.2). Therefore, serpentine is a good candidate for the initial transport of

hydrogen to the deep mantle, and its subsequent high-pressure descendants may also

serve as water reservoirs.

1.3 Outline and objectives of the thesis

The main objective of this thesis is to study the impact of the incoming plate on

the subduction process and possible serpentinization (mantle hydration) in subducting

plates prior to subduction. To achieve this goal, we use active source seismic tomog-

raphy to study the seismic structure of the crust and upper mantle of the subducting

Cocos Plate offshore of Nicaragua, i.e. to image potential systematic changes of the

seismic properties as plate approaches the trench. Changes in the seismic velocity are

then used to estimate the amount of water trapped within the crust and mantle. In

Chapter 2 are presented results of the first seismic experiment acquired northwest of

Nicoya Peninsula, where multichannel seismic reflection data have revealed that sub-

ducting Cocos lithosphere is pervasively fractured and faulted due to the bending.

In Chapter 3 I investigate if plate hydration is a general feature of the incoming plate

offshore of Nicaragua. For that purpose two trench parallel profiles were conducted

offshore of northwestern Nicaragua during the research vessel METEOR cruise M66/4.

As one of the two profiles crosses two seamounts, it was possible to explore the impact

of seamounts on hydrogeological properties of the oceanic crust.

Chapter 4 deals with the impact that aligned water-filled microcracks could have

on the elastic properties of the subducting crustal and upper mantle rocks. Here I

7



CHAPTER 1. INTRODUCTION

attempt to evaluate the contribution of fractures to the P-wave and S-wave velocity

anomalies observed in the seismic models.

In chapter 5 I use synthetic seismograms to obtain a more solid evaluation of how

well the proposed model is able to explain the observed seismic data. This method

also provides more detailed constraints on velocity anomalies in the crust and upper

mantle.

Chapter 6 gives a summary and conclusion of this study and provides an outlook

for future investigations of physical and hydrological properties of oceanic lithospheres

at subducting plate boundaries.
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Chapter 2

Hydration of the subducting

lithosphere offshore of Nicaragua

Multichannel seismic reflection data from the incoming plate offshore of Nicaragua

shows that the subducting Cocos lithosphere is pervasively fractured and faulted (Ranero

et al., 2003). Some faults can be tracked in the multibeam bathymetry for at least 50

km along the trench. Trenchward dipping reflections have been interpreted as faults

cutting the crust and entering several kilometers into the upper mantle, allowing pen-

etration of seawater and widespread hydration. A case study was conducted offshore

of Nicaragua in 2003 aboard of the German research vessel Sonne to reveal changes

in the seismic structure of the subducting Cocos lithosphere. The profile was located

northwest of the Nicoya Peninsula, close to the MCS profiles [Ranero et al., 2003]. It

extends from much seaward of the outer rise, where the plate is still not affected by

subduction, into the trench. This location and orientation of the profile was chosen

to reveal changes in the velocity structure due to the impact of bending related nor-

mal faulting and possible hydration process they could facilitate. The results of this

experiment presented here document that the crust and upper mantle rocks of the

subducting Cocos plate, formed ∼24 Myr ago at the fast-spreading East Pacific Rise,

indeed undergo an extensive alteration (perhaps hydration) proir to subduction due to

the bending related faulting. These results have been published [Ivandic et al., 2008].

9



CHAPTER 2. HYDRATION OF THE SUBDUCTING LITHOSPHERE

2.1 Tectonic Settings

The study area is located offshore of Nicaragua seaward of the Middle American

Trench, where the Cocos plate, formed at the fast spreading East Pacific Rise to the

West and the Cocos Nazca Spreading Center to the South, subducts beneath the Car-

ribbean plate, dragging down crustal material and sediments (Fig. 2.1). Off Nicaragua,

the Cocos slab subducts with a rate of about 91 mm/yr [DeMets et al., 1990] in a north-

easterly direction. The dip of the Benioff zone, obtained from teleseismic [Burbach et

al., 1984] and local network [Protti et al., 1994] seismic data, ranges from 25˚ in the

seismogenic zone to 84˚ between 100-220 km depth. Before entering the trench, the

incoming plate, which was formed roughly 24 Myr ago at the East Pacific Rise, is

pervasively normal faulted with offsets of up to 100-500 m and length of 10-50 km [von

Hune et al., 2000; Ranero et al., 2003]. Offshore of Nicaragua, faulting and fault growth

between the outer rise and the trench generate a prominent stairway-like seafloor relief

prior to subduction (Fig. 2.1). Normal faults are poorly developed or absent seaward of

the outer bulge apparantly forming as the plate approaches the trench. Deep-tow video

observations show that normal faults often expose basement; heat flow data suggest

that these exposed faults govern a hydrothermal circulation system in the incoming

plate [Grevemeyer et al., 2005]. In addition, seamounts off Nicoya Peninsula seem to

control the thermal state of the incoming plate and mine heat from the Cocos plate

[Fisher et al., 2003]. Multi-channel seismic reflection (MCS) data acquired offshore of

Nicaragua [Ranero et al., 2003] suggest that some normal faults may cut through the

entire crust of the incoming plate, reaching several kilometers into the upper mantle

and hence may facilitate migration of seawater down to the upper mantle.

2.2 Data and Modeling

The data used in this study consist of ocean bottom hydrophone data from a

wide-angle profile acquired in summer 2003 during the research vessel Sonne cruise

SO173-1 (Figure 2.1). The working area of the cruise was located at the Pacific con-

tinental margin off Costa Rica and Nicaragua. The profile P50 was shot with three

32-liters BOLT Inc. airguns, providing a total volume of 96 liters and the airguns were
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2.2. DATA AND MODELING

Figure 2.1: Bathymetric-topographic map of the Central American subduction zone
offshore of Costa Rica and Nicaragua. The working area of the cruise SO173-1 with
the wide-angle and refraction profile p50 is located northwest of the Nicoya Penninsula.
Circles indicate ocean bottom stations used in the seismic modeling. Three stations
from the line NIC20 in the trench and on the lower continental slope were included
into the data inversion procedure. Along MCS profiles BGR99 41 and 39 Ranero et al.
[2003] imaged trenchward-dipping reflectors, interpreted as faults cutting through the
crust into the mantle.
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CHAPTER 2. HYDRATION OF THE SUBDUCTING LITHOSPHERE

operated at a pressure of 150 bar. A shot interval of 60 s and a speed of 3.5 knots

yields an average shot spacing of 100 m. The seismic data were recorded by 12 ocean

bottom hydrophones (OBH) [Flueh and Bialas, 1996] and 5 ocean bottom seismome-

ters (OBS) [Bialas and Flueh, 1999]. P50 is 140 km long and extends from the outer

rise into the trench northwest of the Nicoya Peninsula. This location was chosen be-

cause it covers the area of significant bending and as a consequence normal faults are

abundant in swath mapping bathymetric data [e.g., Ranero et al., 2003]. In addition, a

major portion of the profile is coincident with the seismic MCS line NIC20 shot in the

year 2000 with the multi-channel seismic equipment of Lamont Doherty Earth Obser-

vatory’s seismic vessel Maurice Ewing (Fig. 2.2). The seismic MCS data imaged the

sedimentary blanket and oceanic crust, including a prominent Moho reflection at ∼1.8

s below basement (Fig. 2.3). Unfortunately, the rough seafloor and basement topog-

raphy scatters away seismic energy where plate bending and normal faulting is most

prominent [Berhorst, 2006]. Therefore, Moho and faults cutting through the crust into

the mantle could not be imaged within 20 km off the trench axis. In addition, NIC20

provides additional seismic refraction data from the trench and the continental slope.

Three stations from NIC20 (OBH01, OBH02 and OBH03) in the trench and on the

lower continental slope were included into the data inversion procedure. The recorded

sections obtained at selected OBH’s are shown in Fig.2.4 - Fig.2.7.

The main aim of this study is to reveal changes in the structure of the oceanic crust

that might be associated with bending related fracturing and hydration occurring in

the outer rise and near the trench axis. Therefore we have studied deviations from

’normal’ oceanic crust. Most refraction surveys with this objective are interpreted

relative to the average structure of oceanic crust as defined by White et al. [1992].

However, it is known that the oceanic crust in the East Pacific ocean is generally much

thinner than the 6.48 ± 0.75 km thickness given by White et al. [1992] for crust younger

than 30 Myr [e.g., Collins et al., 1989; Grevemeyer et al., 1998; Walter et al., 2000].

Therefore, we based our one-dimensional reference velocity model on the structure of

crust studied during the presite survey work of Ocean Drilling Program (ODP) Leg

206 in the Guatemala Basin westward of Nicaragua [Wilson et al., 2003]. In this one-

dimensional model, upper crustal velocities are 4.5-5 kms−1. The transition to lower

crust is at ∼1.5 km below the basement. Lower crustal velocities are between 6.8 and

7.1 kms−1. Total crustal thickness is ∼5-5.5 km. Upper mantle peridotite velocity of
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2.2. DATA AND MODELING

Figure 2.2: Multibeam bathymetric map of the Cocos Plate and continental slope
offshore Nicoya Penninsula, Costa Rica, and Nicaragua. A major portion of the profile
p50 is coincident with the MCS line NIC20. A wide-angle and refraction profile p302
from Grevemeyer et al. [2007] acquired during research vessel Sonne cruise SO173-1
covers only the area trenchward of the outer rise bulge.
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Figure 2.3: Seismic data from the MCS line NIC20 imaged the sedimentary blanket
and oceanic crust, including a prominent Moho reflection at 1.8 s below the basement.
The 1-dimensional velocity profile is a time converted velocity-depth profile from the
modelling approach, showing an excellent fit between MCS and seismic refraction and
wide-angle data. The distance scale coincides with the one in the seismic refraction
line.

14



2.2. DATA AND MODELING

8.2 kms−1 is included in the model.

A two-dimensional velocity model along the profile was calculated using the joint

refraction and reflection inversion method of Korenaga et al. [2000], which solves for

the seismic velocity field and the depth of a reflecting interface. The forward problem

is solved by a hybrid method based on the shortest path [e.g. Moser, 1991] and the

ray-bending [e.g. Moser et al., 1992] methods, and the inverse problem uses a sparse

least-squares method [Paige and Saunders, 1982] to solve a regularized linear system.

Tomographic inversion approach is given in the Appendix. We applied this method

in a layer-stripping approach, where the appropriate phases are used to constrain the

shallow structure first and then to progressively constrain the deeper layers. A total

of 3596 Pg, 1894 PmP and 1747 Pn phases were hand-picked from 19 instruments (16

P50, 3 NIC20). A low ambient noise level and a good quality of the waveforms made

picking of the first breaks relatively straightforward. Upper crustal arrivals could be

picked to ±12 ms, or better. However, for larger offsets signal-to-noise ratio decreases.

The largest uncertainties, of ± 90 ms, have been assigned to some Pn and PmP arrivals.

The two-dimensional velocity field is parameterized by a grid of nodes hanging from

the seafloor topography with 0.5 km lateral nodal spacing and variable vertical nodal

spacing (0.05 km within the upper 2 km and increasing to 0.4 km at the bottom). The

Moho is parametrized as a floating reflector with nodes every 1 km with one degree of

freedom in the vertical direction. We applied smoothing constraints on both velocity

and depth perturbations using predefined correlation lengths in order to stabilize the

inversion. In addition, damping constraints for velocity and depth are added to the

regularized linear system. A detailed description of the method and parameters is given

elsewhere [Korenaga et al., 2000]. The model is 135 km long and 20 km deep. The

horizontal correlation length values increase from 4 at the top to 10 at the bottom, and

vertical correlation lengths vary from 0.1 km at the top to 3 km at the bottom. Also,

the depth sensitivity is weighted by a depth kernel weighting parameter w. For the

inversion of Pg and PmP phases we used w=1, which allows the same perturbations

for both velocity and depth, and for the final inversion step, where all the phases were

included, this parameter had a value of 0.1, allowing more perturbations for the velocity

than for the depth. The two-dimensional P-wave velocity model and reflector geometry

obtained after 5 iterations of the inversion process are shown in Figure 2.8. The rms

travel time misfit obtained for the final model is 50 ms [χ2= 0.99], significantly reducing
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Figure 2.4: Wide-angle data examples from selected instruments. Data have been
reduced by 6 km/s. Picked travel times (solid circles with error bars) and predicted
travel times (white circles) for Pg, PmP and Pn phases are shown in the middle plots.
Corresponding ray paths are plotted at the bottom. OBH38
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Figure 2.5: Same as Fig. 2.4 for OBH47.
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Figure 2.6: Continued; OBH 01.
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Figure 2.7: Continued; OBH 03.
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CHAPTER 2. HYDRATION OF THE SUBDUCTING LITHOSPHERE

the initial misfit of 143 ms. Picked and calculated travel times, and raytracing from

four ocean bottom instruments are shown in Fig.2.4 - Fig.2.7.

2.3 Seismic structure

The structure of the subducting oceanic lithosphere is resolved by intracrustal

refractions (Pg), Moho reflections (PmP), and upper-mantle refractions (Pn). The re-

sultant two-dimensional velocity model reveals systematic changes in seismic properties

of the lithosphere affected by plate flexure and faulting. No refracted phase from the

sediment is observed, but seismic reflection data from NIC20 provide information on

sediment thickness. The thin sediment cover has an average thickness of ∼500 m with

velocities ranging from 1.7 up to 1.8-1.85 kms−1. The oceanic crust is typically divided

into two primary layers: an upper crust (layer 2) characterized by a rapid increase in

seismic velocity with depth (∼1 kms−1km−1), and a thicker lower crust (layer 3) which

is distinguished from layer 2 by both a higher P-wave velocity and a much smaller

vertical velocity gradient (0.1-0.2 kms−1km−1). In the outer rise region no significant

lateral changes are found within the crust and uppermost mantle. Upper crustal ve-

locities increase from 4.4-4.5 kms−1 at the top of the basement to 6.0-6.2 kms−1 at the

bottom of layer 2, which is found at a depth of ∼1.5 km below the basement uniformly

along the profile.

These velocities have been commonly attributed to normal mature oceanic upper

crust [Grevemeyer et al., 1998; 1999; Carlson, 1998] and would correspond to a layer

mainly composed of extrusive basalts and underlying sheeted dikes. Lower crustal

velocities increase steadily from 6.5-6.7 kms−1 at the top to 7.0-7.1 kms−1 at the crust-

mantle boundary, suggesting a crust of gabbroic composition [e.g., White et al., 1992].

Strong wide-angle reflections from the Moho indicate a uniform crustal thickness of

∼5.5 km along the profile, confirming the results from the MCS survey. Below the

Moho, in the uppermost mantle, we find a typical velocity of unaltered olivine-rich

peridotites of 8.1-8.2 kms−1.

Towards the trench, however, crustal and upper mantle velocities are reduced com-

pared to velocities expected for ∼24 Myr old mature oceanic lithosphere [e.g., White et
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Figure 2.8: Final velocity model with isovelocity contours. Thick black line represents
Moho boundary derived from inversion of PmP phases. Yellow circles indicate OBH
and OBS stations.
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a)

b)

Figure 2.9: a) Velocity reduction within the model; b) Velocity-depth profiles at two
selected locations in the outer-rise and near-trench region and 1D reference velocity
model from the presite survey work of ODP Leg 206 in the Guatemala Basin.
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al., 1992; Carlson, 1998; Grevemeyer and Bartetzko, 2003], indicating a change in phys-

ical or/and chemical properties of rocks. Upper crustal velocities in layer 2 decrease to

4.1-4.3 kms−1 at the top and to 5.7-6 kms−1 at the base.

Velocity reduction in the lower crust can perhaps best be shown by using the 6.8

kms−1 isovelocity contour as a ’marker’. The 6.8 kms−1 isovelocity contour in the

lower crust starts to dip at ∼65 km distance from the trench axis and at ∼35 km

distance it reaches the crust-mantle boundary. In the near-trench region velocities of

the lower crustal rocks are reduced to 6.2-6.4 kms−1 at the top to ∼6.6-6.9 kms−1

and the bottom of layer 3. Two possible mechanisms may explain the observations:

(i) fracture porosity has been increased, and/or (ii) crustal rocks have been hydrated.

However, the most prominent feature of the seismic velocity model is an extensive zone

of reduced velocity in the uppermost 3-4 km of the mantle in the near-trench region.

Changes in seismic strucuture start at ∼60 km distance from the trench; the anomaly

reaches its largest amplitude and extent near the trench axis. The velocity just below

the Moho boundary is reduced to 7.6-7.8 kms−1, what is 5-7% lower than the ∼8.1-8.2

kms−1 found in the outer rise region, perhaps indicating partially hydrated mantle

associated with bending-related faulting [Grevemeyer et al., 2007]. Figure 2.9b shows

velocity-depth profiles extracted at selected locations in the outer-rise and near-trench

region, indicating a change in the seismic structure as the plate approaches the trench.

2.4 Resolution and Uncertainty Test

The derivative weight sum [DWS] is a measure of ray density near a grid node

[Toomey and Foulger, 1989]. This value depends on both the number of rays affecting

the velocity of a particular node and the distance between the rays and the node. The

DWS for crustal phases is shown in the Figure 2.11a. The DWS for all the phases used

to construct the final velocity model is shown in Figure 2.11b.

In order to estimate the uncertainties of the final model we applied Monte Carlo

analysis [e.g., Korenaga et al., 2000]. The uncertainty of a nonlinear inversion can be

expressed in terms of the posterior model covariance matrix [e.g., Tarantola, 1987],
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Figure 2.10: Result of tomographic inversion along profile p50 using a starting model
with velocities well reduced compared to the first starting model.
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which can be approximated by the standard deviation of a large number of Monte

Carlo realizations assuming that all the realizations have the same probability [e.g.,

Tarantola, 1987]. A set of 10 initial models is constructed by randomly perturbing the

velocity of the crustal and upper mantle velocities into several nodes (0.3 km/s) of our

reference model. We also generated 10 different data sets by adding random phase

gradient errors (0.50 ms) and common receiver noise (0.30 ms) to the initial data set

[Zhang and Toksöz, 1998]. We obtained 100 Monte Carlo realizations by inverting

all the combinations of the 10 initial velocity models with the 10 observation vectors,

using the same model parameterization as in the final solution. All of the Monte Carlo

inversions converged in less than 6 iterations to χ2 ∼ 1, where χ2 is the normalized sum

of the rms misfits divided by the corresponding picking uncertainties. The standard

deviation of the velocity is found to be lower than 0.1 km/s in the upper and lower crust

and lower than 0.05 km/s in the major part of the upper mantle. The uncertainties of

the model are plotted in Figure 2.12.

The results of a tomographic inversion may depend on the structure of the reference

model. In our case the reference model turned out to be representative of the western-

most section of the seismic profile. To examine the robustness of the results, we chose a

reference or starting model that was characterized by velocities reduced relative to the

first starting model. With respect to the first approach, this model contained reduced

velocities of -4% in the crustal layer and -7% just below the Moho in the upper mantle.

The rms travel time misfit using this starting model is 160 ms (χ2= 7.66), and

for the final model (after five iterations) it is 50 ms (χ2= 1.01). The velocities in

the outer rise region were considerably increased already after the first iteration and

yielded after five iterations average crustal and upper-mantle values. Near the trench,

reduced velocities given in the starting model retained their values in the vicinity of the

trench, where the slab is highly affected by tensional stresses (Fig. 2.10). The similarity

between this result and our final model confirms the robustness of the resolved features.

Additionally, a series of resolution tests were conducted in order to assess the re-

solving power of our data set. Synthetic models are constructed using the final velocity

model with and without ±5-7% Gaussian anomalies of different sizes placed at various

depths along the profile. Synthetic noise with rms amplitude of 0.05 s is added to the

synthetic travel times obtained from the perturbed velocity model to simulate the ad-

dition of actual travel time variation. Both data sets, with and without perturbations,
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a)

b)

Figure 2.11: a) Derivative weight sum (DWS) for crustal and PmP phases shows that
the MCS data (Fig.2.2) provide good constraints on the Moho depth.; b) Distribution
of DWS values for the final velocity model shown in the Figure 2.8.

26



2.4. RESOLUTION AND UNCERTAINTY TEST

Figure 2.12: Velocity uncertainties derived from the Monte Carlo analysis.

were inverted using the same inversion parameters as the actual model inversions. In

the end, the inverted model without perturbations was subtracted from the inverted

model with perturbations to yield the final output.

After 3 iterations a good resolution was obtained. In Figure 2.13 are shown the

input velocity anomalies and the final outputs. The velocity anomalies are reasonably

well recovered, both in size and amplitude. The ray coverage of our data set is sufficient

to resolve features in the uppermost mantle up to ∼4 km below Moho, indicating that

a region of reduced velocities within the upper mantle can be resolved and that the

crustal and upper mantle velocity reduction in the vicinity of the trench is not an

artifact of the seismic tomographic inversion procedure but a real feature. The total

depth extent of that anomaly, however, could not be sampled. Owing to the high

density of Pg rays, the reconstructed anomalies within the crust are remarkably well

resolved with the same lateral extent as the original ones. The weaker amplitude and

vertical and lateral smearings of some of the anomalies near the Moho and in the upper

mantle are related to the lower ray coverage at these depths. The degree of recovery
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Figure 2.13: Results of the resolution tests for (a) crustal and (b-c) near Moho depths.
Velocity anomalies of -5% to 5% in the synthetic models are given with respect to the
final model displayed in Figure 2.8.
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a)

b)

Figure 2.14: Detailed forward analysis of Pn travel times. (a) Trench-ward branch of
seismic record section of OBS34; (b) Ocean-ward branch of seismic record section of
OBH03.

is also sensitive to the model parameters used to conduct the inversion.

2.5 Discussion

Application of the seismic tomography method to the Middle America subduc-

tion zone, offshore of Nicaragua, reveals new structural details within the subducting

oceanic slab. The most significant feature of the tomographic image is an extensive

zone of reduced velocities in the crust and upper mantle in the near-trench region,
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which is an indication for changes of the physical properties consistent with hydration

of the subducting oceanic slab, produced after fracturing caused by bending of the

subducting slab and perhaps percolation of seawater along the outer rise faults. The

systematic change from normal oceanic crust seaward of the outer rise towards reduced

velocities in crust and upper mantle indicates that we are observing an evolutionary

process. Previous datasets failed to show this characteristic [Grevemeyer et al., 2007].

Multibeam bathymetric coverage of the outer rise region supports the idea that the

oceanic plate may become pervasively fractured prior to subduction [Masson, 1991;

Kobayashi et al., 1998; von Huene et al., 2000]. A detailed study on the relationship

between bending related faulting at trenches and intermediate-depth seismicity along

segments of Middle America and Chile trenches shows that the distribution of nodal

planes of the intermediate-depth events are remarkably similar to the orientation and

dip of the bending-related faults, for each segment of the study area, and therefore

supports the model where the outer rise faults are reactivated at depth [Ranero et

al., 2005]. The depth down to which the faults cut into the crust or mantle is poorly

known, because the centroid depth of earthquakes is difficult to determine for shallow

events occurring below the oceans [e.g., Yoshida et al., 1992], though detailed wave-

form inspection of Central American trench-outer rise earthquakes suggest that events

of M>6 cut ∼15 km into the mantle [Lefeldt and Grevemeyer, 2008]. However, multi-

channel seismic reflection images acquired offshore of Nicaragua show a pervasive set of

trenchward dipping features that cross the crust and extend into the mantle to depths

of ∼20 km below the seafloor [Ranero et al., 2003]. Additionally, the same images show

that the number of faults and their offsets increase towards the trench axis, which is in

agreement with our model, where we find an increase in amplitude and extent of the

velocity anomalies as one approaches from the outer rise to the trench. Heat flow data

from the Nicaragua trench suggest that faulting of the trench-ocean slope reactivates

a vigorous hydrothermal circulation system in the incoming plate. Heat flow decreases

towards the trench and hence indicates that seawater mines heat [Grevemeyer et al.,

2005]. Interfingering between an upper crustal hydrothermal circulation system and

faults cutting down to mantle depth may facilitate migration of seawater along the

fault to reach and hydrate the uppermost mantle.

Reduced crustal velocities at the trench can be explained by both hydrothermal

alteration and the effect of crustal cracks and fissures on seismic velocity. An increase
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in fracture porosity just by a few percent may have a significant impact on the seismic

velocity structure of the crust. The Kuster and Toksöz [1974] model for cracks with

varying pore geometry was used by Wilkens et al. [1991] to study the evolutionary

effect of hydrothermal circulation through the flanks of mid-ocean ridge on the seismic

properties of the crust. They have investigated basalt velocity-porosity relationships

for a wide range of pore sizes. Their efforts concentrated on how seismic velocities

can change by the presence of cracks. Their model suggested a pore space modification

with crustal age, where low aspect ratio pore spaces (small and thin cracks) are bridged

first and then large aspect ratio voids (wider cracks). In this way seismic velocities can

easily be increased with a small reduction of effective porosity, because of the control

that thin cracks have on velocity. It is likely that plate bending increases the fracture

porosity. Due to the geometry of normal faults, it might be reasonable to hypothesize

that bending causes low aspect ratio cracks in crust and mantle. Small changes in

fracture porosity may therefore explain reduced velocities. However, open cracks and

faults in the crust will certainly facilitate fluid migration. Both mechanisms, fracturing

and hydration, are therefore related to each other and it might be difficult to separate

their effects on seismic properties.

The water content of the lower oceanic crust is, therefore, difficult to constrain.

Some estimates have been made for chemically bound water based on the modal min-

eralogy and seismic properties of oceanic diabase and gabbro samples [Carlson, 2003;

Carlson and Miller, 2004]. Their analysis shows that the H2O content of diabase dike

rocks ranges from 1-3 %, with an average of 1.5 %; gabbros that have velocities typical

of the lower oceanic crust (6.7-7.0 km/s) contain 0.2 to 0.7 % H2O, with a mean near

0.5 %.

Anomalously low velocities of the uppermost mantle rocks of 7.6-7.8 km/s (Fig.

2.14) reveal extensive alteration due to percolation of seawater and serpentinization

of mantle peridotite. Based on the model developed by Carlson and Miller [2003]

that relates the degree of serpentinization and water content of partially serpentinized

peridotites to their seismic P-wave velocities, we estimate that the water stored in this

region may range from 1.55 to 2.17 wt%, which corresponds to a 12-17 % increase in

serpentine content. Considering the effects of fracture porosity, this is, of course, an

upper bound on the water content of a hydrated mantle.

Offshore of south-central Chile P-wave velocity of the subducting uppermost mantle
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is found to be reduced to ∼7.8 km/s (∼9% serpentinization) [Contreras-Reyes et al.,

2007]. The lower anomaly here, compared to the estimates for our study area, or for the

Nazca plate at the north Chile trench (∼17% serpentinization) [Ranero and Sallares,

2004], is most likely due to the much thicker sediment cover (∼2 km). Contreras-Reyes

et al. [2007] speculate that hydration in a sedimented trench is caused by fluid inflow

through basement outcrops, like seamounts, in the outer rise area that penetrate the

thick sediment blanket. However, the water/rock ratio will be much lower and hence

we would expect a lower degree of hydration.

A high water content in the subducting lithosphere off Nicaragua is consistent with

the measurements of water concentration in olivine-hosted melt inclusions along the

Central American arc. Roggensack et al. [1997] have found very high water concen-

trations in mafic melt inclusions at Cerro Negro Volcano in Nicaragua (>6 wt%), the

highest in any basaltic liquid on the planet. Central American arc volcanism shows

strong regional trends in lava chemistry, which reflects different slab contributions to

arc melting. The Nicaraguan volcanic arc shows globally among the highest concentra-

tions of geochemical tracers for oceanic crustal fluid (e.g. boron). Ratios such as B/La,

Ba/La and 10Be/Be indicate that subducted slab signal is the greatest in Nicaragua arc,

where the dip is the steepest, and decreases towards Costa Rica to its minimum [Carr

et al., 1990; Morris et al., 1990; Leeman et al., 1994]. It has been proposed that the

stronger slab signal in Nicaraguan, compared to Costa Rican arc lavas, reflects greater

amounts of fluid released from the dehydration of more extensively serpentinized slab

mantle [Rupke et al., 2002.]. It should be noted that the Nicaraguan slab, relative

to the other Pacific slabs, enters the trench at a very steep angle, what might induce

deeper fracture penetration in the slab to account for the high fluid fluxes from the

oceanic crust [Kirby, 1995; Patino et al., 2000].

2.6 Conclusions

A tomographic joint inversion of seismic refraction and wide-angle reflection data

collected offshore of Nicaragua yields anomalously low seismic P-wave velocities in the

crust and uppermost mantle of the subducting Cocos Plate. Seismic velocities of the
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subducting lithosphere change systematically from seaward of the outer rise towards

the trench, indicating an evolutionary process.

Seaward of the outer rise bulge, where the plate is still not affected by the bending

stresses, velocities in the crust and upper mantle are typical for mature unaltered

oceanic lithosphere. However, as the plate approaches the trench, velocities decrease

and the low-anomaly zone increases both in extent and amplitude. This velocity trend

coincides with the multi-channel seismic reflection (MCS) data acquired offshore of

Nicaragua, which shows an increase in the number of bending related faults and their

offsets towards the trench axis.

Reduced crustal and upper mantle velocities at the trench are most likely caused

by both hydrothermal alteration and an increase in fracture porosity. This cracks have

a strong impact on seismic properties.

In the close vicinity of the trench axis upper mantle velocities are in the range 7.6-

7.8 kms−1, which is 5-7% lower than the ∼8.1-8.2 kms−1 found seaward of the outer

rise. As the degree and impact of fracture porosity is unknown, an estimate of 12 to

17% for an increase in serpentine content in the uppermost 3-4 km of the mantle is

only an upper bound on the degree of hydration.

The anomalously low velocity zone within the Cocos oceanic lithosphere at the

trench offshore of Nicaragua supports the idea that pervasive bending related faulting

of a subducting slab creates pathways for seawater to reach and react with cold mantle

rocks producing serpentine, what implies that deep and widespread hydration (ser-

pentinization) of the incoming lithosphere can occur when the lithosphere is strongly

faulted; thus, the subduction zone water cycle is closely related to the crustal structure

and hydration of the incoming plate.
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Chapter 3

Trench-parallel changes of the

seismic velocities of the incoming

plate

Previous active seismic experiment offshore of Nicaragua conducted during the

research vessel Sonne cruise SO173-1 [Ivandic et al., 2008] has revealed evolutionary

changes in the seismic structure of the subducting Cocos lithosphere at the trench,

what has been explained as being due to the bending related faulting and hydration

(serpentinization) [Ranero et al., 2003]. So far there is a little direct evidence that

serpentinization is a common process in subducting lithospheres at subducting plate

boundaries. One of the objectives of the Meteor cruise M66 Leg 4a was to conduct

seismic profiles parallel to the trench offshore of Nicaragua, in order to reveal lateral

changes of the seismic properties of the slab approaching the trench and to confirm the

speculation that serpentinization is a common process offshore of Nicaragua. The two

seismic profiles, p01 and p02, were acquired in the area northwest of the previous profile

p50. The profile p01 runs along the trench axis and the profile p02 runs approximately

60 km seaward of the profile p01. The bathymetry map offshore of Nicaragua shows

that the outer rise faults here extend even further seaward of the trench than in the

southern region, what could be an indication for steeper subduction, and thus more

pervasive faulting and hence hydration.
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3.1 Tectonic settings

The study area of the cruise M66-4a is located offshore of northern Nicaragua

seaward of the Middle American Trench, where the Cocos plate subducts beneath the

Carribbean plate with a rate of about 91 mm/yr [DeMets et al., 1990] in a northeasterly

direction. The topography of the incoming plate reveals that seafloor spreading and

magnetic anomalies off Nicaragua strike almost parallel to the trench axis [Barkhausen

et al., 2001]. A subducting ∼24 Myr old Cocos lithosphere formed at the East Pacific

Rise (EPR), is pervasively faulted with offsets of up to 500-700 m on back-tilted normal

faults [Kelly and Driscoll, 1998]. This is possibly associated with extensional tectonics

caused by the flexure of the subducting crust. Multi-channel seismic reflection data

suggest that the faults cut the lithosphere down to 18-20 km depth. Beneath Nicaragua,

Cocos plate dips steeply (up to 84˚ between 100-220 km depth), as indicated from

regional seismological observation [Protti et al., 1995]. The offsets decrease to <200 m

as the plate approaches Nicoya Peninsula and the maximum depth of the seismicity

gradually becomes shallower from Nicaragua (∼200 km) to southern Costa Rica (∼45

km). Local swath bathymetry data [Ranero et al., 2003] show that offshore of northern

Nicaragua the system of half-grabens bordered by faults parallel to the trench is more

prominent and wider than anywhere else in the region (Fig. 3.1). The outer rise

network, which was deployed over a time period of 33 days in July and August 2003,

detected high seismicity rate with∼3 local microearthquakes per day, what is consistent

with the topography and indicates strong faulting in the incoming oceanic lithosphere

[Grevemeyer et al., 2007].

3.2 Seismic experiment and data

The two wide-angle and refraction profiles, p01 and p02, were conducted in

November 2005 during the research vessel Meteor 66-4a cruise (Fig. 3.1). They were

conducted seaward of the trench in the outer rise area offshore of Nicaragua and north-

west of the previous profile p50. The instruments were deployed at intervals between
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4.5 and 9 nm. Four GI-Guns for high-resolution surveys with a generator volume of

250 cinch and an injector volume of 105 cinch were used for shooting along the lines.

They were fired at intervals of 60 s, which at speed of 4.5 kn results in an average

spacing of 130 m. Figures 3.2-3.5 show examples of the data quality available for inter-

pretation. Twelve ocean bottom seismographs (OBS) and ocean bottom hydrophones

(OBH) were deployed along both profiles p01 and p02.

The profile p01 is 120 km long and runs parallel to the trench axis. As the profile

p01 intersects the trench at 11˚N, ending in the margin wedge at its northwestern

part, one station deployed on the top of the margin wedge was excluded from the

modeling. The 120 km long profile p02, with the same orientation as the profile p01,

is located ∼60 km seaward of the trench axis. Data passed an anti-aliasing filter of 50

Hz and were continuously recorded with a sampling rate of 200 Hz on all OBH and

OBS stations. The data were played back and split into single shot records stored as

a receiver gather in SEG-Y format. The instruments were deployed by free fall, using

Global Positioning System (GPS) for drop-point positioning; instrument locations were

further constrained using water-path travel times from the shots collected while the

ship was navigated with GPS. Spectral analysis and filter tests show that the seismic

energy is in a band ranging from 5 to 30 Hz. We ran this test for both near-offset and

far-offset traces and chose a time- and range-dependant bandpass filtering approach.

In addition, amplitudes were multiplied by distance to partly compensate the spherical

divergence, simultaneously showing the level of both seismic signal and ambient noise.

The one-dimensional reference velocity models were, like in the previous modeling

of the profile p50, based on the crustal structure gained from the results of the presite

survey work of Ocean Drilling Program (ODP) Leg 206 in the Guatemala Basin west-

ward of Nicaragua [Wilson et al., 2003], which should represent a ’normal’ unaltered

oceanic lithosphere. The thickness of the upper crust is ∼1.5 km and its velocities

range from 4.5 to 5 kms−1. Lower crustal velocities increase from 6.8 kms−1 at the top

of the layer to 7.1 kms−1 at the Moho boundary. Total crustal thickness is ∼5-5.5 km.

For the upper mantle rocks we assumed unaltered peridotites with typical velocities of

8.1-8.2 kms−1.

The main aim of this study is to reveal lateral changes in the structure of the

oceanic crust and upper mantle that might be associated with bending related faulting

and hydration occurring in the outer rise-trench region. In the end, the results would
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Figure 3.1: Bathymetry map of the offshore region of northwestern part of Nicaragua.
Thick solid lines designated P1 and P2 are the seismic profiles conducted during the
M66-4a cruise, with instrument locations denoted by squares. The profiles run parallel
to the Middle America Trench.
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reveal if serpentinization is a common process offshore of Nicaragua.

3.3 Tomographic travel time inversion

The two-dimensional velocity models were obtained using the joint refraction and

reflection traveltime inversion code from Korenaga et al. [2000], that simultaneously

solves for the seismic velocity field and the depth of a reflecting interface. The models

are parametrized as sheared meshes hanging from the seafloor topography with 0.5 km

lateral nodal spacing and vertical node spacing ranging from 0.05 km at the top to 0.5

km at the bottom of the model. The Moho depth nodes, spaced every 1 km with one

degree of freedom in the vertical direction, define the floating reflector.

The data set of the profile p01 consisted of 2658 Pg, 1126 PmP and 834 Pn phases,

that were hand-picked from 11 instruments. The model is 110 km long and 20 km deep.

The horizontal correlation length values vary from 3 at the top of the model to 8 at the

bottom, and vertical correlation lengths increase from 0.1 km at the top to 3 km at the

bottom. The depth sensitivity is weighted by a depth kernel weighting parameter (w).

For the inversion of Pg and PmP phases we used w =1, which means that velocity and

depth nodes are equally weighted. For the final inversion step, where all the phases

were included, this parameter had a value of 0.1, allowing more perturbations for the

velocity than for the depth. The rms travel time misfit obtained for the final model

is 56 ms [χ2= 1.26], significantly reducing the initial misfit of 147 ms. Picked and

calculated travel times, and raytracing from two ocean bottom instruments are shown

in Fig. 3.2 and Fig. 3.3.

In the inversion of the data set of the profile p02 we used similar parametrization.

The horizontal grid spacing is 0.5 km, and vertical grid nodes are 0.05 km distant at

the top of the model and about 0.6 km at the bottom. The horizontal correlation

lengths range from 3 at the top to 7 at the bottom, and the vertical correlation lengths

are the same like in the profile p01. In total 2855 Pg, 1124 PmP and 1189 Pn were

handpicked from 12 stations and inverted. In total 5 iterations were enough to obtain

a good fitting between the observed and calculated travel times with the final rms of

57 ms [χ2= 1.08]. Picked and calculated travel times, and raytracings from two ocean
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Figure 3.2: Observed seismic record sections from selected instruments from the profile
p01.Data have been reduced to 8 km/s and band-pass filtered between 5 and 30 Hz.
Wide-angle data examples from the profile p01 are shown for OBS 35 and OBS37 .
Picked travel times (solid circles with error bars) and predicted travel times (red circles)
for Pg, PmP and Pn phases are shown in the middle plots. Corresponding ray paths
are plotted at the bottom. OBS 35.
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Figure 3.3: Continued. OBS 37.
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Figure 3.4: Same as in the Figures 3.2 and 3.3 for profile p02. OBH 27.
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Figure 3.5: Continued. OBH 43.
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bottom instruments from that profile are shown in Fig. 3.4 and Fig. 3.5.

3.4 Seismic structures

The crustal and upper mantle structures along the two profiles were obtained

by modeling intracrustal refractions (Pg), Moho reflections (PmP), and upper-mantle

refractions (Pn). The seismic structures along the two profiles are quite similar. The

oceanic crust is typically constituted of two primary layers: the upper layer with large

velocity gradients (∼1 kms−1km−1), and a thicker lower layer, considered to be the

lower oceanic crust, is characterized by both a higher P-wave velocity and a much

smaller vertical velocity gradient (0.1-0.2 kms−1km−1). The crust in this region is

about 5.6-5.8 km thick. The sediment thickness of ∼400-500 m is quite uniform along

the lines, except in the ∼ 30 km of the northwestern part of the profile p01, which

extends into the lower continental slope, and where it is up to ∼ 500 m larger. The

velocity of the sediment cover ranges from 1.65-1.9 kms−1. The two-dimensional P-

wave velocity model of the profile p01 with the reflector geometry obtained after 5

iterations is shown in the Figure 3.6a. The crustal and upper mantle velocities are

strongly reduced compared to velocities expected for ∼24 Myr old mature oceanic

lithosphere [e.g., White et al., 1992; Carlson, 1998; Grevemeyer and Bartetzko, 2003],

indicating alteration in seismic and chemical properties of the rocks. Velocities in the

layer 2 increase from 3.5-3.8 kms−1 at the top to 5.6-5.7 kms−1 at the boundary with

the layer 3. Reduced velocities are also typical for the lower oceanic crust and range

from 6.4 kms−1 at the top to 6.6-6.7 kms−1 at the bottom just above the Moho. Below

the Moho the upper mantle rocks with velocities of 7.3-7.5 kms−1 are found along the

entire profile.

The final velocity model of the profile p02 is shown in the Figure 3.7a. Upper

crustal velocities range from 3.8-4.0 kms−1 at the top to 5.6-5.8 kms−1 at the bottom.

The velocities at the top of the lower crust are 6.4-6.5 kms−1 and they increase to 6.7

kms−1 at the Moho boundary. Bellow the Moho upper mantle velocities are strongly

reduced and have values of 7.3-7.5 kms−1. The p02 line runs across the two seamounts

in its southeastern part. Bellow them we observe crustal seismic velocities by 0.2 kms−1
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a)

b)

Figure 3.6: a) P-wave velocity model for the profile p01; b) Derivative weight sum.
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a)

b)

Figure 3.7: a) P-wave velocity model for the profile p02; b) Derivative weight sum.
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lower than anywhere else along the profile. This considerable velocity decrease can be

nicely recognized by following the isolines. The isovelocity line of 6.3 kms−1, which

runs at the top of the layer 3 along the line, starts to dip in the vicinity of the two

seamounts and bellow them even reaches the Moho depth. This feature indicates rocks

with higher porosity developed in this area.

Alterations in the seismic structures are uniformly present along both profiles. This

has been interpreted to be due to the pervasive faulting and hydration of the subducting

Cocos lithosphere offshore of Nicaragua caused by high bending stresses the plate

experiences in the trench-outer rise area.

3.5 Resolution and Uncertainty Tests

The sensitivity of our final model to different input models we estimated by

averaging the solutions of 100 Monte Carlo realizations [e.g. Korenaga et. al., 2000].

The degree of dependence of the final solution on the starting model can be assessed

by conducting a number of inversions with a variety of randomly generated initial

models and noisy data sets. If all models have the same probability and the starting

models cover the full region of non-null probability within the parameter space, the

a posteriori covariance of the solutions obtained can be interpreted as a statistical

measure of the solution uncertainty [Tarantola, 1987]. To estimate the velocity and

Moho depth uncertainty a set of 10 1-D reference models were constrained for both

profiles by randomly varying the Moho depth (σ = 0.5 km) and the velocity (σ =

0.3 km/s) and inverting them with 10 noisy data sets constructed by adding random

common phase errors (±50 ms) and common receiver errors (±50 ms) to the initial

data set [Korenaga et al., 2000]. In the end the mean deviation of all realizations

describes the uncertainty of the velocity model [Tarantola et al., 1987].

Velocity uncertainty is lower than 0.1 kms−1 within most parts of the models, both

in the crust and upper mantle, indicating that velocity anomalies are well recovered

(Fig. 3.8). Moho depth uncertainty along the major part of the profile p01 is not higher

than 0.15 km. Maximum values of 0.2-0.25 km are found in the part which extends into

the lower continental slope area. Uncertainty of the Moho depth along the entire profile
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a)

b)

Figure 3.8: Velocity and Moho depth uncertainties estimated from the Monte Carlo
analysis for a) profile p01 and b) profile p02
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p02 is as low as 0.15 km, except for its northwestern edge, where it reaches 0.3 km.

The derivative weight sum [DWS] values, which describe the relative ray density near

a given velocity node, providing crude information on the model resolution [Toomey

and Foulger, 1989], are, for both velocity models, shown in Figures 3.6b and 3.7b.

In order to assess whether our data sets can resolve different velocity anomalies we

performed a series of resolution tests. Like in the resolution tests of the p50 model

(Chapter 2), synthetic models were constructed using the final velocity model with and

without ±5% Gaussian anomalies of different sizes placed at various depths. Synthetic

noise with rms amplitude of 0.05 s is added to the synthetic travel times obtained from

the perturbed velocity model to simulate the addition of actual travel time variation.

The results reveal good resolution in both models. All the velocity anomalies are well

recovered, what proves that the ray coverage of our data is sufficient to resolve features

in the uppermost ∼4 km of the mantle, confirming that the reduced velocities within

the upper mantle can be resolved.

Owing to the high density of Pg rays, the reconstructed anomalies within the crustal

layer in both p01 and p02 models are remarkably well resolved with the same lateral

extent as the original ones [Figures 3.9 and 3.10]. The weaker amplitude and vertical

and lateral smearings of some of the anomalies in the upper mantle and near the Moho

boundary are related to the lower ray coverage at these depths. Thus, the total depth

extent of that anomaly could not be fully resolved.

3.6 Discussion

The reduced seismic velocities in the crust and upper mantle we are observing

along the two profiles running parallel to the trench axis indicate alteration in chem-

ical and physical properties of the subducting lithospheric rocks offshore of northern

Nicaragua. Multibeam bathymetry data of this area reveal prominent faults which

extend further seaward than in the previous study area, where the profile p50 was ac-

quired. This indicates that the plate is subjected to large bending stresses, what could

induce deep normal faulting and widespread hydration (serpentinization) of the crustal

and upper mantle rocks. P-wave velocity models of the crust and upper mantle along
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Figure 3.9: Results of the resolution tests for profile p01.(a) shows crustal anomalies
and (b) anomalies at Moho depths and in the upper mantle. Velocity anomalies of -5%
to 5% in the synthetic models are given with respect to the final model displayed in
Fig. 3.6 a)
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Figure 3.10: Results of the resolution tests for profile p02. (a) shows crustal anomalies
and (b) anomalies near Moho and in the upper mantle. Velocity anomalies of -5% to
5% in the synthetic models are given with respect to the final model displayed in Fig.
3.7 a)
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the two profiles indeed support this hypothesis. Crustal velocities are reduced by up to

15-20 % at the top of the basaltic layer and by up to 8% at the bottom. The lower gab-

broic layer is characterized by a velocity reduction of ∼5%. Upper mantle velocities of

7.3-7.5 kms−1 are by 8-10 % lower than those found seaward of the outer rise (Chapter

2). These velocity anomalies are uniform along the profiles (Fig. 3.11) and stronger

than those found in the p50 velocity model, what coincides with the rougher seafloor

topography in this area. Furthermore, the profiles are oriented parallel to the trench,

and thus seismic waves are affected by much denser network of faults and fractures.

A certain degree of azimuthal seismic anisotropy could also arise from lattice pre-

ferred orientation of minerals (LPO). Tectonic plate motion is thought to cause solid-

state plastic flow within the underlying upper mantle and accordingly lead to the devel-

opment of a lattice preferred orientation of the constituent olivine crystals, which sta-

bilizes during spreading and attenuates during subduction. The mechanical anisotropy

that results from such a preferred orientation typically produces a direction of maxi-

mum seismic wave velocity parallel to the plate motion direction. Azimuthally varying

Pn wave velocities were first recorded in the shallow upper mantle beneath Hawaii

[Hess, 1964], showing that surface waves travel ∼10% faster in the E W direction than

in the N S. The degree of compressional wave anisotropy depends also on spreading

rates, so while 3% to 4% have been found in the slow-spreading North Atlantic [Keen

and Tramonti, 1970; Gaherty et al., 2004], higher 7% has been observed near the fast

spreading East Pacific Rise [Dunn et al., 2000]. Much lower degree of Pn anisotropy

has been found offshore of Southern Central Chile, in the trench-outer rise area of the

oceanic Nazca plate created at the fast spreading Chile Rise. Comparison of the up-

permost mantle velocities at the crossing points of perpendicular profiles revealed ¡2%

degree of Pn anisotropy [Contreras-Reyes et al., 2008]. A lower degree of anisotropy

that has been found in the outer-rise environment or in ophiolites [e.g. Schmitt et

al., 2007] has been proposed to reflect an increased degree of serpentinization, because

of the random orientation of serpentine minerals which replace preferentially aligned

olivines.

At lower crustal depths lithostatic pressures would minimize the effects of cracks on

the velocities by closing the intergranular pore spaces and fracture openings, thus pro-

viding information about the preferred mineral orientation. Water percolation would,

however, prevent crack closure, what makes evaluation of their separate effects on the
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seismic properties more difficult.

Figure 3.11: Velocity-depth profiles at two selected locations along the profile p01
and 1D reference velocity model from the presite survey work of ODP Leg 206 in the
Guatemala Basin.

An another distinctive feature in the model of the p02 profile is a significant velocity

reduction in the crustal layer beneath the two seamounts. Velocities here are reduced

by ∼ 0.2 kms−1 compared to the surrounding crust, what could be an indication for in-

creased porosity here, and hence an enhanced water inflow. The anomalous behaviour

in the upper and lower crust is confined to the seamount area and extends down to the

Moho boundary. This result is in agreement with the hypothesis that seamounts facili-

tate inflow of seawater into the oceanic crust and might guide hydrothermal circulation

between sites separated by large distances [Fisher et al., 2003b]. Fisher et al. have

found that seawater can flow up to ∼50 km through the crustal rocks before it comes

out through an another seamount. Additionally, recent numerical models of coupled

heat and fluid transfer showed that seamounts play a significant role in controlling hy-
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drothermal circulation throughout the oceanic crust [Harris et al., 2004]. Conductive

lithospheric cooling models predict a heat flux of ∼100 mW/m2 for ∼18-24 Ma oceanic

crust underlying the sites [Stein and Stein, 1994]. Heat flux data, however, show that

heat flux through the seafloor created at the East Pacific Rise is anomalously low,

with values in between 20-40 mW/m2 [Langseth and Silver, 1996; Fisher et al., 2003a],

which is only ∼30% of the values predicted by these models. This anomalously low heat

flux is attributed to effective hydrothermal cooling of the upper oceanic crust, which

is facilitated by seamounts and basaltic outcrops [Silver et al., 2000]. In South Central

Chile, the trench basin is heavily filled with up to 2 km of sediments, and hydration

of the oceanic lithosphere in the outer rise area is, therefore, less vigorous. Thus, low

compressional velocities and anomalous low heat flow values observed in the outer rise

here, suggest that infiltration of seawater in this area is happening through basement

outcrops, which penetrate the thick sedimentary blanket (and then further through

extensional normal faults) [Contreras-Reyes et al., 2007]. Highly serpentinized mantle

within the subducting Cocos slab offshore of Nicaragua would be also consistent with

the fact that the Nicaraguan volcanic arc shows globally among the highest concentra-

tions of geochemical tracers for oceanic crustal fluid (e.g. boron). Ratios such as B/La,

Ba/La and 10Be/Be indicate that subducted slab signal is the greatest in the Nicaragua

arc, where the dip is the steepest, and decreases towards Costa Rica to its minimum

[Carr et al., 1990; Morris et al., 1990; Leeman et al., 1994]. One interpretation is that

Be and B are efficiently removed from the slab by the slab-derived fluids [Turner et

al., 1998]. However, the location of the water reservoir is still under debate, as it could

reside either in the subducted oceanic lithosphere or in the mantle wedge. [Tonarini

et al., 2007] suggest a model in which tectonic erosion, i.e. dragging down of slivers

of serpentinized upper plate mantle, is responsible for the occurrence of serpentinite

reservoir, 11B-enriched in the forearc by shallow fluids. Previously Rupke et al. [2002]

have been proposed that the stronger slab signal in Nicaraguan, compared to Costa

Rican arc lavas, reflects greater amounts of fluid released from the dehydration of more

extensively serpentinized slab mantle [Rupke et al., 2002.].
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3.7 Conclusions

After the profile p50 (Chapter 2) has revealed an evolutionary process in the

subducting Cocos lithosphere, we have conducted two profiles in the northwestern

region offshore of Nicaragua, which were laying parallel to the trench axis. Profile p01

is placed along the trench axis, and profile p02 runs ∼60 km seaward of the profile

p01. This geometry system has revealed lateral changes of the seismic properties of

the Cocos slab approaching the trench. The seismic velocities of the crust and upper

mantle are significantly reduced along the entire profiles. The velocities of the crust

are reduced by 0.4-0.7 kms−1and upper mantle is characterized by velocities of 7.3-

7.5 kms−1. The results presented here confirm the assumption that serpentinization

of the upper mantle is a common feature in the subducting lithosphere offshore of

Nicaragua. An another interesting feature is a very prominent velocity anomaly in the

crust bellow the two seamounts, which are laying on the line p02. Crustal velocity here

is reduced by 0.2 kms−1 compared to the other parts of the profile, suggesting increased

porosity which may enhance water inflow into the upper and lower crust, and perhaps

facilitate water migration to mantle depth. Further analysis of the influence of water-

filled fractures and microcracks on the seismic properties of the subducting lithosphere,

presented in the next chapter, have been done in order to achieve a better overview on

the processes that reduce seismic velocities.
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Chapter 4

Crustal and Upper Mantle

Fracture-Induced Anisotropy

Crack porosity, chemical composition, density and mineral orientation are the most

important factors that affect seismic velocity. Our understanding of the anisotropic

properties of many rocks is still limited. If stresses are sufficiently large to generate

cracks, or to close pre-existing cracks, usually very strong stress- (or crack-) induced

anisotropy is induced. The preferential orientation of crack or fracture networks makes

the medium azimuthally anisotropic with respect to seismic wave propagation. Com-

pressional waves propagate with different velocities in different directions. As a shear

wave travels through an anisotropic medium, the wave is split into two quasi-shear

waves: one polarized parallel and one polarized perpendicular to the cracks. The

quasi-shear wave polarized parallel to the cracks travels at a higher velocity.

In the Earth’s lithosphere, anisotropy may be caused by combined effects of aligned

microcracks, shear fabric, layered bedding in sedimentary formations, or highly foli-

ated rocks. In ideal cases, there are two simple styles of alignment in earth materials

(horizontal and vertical), and laboratory studies suggest that they give rise to two

types of anisotropy. In the horizontal style, or layered case, elastic properties may

vary vertically, such as from layer to layer, but not horizontally. Such a material is

called transversely isotropic with a vertical axis of symmetry. Waves generally travel

faster horizontally, along layers, than vertically. The simplest case of the second type

of anisotropy corresponds to a material with aligned vertical weaknesses such as cracks
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or fractures, or with unequal horizontal stresses. The brittle failure that rocks experi-

ence after a critical stress has been applied, is caused by the nucleation, growth, and

microcracks interaction. The growth of microcracks, that are aligned with respect to

the principal stress, will cause a mechanical anisotropy of rock [Costin, 1987] and the

magnitude of the anisotropy provides a measure of crack density. Crack density is an

important parameter in rocks. For low crack densities, cracks are generally isolated.

As crack density increases, crack interaction takes place resulting in a production of

macroscopic fracture. The microcracks accumulation changes the elastic properties of

rocks, and hence their seismic velocities. Several effective models of fractured media

developed by a number of authors include those based on parallel infinite fractures with

linear slip boundary conditions [Schoenberg, 1980; 1983], isolated parallel penny-shaped

cracks that have the form of oblate spheroids [Hudson, 1980; 1981], and partially satu-

rated penny-shaped cracks or hydraulically connected cracks and pores [Hudson, 1988;

Thomsen, 1995; Hudson et al., 1996].

In case of anisotropy which corresponds to a material with aligned vertical weak-

nesses such as cracks or fractures, elastic properties vary in the direction crossing the

fractures, but not along the plane of the fracture. Waves traveling along the fracture

direction generally travel faster than waves crossing the fractures. Crustal anisotropy

resulting from aligned cracks can be used to determine the state of stress in the crust.

In most cases, cracks are preferentially aligned with the direction of maximum com-

pressive stress. In active tectonic areas, such as near faults and volcanoes, anisotropy

can be used to look for changes in preferred orientation of cracks that may indicate a

stress-field translation. Microcracks within rocks have a significant influence on elastic

anisotropy and transport properties. If the crack shapes are idealized as very thin

oblate ellipsoids, the modulus of the rock and hence its seismic velocities are calculable

in terms of aspect ratios (thickness/length) of the ellipsoids and the elastic properties

of the surrounding matrix and fluids [Budiansky and O’Connell, 1980]. A number of

authors have developed codes for estimating the static anisotropic elastic moduli for

rocks with aligned fractures [White, 1983; Schoenberg and Muir, 1989]. If the crack

density is small, the decrease in the modulus also is small and is well understood in

terms of the properties of the matrix, the fluid, and the crack geometry. If the crack

density is large, the corresponding modulus decrease is large. Thus, variation in elastic

moduli and seismic velocities between fault zone and wall rock is a function of fracture
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density (ε). Hydrothermal alteration also effects elastic moduli and.seismic velocities,

but the changes are much less than those caused by fracturing.

Bending of the lithosphere at subduction zones generates stresses that produce ten-

sional fracturing and normal faulting. The subducting Cocos lithosphere offshore of

Nicaragua is characterized by pervasive normal faults which expose the basement. A

detailed study on the relationship between bending related faulting at trenches and

intermediate-depth seismicity along segments of Middle America and Chile trenches

shows that the distribution of nodal planes of the intermediate-depth events are re-

markably similar to the orientation and dip of the bending related faults, for each

segment of the study area, and therefore supports the model where the outer rise

faults are reactivated at depth [Ranero et al., 2005]. There is a growing evidence that

intraplate outer rise earthquakes can create pathways for seawater to infilitrate and

reach upper mantle, causing extensive hydration of the incoming plate prior to sub-

duction. In this study, where we are attempting to evaluate an impact of fracturing on

the mechanical properties of the subducting lithosphere, we assume that the aligned

water filled microcracks and fractures are present in the entire crust and in the upper

mantle rocks of the subducting oceanic slab, with alignment direction normal to the

direction of the maximum tensional stress.

4.1 Seismic velocities in a medium with parallel

fractures and aligned cracks - Schoenberg &

Douma’s model

Fracture porosity is porosity associated with a fracture system or faulting. Frac-

tures themselves typically do not have much volume, but by joining preexisting pores,

they significantly enhance permeability. The porosity of a porous medium (such as a

rock or sediment) describes the fraction of void space in the material, where the void

may contain, for example, air or water. It is defined by the ratio:
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(4.1) φ =
VV

VT

where VV is the volume of void-space (such as fluids) and VT is the total or bulk

volume of material, including the solid and void components. Porosity is a fraction

between 0 and 1, typically ranging from less than 0.01 for solid granite to more than 0.5

for peat and clay, although it may also be represented in percent terms by multiplying

the fraction by 100.

Since cracks in the crust and upper mantle are assumed to be liquid-filled and

aligned perpendicular to the direction of minimum compressional stress, the modeling is

confined to parallel water-filled cracks. To evaluate dependance of seismic velocities on

fractured and cracked media we used a code provided by W. Rabbel at CAU, Kiel, that

is based on a model of Schoenberg and Douma [1988] for long thin parallel fractures.

The code is based on generalized Postma-Backus-Algorithm [Muir and Schoenberg,

1989] which calculates effective elastic tensors and seismic velocities for finely layered

anisotropic medium, anisotropic background-medium with oriented cracks, as well as

for crack-families with different orientations. Voigt and Reuss mixing algorithms and

tensor rotations were also applied. Schoenberg and Douma considered the fractures as

compliant layers. In their model a distributions of parallel cracks is incorporated into

the system by representation of layers in the limit of vanishing thickness and stiffness

and this elastic medium can be characterized by the compliance matrix. The elastic

properties of a rock mass with penetrating, parallel fractures can be then modelled in

a manner quite analogous to the layered media illustrated in Figure 4.1. The total

thickness of the rock mass is H (in the z-direction), out of which a height Hfr is

constituted by the fractures. The relative fracture thickness is defined as:

(4.2) hfr =
Hfr

H

The vertical fracture strain is
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(4.3) εfr
zz =

∆uz

Hfr

=
1

λfr + 2Gfr

σzz

The total strain is

(4.4) εzz =
∆uz

H
=

hfr

λfr + 2Gfr

σzz ≡ ZNσzz

where ZN is the normal fracture compliance, defined in the limit when hfr and

λfr+2Gfr → 0. The shear strain εfr
xz for the fracture is similarly given by the shear

modulus

(4.5) εfr
xz =

∆ux

H
=

1

Gfr

σxz

and the total strain is

(4.6) εxz =
∆ux

H
=

hfr

Gfr

σxz ≡ ZT σxz

This defines the transverse fracture compliance ZT . If the fractures are assumed to

be invariant with respect to rotation about the axis normal to the fracture direction

and their background is isotropic, the overall fracture compliance tensor depends on

those two fracture compliance tensors. Schoenberg & Douma further introduced the

relative compliances EN and ET :

(4.7) EN = ZN(λb + 2Gb)ET = ZT Gb

The subscript b refers to the background medium (intact rock).
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Figure 4.1: A layered solid medium composed of two sets of alternating planes and
parallel layers.

4.2 Method and Results

4.2.1 Anisotropy in the lower oceanic crust due to the water-

filled microcracks

The mineralogy, crack porosity, density, alteration, and mineral orientation of

oceanic rocks are among the important characteristics responsible for significant vari-

ations in seismic velocities throughout the oceanic crust. The rock contains vertically

aligned water-filled cracks situated in an isotropic background media. A single distri-

bution of aligned cracks is introduced and parameterized using crack density ε defined

as:

(4.8) ε =
Na3

V

62



4.2. METHOD AND RESULTS

where N is the number of cracks with a radius a in a volume V and crack aspect

ratio:

(4.9) α =
d

a

where d is the half width of a crack. The relation which connects crack density and

aspect ratio with crack porosity, φ, is:

(4.10) φ = α · ε · 4π

3

It is difficult to determine the values for crack density ε. As the actual fracturing

state of the subducting lithosphere offshore of Nicaragua is unknown, we used values

which lie in between 0.05, that has been reported for many different tectonic and

geological regions [Crampin and Booth, 1985; Roberts and Crampin, 1986; Li et al.,

1988], and 0.2 found in the Kobe fault zone [Zhao and Mizuno, 1999]. The result

reveals that the presence of thin aligned cracks with aspect ratios of 0.001-0.01 which

induce porosity of <1% could be sufficient to cause the observed velocity reduction.

For instance, for crack porosity of 0.05 % and aspect ratio of 0.001 compressional wave

velocity is already reduced by 0.4 km/s. The same amplitude is found in the lower crust

of the profile p50 in the vicinity of the trench. Figure 4.2 shows compressional wave

velocities for a range of aspect ratios and crack porosities plotted versus angles of ray

incidance. A change in the aspect ratio of the cracks affects the resultant anisotropy.

The model shows that lower aspect ratio cracks have greater impact on seismic velocities

than cracks with high aspect ratios, what is in agreement with the previous studies

[e.g. Wilkens, 1991]. This is due to the effective elastic moduli of the rock, which, for a

given porosity, reduce more when thin cracks, rather than spherical voids are present.

In a medium with very thin cracks, shear waves appear to be sensitive only to changes

in crack density. In Figure 4.3 is shown shear wave anisotropy in relation to increasing

crack density.

Based on this model velocity is expected to be reduced by 5-12 % for crack den-

sities in the range of 0.05-0.15. As a total velocity anisotropy is produced by crack
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Figure 4.2: P-wave velocities in the lower oceanic crust containing parallel fractures and
aligned cracks for different crack densities: 0.05 (blue), 0.1 (black) and 0.15 (green).

.
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Figure 4.3: Potential impact of aligned water-saturated cracks on the S-wave velocities
in the lower oceanic crust; variation in the wave-speed of SH (solid) and SV (dashed)
with incidence angle for different crack densities.

populations with a broad range of aspect ratios and crack densities, we can assume

that fluid-filled cracks may have a significant impact on the seismic properties of the

subducting crust here. It seems reasonable to assume that mineral alteration has minor

effect on the seismic velocities of the lower crust. This is supported by the analysis of

low-temperature alteration in the gabbroic rocks recovered from Hole 735B, which has

shown that the alteration is localized and typically confined to fractured regions where

intense alteration of the host rocks can be observed adjacent to veins/veinlets. Besides,

typical alteration minerals are secondary plagioclase and amphibole. Amphiboles do

not significantly change seismic velocity, because they have properties similar to the

pyroxenes they replace [Iturrino et al., 1996].

4.2.2 Seismic anisotropy in the microcracked uppermost man-

tle

Assuming a similar fracturing state as in the lower crust caused by bending

stresses, the same method was applied to the uppermost few kilometers of the mantle
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using the same model parametrization. We used the same range of input values for

crack density, values which lie in between 0.15, found in the regions where big earth-

quakes occurred (Kobe), and 0.05, which would be representative of different tectonic

and geological environments. The Figure 4.4 shows an influence of very thin cracks

of different aspect ratios, in the range from 0.0001 to 0.005, and crack porosities of

0.01 % and 0.05 % on compressional wave velocities in dependance of an angle of ray

incidance.

The results indicate that physical properties of the upper mantle rocks could be

strongly affected by the presence of aligned water-filled microcracks and fractures.

Assuming that the input values are a good approximation to the actual fracturing

state of the subducting Cocos lithosphere, the model shows that 3-6% of the reduced

velocities in the upper mantle could be caused just by cracked and fractured condition.

The P-wave velocity model of the profile p50 (Chapter 2) has revealed that upper

mantle velocities in the vicinity of the trench are reduced by 5-7% compared to the

unaltered upper mantle rocks, what has been interpreted to be caused by 12-17 % of

serpentinization. The model shows that for the same range of crack densities as in the

lower crustal layer, velocities can be reduced by up to 5-13 %. In Figure 4.5 is shown

a potential effect that parallel water-filled cracks and fractures may have on the shear

wave velocities in the uppermost mantle.

Although serpentinization of mantle peridotites is a geologically rapid process at

all temperatures above 100˚C (Martin and Fyfe, 1970), high seismic activity rates

caused by strong bending stresses, like in the case of the subducting Cocos lithosphere,

would continously develop a new set of microcracks and fractures, through which then

seawater could percolate, preventing cracks closure and hence causing anisotropy. Thus,

although serpentinization affects geophysical properties of the upper mantle rocks by

lowering their seismic velocities, fracturing may play equal or even more important role

in this process.
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Figure 4.4: P-wave velocities in the upper mantle for the same crack densities used for
the lower crust model (Fig.4.2).
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Figure 4.5: Variation in the wave-speed of SH (solid) and SV (dashed) with incidence
angle in the upper mantle containing aligned water-saturated cracks.

4.3 S-wave model and VP/VS ratio

Fractures are well known to affect wave propagation at the seismic scale. It is

known that S-waves are more intensively affected by crack-induced anisotropy than

P-waves. Since S-waves are more sensitive to rigidity changes, they are more suited for

fracture characterization. Knowledge of the density and aspect ratio of inferred crack

populations can be considerably improved with estimates of Poisson’s ratio:

(4.11) σ =
v2

P − 2v2
S

2(v2
P − v2

S)

Another useful quantity is the VP /VS ratio, which is uniquely related to the better-

known Poisson’s ratio. Seismic wide-angle data from the profile p50, placed in the

trench-outer rise area northwest of the Nicoya Peninsula (Chapter 2) were first used to

derive a 2D P-wave velocity model. In order to obtain a shear velocity model we used

a PS converted phase, which is an S-wave converted from a P-wave at the bottom of

the sedimentary layer. In general, conversion from P-to S waves is more likely to occur
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where a sediment blanket is present [Lewis and McClain, 1977], since cementation and

infilling of cracks result in an increase of S-wave velocity and decrease shear attenuation

enough for an efficient P- to S-wave conversion. Because of the low quality of the S-

wave data from most of the stations close to the trench, not all the phases could have

been picked, specially the mantle phases. Examples are shown in Figures 4.6 and 4.7

(see also Chapter 2, Fig. 2.4 to 2.7) for PS-converted wave record along the profile p50.

In total 1548 Sg, 569 SmS and 704 Sn phases were used in the inversion procedure.

The velocity model was constrained using the joint refraction and reflection inver-

sion code from Korenaga et al. [2000]. Figure 4.8a shows the S-wave structure. It

follows the same pattern found in the P-wave velocity model. In the area seaward of

the outer rise we find velocities typical for a mature oceanic lithosphere. Within the ∼
1.5 km thick upper crust velocities increase from ∼ 2.5 kms−1 at the top of the layer to

3.4 kms−1 at the bottom. Uppermost lower crustal S-wave velocities are ∼ 3.6 kms−1

and reach 4.0 kms−1 at the Moho. VP /VS ratio within the upper and lower crust is

∼ 1.8. The Moho interface is constrained in the previous P-wave modeling (Chapter

2) using Moho reflections (PmP). The seismic behaviour in the lower oceanic crust is

typical for unaltered gabbroic rocks. However, as the plate approaches the trench the

S-wave velocities decrease. In the S-wave crustal structure velocity anomaly close to

the trench (Fig. 4.8b) is more prominent than in the P-wave structure (Fig. 2.9).

VP /VS ratio here is in the range 1.9-2.0 (σ = 0.31-0.33) (Fig. 4.9a), considerably

higher than 1.8 (σ = 0.28) found seaward of the outer rise, which might reflect the

presence of high fracture density zone. Popp and Kern [1994] found that both P-

and S-wave velocities decrease with increasing crack density, and that Poisson’s ratio

decreases for dry cracks and increases for saturated cracks. Strong bending-related

faulting in the trench-outer rise area may reopen old cracks, created at the spreading

ridge, and create new ones, through which seawater may infiltrate and react with the

surrounding rocks. The modeling of the impact of water-filled cracks and fractures

on the seismic properties (Sections 4.2.1 and 4.2.2) has shown that they could play a

major role in the observed velocity reduction. The models with crack densities in the

range from 0.05 to 0.15 show that S-wave velocities in the lower crust can be reduced

by up to 5-12% and in the upper mantle about 5-13% of the anomaly could be caused

solely by cracks and fractures.
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Figure 4.6: Example of wide-angle seismic data. Interpreted seismic arrivals are la-
beled: Sg (turning rays within the crust), SmS (reflections at the Moho), and Sn
(turning rays in the upper mantle). OBS34.
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Figure 4.7: Same as Fig.4.6 for OBH45.
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a)

b)

Figure 4.8: a) Final velocity model with isovelocity contours. Thick black line repre-
sents Moho boundary derived from inversion of PmP phases. Yellow circles indicate
OBH and OBS stations; b) S-wave velocity reduction in the crust and upper mantle.
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a)

b)

Figure 4.9: a) VP /VS ratio; b) VS-depth profiles at two selected locations in the outer-
rise and near-trench region.
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4.4 Disscusion

The seismic structure along the seismic profiles offshore of Nicaragua is clearly

anomalous. Seismic velocities in the crust and upper mantle are much lower than what

is a typical velocity of the mature oceanic lithosphere. This anomaly can be explained

by both the presence of the cracks and fractures and hydrothermal alteration of the

rocks. The subducting plate is significantly fractured due to the tensional stresses

within the uppermost ∼20 km of the lithosphere. In our resulting models for the

profile p50 northwest of the Nicoya Peninsula (Chapter 2) and the profiles p01 and p02

which lie offshore of northern Nicaragua (Chapter 3), we find velocities well reduced

compared to those expected for ∼25 My old litosphere, both in the crust and upper

mantle. Those anomalies are most likely due to a combination of progressive fracturing

and hydration. Some estimates for water content in the uppermost mantle have already

been done (Chapter 2) based on the velocity anomalies in the uppermost mantle and

under the assumption that they were due only to hydration. The impact that the

fractures and cracks have on the elastic properties of the crustal and upper mantle

rocks here is very difficult to constrain due to the unknown fracture network parameters

(crack density and aspect ratio, anisotropy and percolation properties of the fracture

network) and the fact that both mechanisms, fracturing and hydration, are related to

each other.

The results we have got from all three profiles, which lie perpendicular (p50) and

parallel to the trench (p01 and p02), have also shown an azimuthal seismic anisotropy

in the crust and upper mantle. Fluid-filled microcracks [Nur and Simmons, 1969;

Crampin, 1984] and mineral alignment [Christensen, 1966; Babuska, 1981; Christensen

and Szymanski, 1988] are the most likely causes for seismic anisotropy in the crust

and upper mantle. As fracture-induced anisotropy can lead to observable azimuthal

variations of seismic properties, they can be used for characterizing a fracture system.

Azimuthally varying P-wave attenuation can document the presence of aligned satu-

rated fractures. Both P- and S- wave propagation across the fractures are expected

to be significantly delayed, and attenuated, with a lower dominant frequency than the

uncracked rock.

It should be noted that a certain amount of azimuthal variation in seismic velocity
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could also be caused by the flow-induced mineral alignment in the Earth’s mantle.

Strong lattice-preferred orientation (LPO) develops during upwelling and the preferred

orientation of minerals stabilizes during spreading and attenuates during subduction.

Seismic anisotropy associated with LPO of minerals in peridotites contributes to the

effective anisotropy. Seismic anisotropy in the shallow upper mantle was first recorded

beneath Hawaii [Hess 1964; Morris et al. 1969], where observed surface waves traveled

10% faster in the E-W direction than in the N-S. Because of the orientation of olivine

minerals P-wave velocity should be higher perpendicular than parallel to the trench

axis, and, thus, it would reduce the effect of fracture-induced anisotropy. However, it

is difficult to separate its contribution from the fracture-induced anisotropy, specially

because hydrothermal alteration of the rocks also affect the mineral alignment in the

Earth’s mantle.

The development and presence of fractures will depend on several parameters inter-

acting each other: fluid supply, enhanced fluid flow in the permeable fracture, and fluid

flow through the surrounding porous material. Fluids in the lower crust can maintain

open microcracks by reducing the effective confining pressure at those depths [Walder

and Nur, 1984]. However, fluids may react rapidly with surrounding rocks and be con-

sumed. The dynamics and kinetics of crack closure is still not well understood, and

an extensive study should include various parameters, like stress, temperature, fluid

chemistry and initial geometry of a crack. Nur and Walder [1990] determined that

fluid filled cracks can remain open in the deep crust for no more than about 107 years

without fluid replenishment. Also, fluid-filled microcracks in the lower crust would

reduce the P-wave velocity [Spencer and Nur, 1976].

The pathways of fluid flow and the timing of hydrothermal fluid penetration into

the intact gabbro rock at low temperatures is still not well defined. ODP Hole 735B

penetrates more than 1500 m into the lower oceanic crust which was generated at the

very slow spreading Southwest Indian Ridge and later formed the 5-km-high Atlantis

Bank on the inside corner high of the Atlantis II Fracture Zone. The gabbroic rocks

recovered from Hole 735B preserve a complex record of plastic and brittle deformation

and hydrothermal alteration. The lowermost section (500-1500 mbsf) in the Southwest

Indian Ocean, which has been affected by a complex and multistage low temperature

(<250˚C) alteration, has shown that the extent of this low-T alteration is localized

and typically confined to fractured regions. Typical alteration minerals are amphibole
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and secondary plagioclase [Iturrino et al., 1996]. A Vp-Vs plot at 200 MPa shows

that most of the isotropic samples from Hole 735B fall in a region bounded by lines of

constant Poisson’s ratio which range from 0.25 to 0.30 (average 0.28). This corresponds

to Vp/Vs ratios from 1.76 to 1.85, with an average value of 1.81. The S-wave velocity

model along p50 (Fig. 4.8a) has revealed that S-wave velocity reduction in the crust

is more prominent than in the P-wave velocity model, what is in agreement with the

prediction from the crack models (Sections 4.2.1 and 4.2.2). Analysis of Vp/Vs ratio

here has shown that in the crustal layer near the trench this value is in the range 1.9-2.0

(σ = 0.31-0.33) (Fig. 4.9a), which is considerably higher than the values observed on

the gabbroic rocks recovered from Hole 735B. In fact, Vp/Vs ratio of 1.8 (σ = 0.28) is

found seaward of the outer rise. Thus, it is reasonable to assume the presence of high

fracture density zone in the part of the lithosphere affected by the bending stresses.

A similar scenario can be assumed in the uppermost mantle layer. If seawater in-

deed penetrates upper mantle, it can be assumed that, due to the strong tectonic and

seismic activity in the subducting Cocos lithosphere, seawater keeps microcraks open,

reducing the effective elastic moduli of the rocks. Therefore, reduced seismic velocities

we observe in our final model could be, aside serpentinization processes, explained by

the presence of water-filled microcracks. As shown by Martin and Fyfe [1970] ser-

pentinization is geologically a rapid process at all temperatures above 100˚C and is

controlled by the rate at which water is supplied to the reaction surfaces. However,

once serpentine has formed on a fracture surface, further reaction must depend on water

diffusion rates through serpentine minerals. Experimental studies on serpentine per-

meability have shown that, for instance, at 300˚C a layer of serpentine 1 km thick will

be formed in about 1 Ma [MacDonald and Fyfe, 1985]. In case of the subducting Cocos

plate with high seismic activity, one can assume continuous supply of seawater, what

would keep the microcraks open and develope a new set of microcracks, which would

significantly reduce seismic velocities. Crack-modeling, with the same parametrization

as in the case of the lower crust, showed that cracks could reduce the seismic velocity

of the uppermost mantle by 3-6%. Thus, the existance of water-filled aligned cracks

and fractures could significantly contribute to the velocity reduction we are observing

along the seismic profiles offshore of Nicaragua, both in the crust and upper mantle.
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4.5 Conclusions

The analysis shows that the major part of the observed velocity reduction in

the seismic velocity models offshore of Nicaragua could be explained by the presence

of water-filled microcracks, both in the lower crust and upper mantle, because of the

strong impact of the microcracks on the elastic properties of the rocks. The crack-

model shows that lower aspect ratio cracks have greater impact on seismic velocities

than cracks with high aspect ratios. Due to the geometry of normal faults in sub-

ducting lithospheres, it might be reasonable to hypothesize that bending causes low

aspect ratio cracks in crustal and upper mantle rocks. The difficulty in determing the

actual impact of fractures on the seismic properties of the subducting plate is due to

the unknown fracture system of the lithospheric rocks. Thus, for fracture density we

used endmember values that range from 0.05, which had been reported for different

geological and tectonic regions, to 0.2, found in the Kobe fault zone. The presence of

thin aligned cracks with aspect ratios of 0.001-0.01 which induce porosity of <0.05%

could be sufficient to cause the observed velocity reduction in the crust and 3-6% of

the reduced velocity in the upper mantle could reflect the cracked and fractured condi-

tion. This is supported by the analysis of the crustal Vp/Vs ratio structure along the

profile p50, which has shown that Vp/Vs ratio is much higher here than those observed

in hydrothermally altered gabbros. Thus, based on this model, we can assume that

about 50% of the velocity anomaly found in the subducting Cocos lithosphere (Chapter

2) might be caused by water-filled cracks, what reduces the estimate of the potential

serpentine content in the uppermost mantle to 5-8%.
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Chapter 5

Synthetic modeling

5.1 The Reflectivity Method

Synthetic seismogram modeling is a very useful tool for the interpretation of

field seismograms recorded over a fractured and azimuthally anisotropic earth. This

method can model almost all kinds of waves propagating in elastic or anelastic media

with high numerical stability and accuracy but relatively less computation cost. Re-

flectivity modeling can also simulate wave propagation in fine layered earth models.

The reflectivity method for one-dimensional models has proven to be an efficient and

powerful method for interpretation of the amplitude and waveform of seismic record

sections, which characteristics can be very useful in interpretation of fine structures in

velocity models.

The method represents wave propagation in the frequency-wavenumber domain, and

it mainly deals with coefficient (or propagator) matrix computation in the frequency-

wavenumber domain [Kennett, 1975; Kennett, 1983; Müller, 1985]. Modeling in the

frequency-wavenumber domain makes it easy to handle absorptions in anelastic media

[Temme and Müller, 1982]. Finally, by use of Fourier transforms, the seismic modeling

results can be transformed back into the time-space domain. The theories of reflectivity

modeling are fully presented in Kennett [1983]. A description of the method in terms of
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equations, e.g., the calculation of reflection and transmission coefficients at an interface,

is described in detail in the tutorial by Müller [1985]. The synthetic seismograms

sections are calculated using the reflectivity method [Fuchs and Müller, 1971]. The

approach consists of performing a numericalal computation of the integral solution of

the wave equation. It was later extended by Kennett [1983] to include the theory

of a generalized reflection and transmission from layered system. These generalized

responses include all possible multiples, mode conversions, and transmission losses.

This is a sophisticated technique for the creation of the complete elastic, body-wave

response from a horizontally layered system. It is especially useful when trying to

obtain approximate solutions in certain areas, such as in an anisotropic media. Velocity

gradient zones were approximated by a series of homogeneous layers introduced in the

entire crust and upper mantle. However, reflectivity modeling has limitations. Major

ones are complexity of the associated numerical computation of the integral equation,

lack of established procedures for the selection of the proper values of the required

parameters, and lengthier computation times. A weakness of the method also is that

it is a 1D modeling method. Thus, when we try to model more complicated earth

models, such as heterogeneous media, we have to turn to other modeling methods.

5.2 Computation of the synthetic seismogram

The main goal of this approach was to calculate a model that would fit the ob-

served data. The comparison of the synthetic model with the observed record section

then gives a more solid evaluation of how well the proposed model is able to explain the

seismogram. This method also provides more detailed constraints on velocity anoma-

lies in the crust and upper mantle. As both profiles p01 and p02 lie parallel to the

trench axis, their velocity models are expected to be uniformly affected by faulting

and fracturing of the subducting slab. Indeed, tomographic inversion results reveal

anomalous behaviour in the crust and upper mantle uniformly along both profiles. In

order to get a better insight into the velocity gradients here, we calculated the synthetic

seismogram for the OBS14 station from the profile p01. The physical parameters are

partly taken from other modeling techniques (P-wave and S-wave velocity) and partly
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tested (Q). The one-dimensional P-wave and S-wave velocity-depth distributions for

the starting model were derived from the results of the tomographic inversions. QS

depth distribution was estimated using a relation from Müller [1985]. White noise is

added to the synthetic seismogram for a better comparison with the recorded refraction

seismogram. Figure 5.1 displays the resulting synthetic seismogram and the observed

data.

Depth [km] Vp Qp Vs Qs ρ [kg/m3] No. of layers
0.000 1.48 1000.0 0.0001 0.0 1.0 0
0.020 1.48 1000.0 0.0001 0.0 1.0 1
4.80 1.48 1000.0 0.0001 0.0 1.0 1
4.91 1.48 1000.0 0.0001 0.0 1.0 1
4.91 1.65 60.0 0.25 40.0 1.5 0
5.21 2.15 60.0 0.55 40.0 1.5 10
5.21 3.7 50.0 1.9 30.0 2.6 0
6.8 6.1 50.0 3.15 30.0 2.6 15

10.90 6.6 250.0 3.45 150.0 2.9 10
10.90 6.9 600.0 3.65 500.0 3.15 0
11.10 7.3 600.0 3.85 500.0 3.15 4
11.10 7.5 600.0 3.95 500.0 3.15 0
18.50 7.8 600.0 4.54 500.0 3.30 5
20.50 7.9 600.0 4.545 500.0 3.30 5

Table 5.1: Layer parameters for the reflectivity modeling.

The low velocities found in the entire crust and upper mantle have been atributed

to intense cracking and hydrothermal alteration of the rocks due to the percolation

of seawater. Upper crustal layer of significantly reduced velocities of 3.8-4.0 kms−1,

compared to the ’normal’ 4.5 kms−1 for ∼25 My old oceanic lithosphere, indicate

highly fractured and altered rocks. The PmP trace appearing in between ∼18-26 km

range can be successfully modelled, when a velocity gradient within the lower crust is

higher than expected for unaltered gabbroic layer, followed by a ∼200 m of transitional

Moho layer to the upper mantle. Furthermore, very low upper mantle velocities of 7.3-

7.4 kms−1 just below the Moho are most likely caused by extensive fracturing or/and
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Figure 5.1: Synthetic seismogram of OBS14.
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hydrothermal alteration of the upper mantle rocks. To obtain a good fitting with the

observed Pn phases we had to increase a velocity gradient within the upper mantle.

Higher velocity gradients within the crust and upper mantle are most likely a reflection

of the depth distribution of hydrated minerals and cracks, in which alterations are most

prominent at the top of the layers and decrease with the depth. Attenuation of both

P-waves and S-waves is found to be significantly higher compared to values expected for

normal unaltered mature oceanic lithosphere. Thus, these observations are consistent

with the scenario in which fracturing and mineral alteration strongly affect the velocity

structure of the subducting Cocos lithosphere.
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Chapter 6

Disscusion and Conclusions

Subduction zones play a fundamental role in global volatile cycle. In this work

we have focused on the outer rise processes prior the plate enters the trench in order

to evaluate the impact of the incoming plate on the subduction process. The main

aim was to quantify the amount of water carried with the subducting plate into the

subduction factory. Water carried into subduction zones with the down-going plate

and subsequently released by dehydration reactions at depth affects the composition

of the mantle wedge, triggers partial melting and affects subduction zone seismicity.

Serpentinized mantle seems to be the most stable agent to deliver chemically bound

water through the sub-arc dewatering region to greater mantle depths, and, thus, it

may play a significant role in fluid and element transfer through subduction zones.

Depending on the thermal structure of the subducting slab up to 40% of the water

stored in serpentinized mantle may be transfered into the deeper mantle. Thermal

models constructed across the Nicaragua-Costa Rica subduction zone have shown that

hydrated oceanic mantle subducted beneath Nicaragua and Costa Rica may still con-

tain substantial amounts of H2O at depths greater than 240 km (>8 GPa) [Peacock

et al., 2005]. Offshore of Nicaragua the system of bending related faulting seen in the

bathymetry data is believed to facilitate inflow of seawater into the deep crust and

upper mantle.

To test this hypothesis a number of wide angle reflection and refraction seismic

profiles were conducted across the trench-outer rise area offshore of Nicaragua. First

profile p50 from the cruise SO173-1 was placed nortwest of the Nicoya Peninsula,
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where the MCS data reveal pervasively faulted subducting lithosphere. The profile

is perpendicular to the trench-axis, covering the area which extends from the trench

into the seaward of the outer-rise, where no faults were observed in the bathymetry

map. The tomographic inversion method has revealed an anomalous behaviour of

the seismic velocities in the crust and upper mantle in the part of the plate affected

by the bending stresses, whereas the ’non-affected’ part is of typical velocities for a

mature non-altered oceanic lithosphere. The anomalous behaviour increases towards

the trench, indicating changes in physical and chemical properties of the subducting

lithosphere as it approaches the trench and supporting the idea that pervasive bending

related normal faulting creates pathways for seawater to reach and react with cold

mantle rocks producing serpentine. It is most likely caused by both mechanisms,

extensive fracturing and serpentinization process. The crack-model for the lower crust

and upper mantle, based on the Schoenberg & Douma’s model for parallel fractures and

aligned cracks has shown that water-filled cracks may have a significant impact on the

seismic properties of the deep subducting lithosphere. In the S-wave velocity model of

the profile p50 we find that crustal velocities are more profoundly reduced than in the

P-wave model. This observation supports the crack-model, indicating that fracture

porosity may play an important role in reducing the seismic velocities. The other

two profiles acquired during M66 cruise lie parallel to the trench. This geometry has

helped to get an insight into the lateral changes along the trench. Both profiles have

revealed that anomalous seismic behaviour in the crust and upper mantle is typical

for the entire subducting lithosphere offshore of Nicaragua. Based on the model of

Carlson and Miller [2003] that relates the degree of serpentinization and water content

of partially serpentinized peridotites to their seismic P-wave velocities, we estimate

that water stored in the upper mantle in this region may range from 1.55 to 2.17 wt

%, corresponding to a 12-17 % increase in serpentine content. These values are found

just below the Moho and they decrease with depth, so that 4 km deeper velocities

seem to return to those typical for anhydrous rocks. Considering the effects of fracture

porosity, we assume that this number is an upper bound on the water content of the

hydrated mantle and that the real value might be considerably lower. Thus, it seems

to be reasonable to assume that at least 50% of the velocity anomaly is caused solely

by water-filled cracks and fractures. This is in agreement with the thermo-dynamical

model of Ruepke et al. [2004]. They find that Hallam’s [1992] estimation of a maximum
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sea level drop of 500m over the past 600Ma is consistent with less than 5% sub-Moho

mantle serpentinization. Higher degrees of serpentinization seem to lead to too strong

water recycling into the mantle to be consistent with global sea level changes since the

Cambrian.

As the downgoing plate experiences higher pressures and temperatures, water trapped

in the crust and upper mantle is gradually forced out and into the mantle of the over-

lying plate. Fluid output in the fore-arc region occurs at the deformation front and

through mud diapirs and mud volcanoes. Fluid output at the volcanic arc occurs

through magmatic devolatilization. Central American arc volcanism shows strong re-

gional trends in lava chemistry, which reflects different slab contributions to arc melting.

The Nicaraguan volcanic arc shows globally among the highest concentrations of geo-

chemical tracers for oceanic crustal fluid. B/La, Ba/La, and 10Be/9Be signatures from

Nicaraguan volcanics are among the highest ever measured in arc systems. It has been

proposed that the stronger slab signal in Nicaraguan, compared to Costa Rican arc

lavas, reflects greater amounts of fluid released from the dehydration of more exten-

sively serpentinized slab mantle [Rupke et al., 2002]. This is also consistent with the

model of Tonarini et al. [2007], in which tectonic erosion, i.e. dragging down of slivers

of serpentinized upper plate mantle, is responsible for the occurrence of serpentinite

reservoir, 11B-enriched in the forearc by shallow fluids.

One of the goals of the SFB 574 project is to obtain information on the amount

of water that is released from the subducted slab and returned to the surface. To

constrain this water cycle, both the water input into a subduction zone and the amount

of sub-arc water release have to be known. Thus, we compared our estimates with

the results of the other two subprojects of SFB 574, which deal with forearc volatile

turnover and slab-arc-atmosphere transfer. Estimated water flux at the Nicaraguan

forearc [C. Hensen, pers. communication] is 0.06·1013 kg/km·My and at the volcanic

arc [S. Kutterolf, pers. communication] 2.3·1013 kg/km·My. If we compare these values

with the estimations of subduction flux of water released from sediments (0.13·1013

kg/km·My) and crust (1.67·1013kg/km·My) [Jarrard et al., 2003] and the result of our

model (Chapter 2) for water storage within the upper mantle of 1.7·1013 kg/km·My,

about 67% of water is returned to the surface (Fig. 6.1). It should be noted that

this estimation represents an endmember model, in which we assume that velocity

reduction in the subducting crust and upper mantle is caused solely by hydration. As
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Figure 6.1: Subduction zone water cycle; water input into the subduction zone and the
amount of sub-arc water release.
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the anomalous behaviour in the velocity structure of the subducting lithosphere reflects

both physical and chemical alterations, and as it is difficult to separate their effects on

seismic properties, measurements of shear wave splitting and estimates of Poisson ratio

would help to provide much more information than P-waves solely about the processes.

In particular, we would know more about the internal geometry and distributions of

the fluid-filled voids, and, thus, about their impact on the seismic properties of the

subducting lithosphere. Together with a better insight into the nature of the low-

temperature alteration reactions within the subducting oceanic crust, it would lead to

an improved assessment model of the amount of water subducted within the Cocos

lithosphere into the deep subduction zone.
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Appendix

Tomographic inversion

The solution of the inverse problem involves a search over the model space for

the most plausible model m that is able to explain the recorded data d. Therefore we

choose a starting model that is likely to be close to the real subsurface. We trace rays

in this model and obtain a first set of synthetic travel times. The comparison of these

computed travel times with the actually measured data results in the travel time misfit

or travel time residual ∆d.

The traveltime along a ray path P is

(6.1) tobs =

∫

P

u(r)dr

where r is the position vector, dr is the infinitesimal ray path length and u(r) is the

slowness at point r. If u(r) changes, the ray path changes, thus the ray path depends

on the solution of this nonlinear problem. The perturbational model u(r) is related to

an initial model u0(r) by

(6.2) δu(r) = u(r)− u0(r)

According to Fermat’s variational principle the traveltime along the ray path P with

the minimum traveltime is stationary for an infinitesimal perturbation δu, resulting in

a small change in traveltime:

(6.3) δt = t(u + δu)− t(u) ≈
∫

P

δudr
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In linearizing the problem it is assumed that small changes in traveltime are solely

related to velocity heterogeneities. Therefore, the deviation of the ray path is ignored.

Under the assumption that small changes of the model ∆m result in only small changes

of the travel times ∆d we can establish a linear relationship:

(6.4) d = Gδm

with G being a Fréchet derivative matrix [e.g. Menke, 1989; Toomey et al., 1994], and

δm is the uknown model perturbation vector. We apply now small changes to the

model in order to reduce the misfit. The new model remains in the region of linearity

that surrounds the previous model. This procedure is repeated consecutively until

the misfit between the observed and predicted traveltimes is minimized, i.e. until a

satisfactory reduction of the travel time residual is achieved.

If one assumes that the error in the relationship dobs ≈ dpred = G δmest is Gaussian,

then a least-squares measure of this difference is suitable [e.g. Menke, 1989]:

(6.5) min‖dobs −Gδmest‖2

Uncertainties based on the assigned picking errors σi, i = 1,...,n are used to weight

the data according to their quality by writing the objective function Ψ(m) that has to

be minimized as:

(6.6) Ψδmest = (dobs −Gδmest)
T C−1

d (dobs −Gδmest),

where Cd is the data covariance matrix with diagonal elements σ2
i [e.g. Menke,

1989]. If equation is under-determined, the unconstrained parameters can take any

value without affecting a least-squares solution, and hence many m will fit the data.

To address this non-uniqueness, model regularization adds additional constraints to

the inverse problem. In practice, one often uses a priori information to regularize the

a posteriori solution [Scales and Snieder, 1997]. Within the FAST algorithm, a user-

specified combination of smallest, flattest and smoothest perturbation constraints, each

being allowed to vary with depth, is used to tune the iterative inversion in such a way
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that the retrieved model has agreeable features. The inversion strategy used is an

iterative “jumping” [Shaw and Orcutt, 1985] which selects the smoothest model that

provides a satisfactory fit to the data.

To reduce the misfit between the observed data dobs and the modeled data dm we

formulate an optimization function F :

(6.7) F = (dobs −Gδmest)
T C−1

d (dobs −Gδmest) + (mest −m0)
T C−1

m (mest −m0),

where mestn = mn + δmestn , mn is the slowness model after n iterations, m0 is

the slowness of the starting model, and Cm is an a priori model covariance matrix.

Cd contains the travel time uncertainties while Cm contains the model uncertainties,

which are divided into velocity and interface depth uncertainties.

Inversion is achieved as a series of linear steps, in which successively improved

models are generated. At each step, the inversion algorithm requires a set of synthetic

traveltimes - computed by tracing rays between each source–receiver pair in the current

model - and their Fréchet derivatives, the partial derivatives of the traveltimes with

respect to each model parameter. Since all regularization terms in equation are allowed

to vary with depth, the rows of the regularization matrices are finally scaled with

additional depth-weighting factors. The resulting system of linear equations is solved,

using the sparse matrix solver LSQR [Nolet, 1987]. After each nonlinear iteration, the

updated perturbational model is regridded on the finite-difference grid and ray paths

and traveltime residuals are computed again until finally the predicted data fit the

observed data within the limits of preassigned uncertainty. A good estimate of the

quality of fit can be obtained by calculating the normalized X2 parameter:

(6.8) X2 =
1

Nres

Nres∑
j=1

δtj
σj

2

where δtj is the element of d corresponding to the jth traveltime datum, σj is the

pickuncertainty in that datum, and Nres is the absolute number of traveltime residuals.

If the uncertainties are well-estimated, uncorrelated and follow a Gaussian distribution,

then a satisfactory fit is obtained on average across the model if X2 = 1.
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