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Optimization of Parameters and Initial Values in

a Marine NPZD-Type Ecosystem Model

J. Rückelt∗, A. Oschlies†, T. Slawig∗

Abstract

Parameters and initial values of a one-dimensional marine ecosystem
model are optimized using a gradient-based optimization algorithm taking
into account parameter bounds. Sensitivities of the optimized parameters
w.r.t. errors in observations and initial values are studied numerically and
found to yield parameter ranges narrow relative to the a priori parameter
uncertainty reflected in upper and lower bounds on the permitted pa-
rameter range. This means, that optimal parameters can be determined
accurately. We find, that optimizing for the initial values along with the
parameters can greatly improve the model’s fit to the observations.

1 Introduction

A spatially one-dimensional marine biogeochemical model that simulates the
interaction of dissolved inorganic nitrogen N , phytoplankton P , zooplankton Z
and detritus D was developed by Oschlies and Garcon [9], with the aim of sim-
ulating the nitrogen and carbon cycles in the North Atlantic [7], [11]. Oschlies
and Schartau [12] showed that local calibration of the ecosystem model also
resulted in an improved performance when this model was embedded into the
basin-scale circulation model. In the one-dimensional configuration, the model
simulates one water column at a given horizontal position, which is motivated
by the fact that there have been special observational time series studies at fixed
locations, one of which was used here. Hourly profiles of turbulent diffusivities
and temperatures are taken from a global three-dimensional circulation model
assumed to provide a perfect representation of the real ocean state. Such a local
off-line approach has several restrictions, e.g. it neglects horizontal transport
of biogeochemical tracers and possible feedbacks of the ocean biology on the
absorption of solar radiation and thus on the vertical heating profile.

The model was already used several times for the optimization of model pa-
rameters: In [17], a so-called micro-genetic algorithm (µGA) was used, and the
cost function combined three observational data sets from different locations.
Also, noise was added to the data. The authors observed the well-known be-
havior of stochastic optimization methods such as genetic algorithms (GAs) to
require a huge number of function evaluations to get to terminate. A number of
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the parameters turned out to be hard to identify or estimate by the used cost
function.

In [18] (compare also [17],[19]), the authors used the same model (and an-
other more complex one) to optimize the parameters again. In addition to a GA
they also employed a variational technique using a gradient-based method for
optimization. Since no parameter bounds were applied for the latter method,
some parameters went out of bounds, and the number of optimized parameters
had to be restricted for this method.

In [16], the same NPZD model was studied for only the single dataset of
the Bermuda Atlantic Time-series Station (BATS). Here a variant of a GA as
well as a different gradient-based optimization method were applied. The latter
was now chosen to take into account the parameter bounds, and turned out
to be superior to other comparable implementations since it includes a special
line search procedure, compare [13]. It could be shown that it was on the one
hand superior to the GA with respect to computing time and that, one the
other hand, optimal parameters could be identified also with incorporated data
uncertainties.

Based on these results and methods, in this paper the model is studied con-
cerning its dependency on the model parameters and additionally with respect
to the initial values, which had been kept fixed for the investigations mentioned
above. Since initial values are difficult to find for biogeochemical models, it is
important to know how their choice effects the model output and the parame-
ters obtained by any identification or estimation method. The applied method
of optimization is general and can be used for any initial or initial-boundary
value problem at hand, since its components are readily available and no spe-
cial software was designed to achieve the presented results.

The structure of the paper is as follows: We start by briefly describing the
model structure and the parameters that are optimized or subject to estimation
in the second section. In section 3, we present the parameter optimization
problem and describe the relevant parts of the used optimization algorithm. In
sections 4, we summarize the results for parameter estimation with synthetic
data. Afterward, we make a short note about opportunities of spatial model
reduction and how they affect the optimization in section 5. Section 6 presents
the uncertainty analysis w.r.t. observational errors. In the main part in section
7, we show results of optimization and uncertainty analysis w.r.t. initial values
and parameters simultaneously. We end the paper with conclusions in section
8.

2 Mathematical Model Equations

Biogeochemical models are coupled PDE systems consisting of time-dependent
advection-diffusion-reaction equations with nonlinear coupling terms. The tur-
bulent diffusivity, temperature and sometimes also salinity fields are either com-
puted simultaneously or in advance by a physical ocean model. Clearly, the
second variant (where the physical ocean model output is used as a kind of
forcing for the ecosystem model) that is used in this paper is computationally
cheaper but neglects the biology’s feedback effects via impacts on the absorption
of solar radiation, generally assumed to be small relative to uncertainties in the
boundary conditions such as surface heat fluxes, see [8].
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symbol equation meaning
VP = µm · (Cref )cT maximum growth rate of phytoplankton

u =
N

kN +N
factor for nutrient limited growth rate of phy-
toplankton

J(µ, u) = min(µ̄(z), Vpu) growth rate of phytoplankton after Liebig’s
Law of the Minimum

µ̄(z) light limited growth rate of phytoplankton, ac-
cording to Evans and Parslow [1]

G(ε, g) =
gεP 2

g + εP 2
zooplankton grazing function

Table 1: Auxiliary variables in the NPZD model.

In the model, the concentrations (in mmol N m−3) of dissolved inor-
ganic nitrogen, phytoplankton, zooplankton, and detritus, denoted by y =
(yj)j=n,p,z,d = (N,P,Z,D) are described by the following PDE system:

∂yj
∂t

= −ws
∂yj
∂z

+
∂

∂z

(
Kρ

∂yj
∂z

)
+ qj(y), j = n, p, z, d. (1)

Here z denotes the vertical spatial coordinate, i.e. the depth in the water col-
umn. The output taken from the physical ocean model are hourly profiles of
the turbulent mixing coefficients Kρ and temperature, the latter needed in the
biological process parameterizations below. The vertical sinking velocity ws is
a parameter of the biological model that is nonzero only for D.

The biogeochemical coupling (or source-minus-sink) terms for the four
species are given by (see [9]):

for N : qn(y) = −J(µ, u)P + γmD + ΦzmZ,
for P : qp(y) = J(µ, u)P − ΦpmP −G(ε, g)Z,
for Z : qz(y) = βG(ε, g)Z − ΦzmZ − Φ∗zZ

2,
for D : qd(y) = (1− β)G(ε, g)Z + Φ∗zZ

2 + ΦpmP − γmD.

(2)

Tables 1 and 2 give a further description of the parameters and functions.
The source minus sink equations of the NPZD model are affected by the

light-limited growth rate µ(z, t) of phytoplankton, which varies with depth z and
time t. Average light-limited phytoplankton growth rates µ(k, t) are calculated
for each depth layer k using a simplified version of an approximative formula by
Evans and Parslow [1]. This is where the parameters α, κ enter the equations.
For more details see [16].

2.1 Measurement Data and corresponding Model Output

Observational data is taken from the Bermuda Atlantic Time-series Study
(called BATS, located at 31N 64W). The used data and their corresponding
model variables are

• dissolved inorganic nitrogen (DIN) (in mmol N m−3), corresponding to
state variable N in the model,
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