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Optimization of Parameters and Initial Values in

a Marine NPZD-Type Ecosystem Model

J. Rückelt∗, A. Oschlies†, T. Slawig∗

Abstract

Parameters and initial values of a one-dimensional marine ecosystem
model are optimized using a gradient-based optimization algorithm taking
into account parameter bounds. Sensitivities of the optimized parameters
w.r.t. errors in observations and initial values are studied numerically and
found to yield parameter ranges narrow relative to the a priori parameter
uncertainty reflected in upper and lower bounds on the permitted pa-
rameter range. This means, that optimal parameters can be determined
accurately. We find, that optimizing for the initial values along with the
parameters can greatly improve the model’s fit to the observations.

1 Introduction

A spatially one-dimensional marine biogeochemical model that simulates the
interaction of dissolved inorganic nitrogen N , phytoplankton P , zooplankton Z
and detritus D was developed by Oschlies and Garcon [9], with the aim of sim-
ulating the nitrogen and carbon cycles in the North Atlantic [7], [11]. Oschlies
and Schartau [12] showed that local calibration of the ecosystem model also
resulted in an improved performance when this model was embedded into the
basin-scale circulation model. In the one-dimensional configuration, the model
simulates one water column at a given horizontal position, which is motivated
by the fact that there have been special observational time series studies at fixed
locations, one of which was used here. Hourly profiles of turbulent diffusivities
and temperatures are taken from a global three-dimensional circulation model
assumed to provide a perfect representation of the real ocean state. Such a local
off-line approach has several restrictions, e.g. it neglects horizontal transport
of biogeochemical tracers and possible feedbacks of the ocean biology on the
absorption of solar radiation and thus on the vertical heating profile.

The model was already used several times for the optimization of model pa-
rameters: In [17], a so-called micro-genetic algorithm (µGA) was used, and the
cost function combined three observational data sets from different locations.
Also, noise was added to the data. The authors observed the well-known be-
havior of stochastic optimization methods such as genetic algorithms (GAs) to
require a huge number of function evaluations to get to terminate. A number of
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the parameters turned out to be hard to identify or estimate by the used cost
function.

In [18] (compare also [17],[19]), the authors used the same model (and an-
other more complex one) to optimize the parameters again. In addition to a GA
they also employed a variational technique using a gradient-based method for
optimization. Since no parameter bounds were applied for the latter method,
some parameters went out of bounds, and the number of optimized parameters
had to be restricted for this method.

In [16], the same NPZD model was studied for only the single dataset of
the Bermuda Atlantic Time-series Station (BATS). Here a variant of a GA as
well as a different gradient-based optimization method were applied. The latter
was now chosen to take into account the parameter bounds, and turned out
to be superior to other comparable implementations since it includes a special
line search procedure, compare [13]. It could be shown that it was on the one
hand superior to the GA with respect to computing time and that, one the
other hand, optimal parameters could be identified also with incorporated data
uncertainties.

Based on these results and methods, in this paper the model is studied con-
cerning its dependency on the model parameters and additionally with respect
to the initial values, which had been kept fixed for the investigations mentioned
above. Since initial values are difficult to find for biogeochemical models, it is
important to know how their choice effects the model output and the parame-
ters obtained by any identification or estimation method. The applied method
of optimization is general and can be used for any initial or initial-boundary
value problem at hand, since its components are readily available and no spe-
cial software was designed to achieve the presented results.

The structure of the paper is as follows: We start by briefly describing the
model structure and the parameters that are optimized or subject to estimation
in the second section. In section 3, we present the parameter optimization
problem and describe the relevant parts of the used optimization algorithm. In
sections 4, we summarize the results for parameter estimation with synthetic
data. Afterward, we make a short note about opportunities of spatial model
reduction and how they affect the optimization in section 5. Section 6 presents
the uncertainty analysis w.r.t. observational errors. In the main part in section
7, we show results of optimization and uncertainty analysis w.r.t. initial values
and parameters simultaneously. We end the paper with conclusions in section
8.

2 Mathematical Model Equations

Biogeochemical models are coupled PDE systems consisting of time-dependent
advection-diffusion-reaction equations with nonlinear coupling terms. The tur-
bulent diffusivity, temperature and sometimes also salinity fields are either com-
puted simultaneously or in advance by a physical ocean model. Clearly, the
second variant (where the physical ocean model output is used as a kind of
forcing for the ecosystem model) that is used in this paper is computationally
cheaper but neglects the biology’s feedback effects via impacts on the absorption
of solar radiation, generally assumed to be small relative to uncertainties in the
boundary conditions such as surface heat fluxes, see [8].
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symbol equation meaning
VP = µm · (Cref )cT maximum growth rate of phytoplankton

u =
N

kN +N
factor for nutrient limited growth rate of phy-
toplankton

J(µ, u) = min(µ̄(z), Vpu) growth rate of phytoplankton after Liebig’s
Law of the Minimum

µ̄(z) light limited growth rate of phytoplankton, ac-
cording to Evans and Parslow [1]

G(ε, g) =
gεP 2

g + εP 2
zooplankton grazing function

Table 1: Auxiliary variables in the NPZD model.

In the model, the concentrations (in mmol N m−3) of dissolved inor-
ganic nitrogen, phytoplankton, zooplankton, and detritus, denoted by y =
(yj)j=n,p,z,d = (N,P,Z,D) are described by the following PDE system:

∂yj
∂t

= −ws
∂yj
∂z

+
∂

∂z

(
Kρ

∂yj
∂z

)
+ qj(y), j = n, p, z, d. (1)

Here z denotes the vertical spatial coordinate, i.e. the depth in the water col-
umn. The output taken from the physical ocean model are hourly profiles of
the turbulent mixing coefficients Kρ and temperature, the latter needed in the
biological process parameterizations below. The vertical sinking velocity ws is
a parameter of the biological model that is nonzero only for D.

The biogeochemical coupling (or source-minus-sink) terms for the four
species are given by (see [9]):

for N : qn(y) = −J(µ, u)P + γmD + ΦzmZ,
for P : qp(y) = J(µ, u)P − ΦpmP −G(ε, g)Z,
for Z : qz(y) = βG(ε, g)Z − ΦzmZ − Φ∗zZ

2,
for D : qd(y) = (1− β)G(ε, g)Z + Φ∗zZ

2 + ΦpmP − γmD.

(2)

Tables 1 and 2 give a further description of the parameters and functions.
The source minus sink equations of the NPZD model are affected by the

light-limited growth rate µ(z, t) of phytoplankton, which varies with depth z and
time t. Average light-limited phytoplankton growth rates µ(k, t) are calculated
for each depth layer k using a simplified version of an approximative formula by
Evans and Parslow [1]. This is where the parameters α, κ enter the equations.
For more details see [16].

2.1 Measurement Data and corresponding Model Output

Observational data is taken from the Bermuda Atlantic Time-series Study
(called BATS, located at 31N 64W). The used data and their corresponding
model variables are

• dissolved inorganic nitrogen (DIN) (in mmol N m−3), corresponding to
state variable N in the model,

3



index symbol value/ unit parameter
range (d=86400 s)

Cref 1.066 1 growth coefficient
c 1 ◦C−1 growth coefficient
R 6.625 1 molar carbon

to nitrogen ratio
kw 25 m−1 PAR extinction length

fPAR 0.43 1 short-wave PAR fraction
1 β [0, 1] 1 assimilation efficiency

of zooplankton

2 µm R+
0 d−1 phytoplankton growth

rate parameter

3 α R+
0 m2W−1d−1 slope of photosynthesis

vs light intensity

4 Φzm R+
0 d−1 zooplankton loss rate

5 κ R+
0 m2(mmol N)−1 light attenuation

by phytoplankton

6 ε R+
0 m6(mmol N)−2d−1 grazing encounter rate

7 g R+
0 d−1 maximum grazing rate

8 Φpm R+
0 d−1 phytoplankton

linear mortality

9 Φ∗z R+
0 m3(mmol N)−1d−1 zooplankton

quadratic mortality

10 γm R+
0 d−1 detritus remineralization

rate

11 kN R+
0 mmol Nm−3 half saturation

for NO3 uptake

12 ws R+
0 m d−1 detritus sinking velocity

Table 2: Model parameters. Parameters with a index in the first column were
optimized. The ranges given are theoretical, the ranges actually used are

given in table 5.
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• chlorophyll a (Chl a) (in mg (Chl a) m
−3

), corresponding to variable P ,
here using a constant conversion factor of 1.59 mg (Chl a)/(mmol N),

• zooplankton biomass (ZOO) (in mmol N m−3), corresponding to Z,

• particulate organic nitrogen (PON) (in mmol N m−3), corresponding to
P + Z +D,

• and carbon fixation or primary production as carbon uptake (here abbre-
viated as PP, in mmol C m−3 d−1), corresponding to the term J(µ, u)PR,
with R being the Redfield ratio, see [14] and table 2.

Except for zooplankton biomass, the tracer variable value is its concentration
at the corresponding depth. For zooplankton biomass, the tracer value is the
vertically averaged concentration in the water column from the given depth
(approximately 200 meters) to the ocean surface. In order to attempt to esti-
mate total zooplankton biomass from measured mesozooplankton biomass, the
observed zooplankton ZOO is transformed to Zobs = 1.23 · ZOO + 0.097, see
also [19]. Except for zooplankton, only data in the euphotic zone, translating
into the upper 20 model layers, is considered. To compare modeled primary
production PP with observations from 24-hour incubation measurements, the
24-hour mean of the model output J(µ, u)PR is taken.

2.2 Initial Values and Forcings

An initial vertical concentration profile for N is calculated as the mean depth
profile derived from the available DIN observations, the components of the other
profiles P,Z,D are set to small values following [10], see figure 1. The NPZD
model is forced by output from the OCCAM global circulation model, see [6],
namely the hourly vertical profiles of temperature T (in ◦C) and vertical diffu-
sivity Kρ (in m2s−1), respectively. The time resolution ∆t of the forcing data
is one hour, and the vertical grid consists of 66 layers with thickness increasing
with depth. The PDE is integrated by operator splitting. The source minus sink
equations (2) are integrated using four explicit Euler steps with 1

4∆t after which
the advection equation in (1) is also solved by an explicit Euler step and then
the diffusion equation in (1) is solved by an implicit step (Thomas method).

3 The Optimization Problem

The optimization problem consists of finding a set of constant parameters giving
a minimal misfit to the BATS data for the years 1991-1995 as defined by a cost
function. The problem is of least-squares type with box constraints and can be
written as

min
x∈Rn

F (x) := ‖f(y(x))− yd‖2 s.t. l ≤ x ≤ u, F : Rn → R, (3)

where the parameters are summarized in the vector x ∈ Rn, see again table 2.
Here y shall denote the discrete values of the four variables N,P,Z,D on

the space-time grid used by the model. The vector yd denotes the observational
data, or in the case of twin experiments, data precomputed by the model itself.
The function f stands for transformations on the variables as in section 2.1.
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Figure 1: Original initial values.

The norm in F is an Euclidean norm weighted by assumed standard deviations
of the measurements σ = (σj)j=1,...,5 = (0.1 mmolNm−3, 0.01 mg(Chla)m

−3
,

0.01 mmolNm−3, 0.0357 mmolNm−3, 0.025 mmolCm−3d−1) for the five respec-
tive data types introduced above, the number of years for which data exists
for each data type, and the respective numbers of measurements. For instance,
zooplankton data are available only from 1994 onwards. For details of the cost
function see [16].
The bound constraints on the parameters are to be understood component-
wise for the vectors l, u ∈ Rn with the actual numbers given in table 5. A
main restriction is that the state variables N,P,Z,D have to be non-negative.
This additional constraint is not treated in the optimization, only the optimized
product is checked for this condition.

3.1 Global Optimization

We are interested in a possibly unique global optimum, i.e. a minimal misfit F
within the given bounds l, u on the parameters x. It is known that for meth-
ods using local information (function values, derivatives) only, to converge for
any function f to its global minimizer it is necessary and sufficient to evalu-
ate a sequence of points that is dense in the parameter space. This obviously
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amounts to evaluating all (up to some given tolerance) points and can only be
improved upon by using additional global information. For this density theorem
and additional information see [5]. With no such global information available,
the simplest incomplete (i.e. no guarantees on global convergence) algorithm is
the multiple random start method which performs a number of local optimiza-
tions from random starting points for the parameter vector. In the absence
of information or heuristics on how to choose starting points (global informa-
tion), these are chosen independent and identically distributed (i.i.d.) within
the bounds l, u.
The multiple random start method is easily parallelized in an obvious way.

3.2 Sequential quadratic local Optimization Method

The desired properties of the local optimization method include:

• superlinear convergence rate without using second derivatives,

• treatment of bound or box constraints to avoid irrelevant results,

• off-the-shelf availability as source or library without additional coding
needed,

• flexibility to make use of exact derivative information provided by tools of
Algorithmic/Automatic Differentiation (AD), i.e. no restriction to built-in
finite differences.

We used the software CFSQP which stands for Feasible Sequential Quadratic
Programming in C, see [13], which is well suited for the problem on hand.
It can moreover treat general nonlinear constraints. The SQP method treats
the constraints via Lagrange multipliers and solves the optimality system by a
Quasi-Newton method, thus providing superlinear convergence in the ideal case
while requiring only first derivatives.

3.3 Algorithmic Differentiation

If the coded function is smooth enough, efficient code for exact derivatives can
be generated automatically by the technology of Algorithmic or Automatic Dif-
ferentiation (AD), see e.g. [3]. This was the case here, with only two non
differentiable terms, one being the minimum evaluation in J(µ, u), see table 1,
the other being a safeguard in the integration of the reaction equations assuring
non-negativity. Since the occurring min and max functions are directionally
differentiable, the AD software has no problem to generate a correct direc-
tional derivative that is sufficient for a local optimizer. Moreover, the use of
AD-generated gradients naturally avoids approximation errors and instabilities
which are well-known for numerically approximated derivatives. It is also su-
perior w.r.t. the convergence speed in an optimization, since the implemented
gradient is exactly the one of the implemented discretized function to be op-
timized, a fact that is assumed in all convergence results that are analytically
proven.

We used the proprietary AD software TAF (Transformations of Algorithms
in Fortran), see [2], that generates new source code from the original one, thus
providing a code that evaluates F and its gradient simultaneously. We used TAF
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# parameters relative cpu time for evaluation of
(n) F F +∇F (AD forward) F +∇F (finite diff.)

12 mean 1 10.5 13
min 1 7.8 13

140 mean 1 48.3 141
min 1 56.5 141

Table 3: Relations of cpu times for function (F ) and gradient (∇F ) computations,
the latter generated algorithmically with AD software and approximately
by finite-differences. The ”min” in the second column refers to the time

for evaluation of F .

in forward mode, i.e. propagating derivative information in the same order as
is used for evaluating the function itself.

The forward mode’s effort to evaluate F and ∇F is O(n) times the effort of
one function evaluation itself, where n is the number of independent parameters
to be optimized. Here we give some numbers based on actual optimization
runs. In our case with n = 12 (on an AMD Shanghai) one function evaluation
costs on average 2.14s with a minimum of 1.62s (736 evaluations). The mean
runtime for the model plus the gradient was 22.5s with a minimum of 12.5s (370
evaluations). The mean ratio was 10.5 and the ratio of the minima was 7.8.

In our case with initial conditions used as control parameters as well, yielding
n = 140, (on an AMD Barcelona) the respective numbers for the model were
1.40s, 1.08s (520 evaluations) and for model plus gradient 67.6s, 61.3s (301
evaluations) with a mean ratio of 48.3 and that of the minima of 56.5. These
numbers may vary wildly due to circumstances (computational environment)
not under the user’s control.

A finite difference approximation to the gradient would cost at least n + 1
function evaluations. Especially in the case of n = 140, AD in the forward mode
clearly did beat this, compare table 3 which summarizes these results.

It is well known that for computing the derivative of a function F : Rn → R,
as is needed in all single-objective optimization, the reverse mode (also known
as adjoint mode) generally is superior w.r.t. performance if the number n of
optimization parameters gets large. This is because in this case the number of
elementary operations (+,-,*,...) to evaluate F and ∇F is O(1) times that for
the function F alone. This comes at the price of having to store (or recompute)
every intermediate variable of the whole calculation. Naive implementation can
slow the calculation practically to a halt. This usually can be overcome and so
using the reverse mode is highly recommended when cpu time grows too much.

4 Preliminary tests with synthetic data

To assess the capabilities of the chosen optimization algorithm, we tested its
ability to reconstruct i.i.d. target parameter vectors xi ∈ Rn, i = 1, . . . , 64 from
their simulated data yid := y(xi) taken at the points of the BATS observations
for the years 1991-1995.

In general, i.e. without restriction to target parameter vectors that lead to
feasible states y ≥ 0 component-wise for all depths and times, these reconstruc-
tion problems could not be solved, i.e. the parameter vectors were not unique;
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e.g. a vector yielding a cost F < 10−14 could differ in ten components from 20
to 270 percent from its target vector. A heuristic restriction on the feasibility of
the state variables showed better results: We restricted the set of otherwise i.i.d.
parameter vectors xi (by elimination after evaluation) to those which yielded a
state component y2 = P > 10−10 for all points of their trajectories. All those
vectors had a parameter x8 = Φpm < 0.015, thus this seems to be a reasonable
and easy way to achieve feasibility. In our test experiments, no restrictions based
on other components of the state vector (N, Z, D) turned out to be necessary.

For the reconstruction of these xi, 30 trials each were undertaken, starting
from i.i.d. starting points xik , k = 1, . . . , 30. In 63 (out of a total 64) cases, the
xi were reconstructed with a precision of four significant digits, mostly multiple
times. In the remaining case the component-wise error was up to 5 percent.

This is a good sign in three respects: Firstly, an optimization method that
could not reconstruct such parameters would definitely be ruled out. Secondly,
a mathematical model not yielding to inverse methods would be suspect, or at
least would ask for more inquiry. Thirdly, the temporal and spatial observation
schedule available at BATS appears sufficient to make the NPZD model under
investigation here fully observable.

On the contrary, we take this as an indication that the random restart
method using the local SQP method with appropriately set stopping criteria
is a promising candidate for solving the parameter optimization problem in our
case, at least as long as the optimal trajectories do not include parts with too
low concentrations of P .

5 Spatial Model Reduction

We find that for the purpose at hand and with used observational data restricted
to the upper 194 m (i.e., the upper 20 levels) the model can be reduced to 32
instead of the original 66 depth levels. This corresponds to a deepest spatial
gridpoint of 679 m instead of 6366 m. Optimization for parameters gives prac-
tically identical results w.r.t. parameters and misfit F for both models thus
defined. Thus we argue that the reduced model can represent the larger one.
This is only justified for short time periods as the five year interval considered
here. Tests with synthetic (5-year cyclic) forcing for longer periods on the order
of hundreds of years show that for given parameters (those optimized later on)
much of the total mass sinks below the euphotic zone when using 66 levels.
Overall mass conservation holds, though, as is easily verified numerically. This
effect is much less pronounced for 32 levels. In other words, the trajectories of
the respective models tend to diverge after some time. For that reason alone,
different optimal parameters can be expected.
Further reducing the depth extent, e.g. to 24 levels leads to considerably dif-
ferent optimal parameters (biologies), albeit with a comparable misfit. Such a
model was considered as unable to represent the original one.

6 Sensitivity of Parameters w.r.t. Data Error

In this section we solve our optimization problem for the years 1991-1995 with
an additional spin-up year 1990, i.e. we start the model at 1.1.1990 but no
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xi li ui minxi maxxi si x̄i x∗i
F 0.0000 0.0000 69.4820 71.9196 0.3305 70.6951 69.9368
β 0.3000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000

µm 0.2000 1.4600 1.1555 1.2056 0.0069 1.1798 1.1831
α 0.0010 0.2530 0.1028 0.1211 0.0014 0.1070 0.1068

Φzm 0.0000 0.6300 0.0471 0.0519 0.0006 0.0502 0.0498
κ 0.0100 0.7300 0.0730 0.0730 0.0000 0.0730 0.0730
ε 0.0250 4.0000 4.0000 4.0000 0.0000 4.0000 4.0000
g 0.0400 4.0000 4.0000 4.0000 0.0000 4.0000 4.0000

Φpm 0.0000 0.6300 0.0028 0.0037 0.0001 0.0034 0.0034
Φ∗z 0.0100 1.0000 0.0310 0.0456 0.0020 0.0360 0.0373
γm 0.0100 0.1500 0.0100 0.1017 0.0122 0.0391 0.0447
kN 0.1000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000
ws 2.0000 128.0000 128.0000 128.0000 0.0000 128.0000 128.0000

Table 4: The x∗
i are the optimal parameters of section 6. x̄i , si , minx and maxx

are the results of the uncertainty analysis of section 6.1.

observations for this first year enter the cost function. Using a single spin-up
year for upper-ocean one-dimensional ecosystem models is common practice,
and we will return to this in section 7.

Out of 320 random starts we get 180 minima with identical misfit (up to
six significant digits) and a set of optimal parameters with less than 1% spread.
The mean of these optimal parameters is denoted as x∗ in table 4, where also
the misfit F is given. It is also the lowest F found.

This, of course, is no proof that the global minimum is found, as discussed
in section 3.1. The fact that the local optimization method is so heavily at-
tracted by one (and so far the best) local minimum together with the overall
goodnaturedness of the problem as witnessed in section 4 convinces us that it is
unlikely to find a better one (with this method) and to tentatively accept this
one as global.

6.1 Uncertainty of parameters due to observational error

To assess the uncertainty (or variance) of the optimal parameters w.r.t. obser-
vational error we use the direct way of repeatedly adding noise to the data and
optimizing again for the parameters. In this way no theoretical work is needed
and quick results are available when we start the optimization from x∗. This
is justified by tests using the restart method as before with 30 i.i.d. starting
points. Furthermore, any error distribution can be assessed this way, although
we confine ourselves to normal error with standard deviations σ as in section 3.

2560 such optimizations result in mean x̄i, empirical standard deviation si,
and spread [min xi, max xi] as given in table 5. A histogram of the parameters
showing variance is seen in figure 2. It shows a roughly bell shaped distribution
for these parameters.

6.2 Results

At this point, we note the following two results:
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Figure 2: Histogram of 2560 parameter optimizations for normal noise added to
data, section 6.1. Parameter bounds as in table 4.

• Using the random restart method with an SQP solver and AD-provided
exact gradients, we find an unique optimal parameter set when initial
values, data and boundary conditions (forcing) are held fixed.

• Based on Gaussian noise added to the data,with everything else held fixed,
for the given bounds we get narrow estimates for 9 of the 12 parameters.
Six parameters are at the upper bounds, for the assimilation efficiency
β = 1 this also implies that the terms (1 − β) turn out to be irrelevant
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in the reaction equations. For the parameters Φpm,Φ
∗
z, γm we find stan-

dard deviations of 3%, 6%, 30% of their respective mean value. Such we
believe that only limited uncertainty in the optimal parameters is due to
observational error, provided the given σ are somewhat realistic.

7 Sensitivities w.r.t. initial Values

7.1 Simultaneous Optimization of Parameters and initial
Values using a spinup year

As mentioned in section 6, so far the optimizations were done using a single
spin-up year. The underlying assumption is that at times much longer than the
internal time scales of the ecological processes resolved by the model (of the
order of days, as evident from the range of parameter values in Table 4), initial
values are largely irrelevant and the trajectories are forced in the ’right direc-
tion’ by the model parameters and the boundary conditions (i.e. the forcing).
We understand this assumption to mean that at least for all globally optimal
parameter sets xopt (we haven’t established uniqueness) the trajectories (and
therefore the misfits) are independent of the initial values. To check this, we
optimize the parameters and the initial values together with bounds as in sec-
tion 7.2. Our best result out of 40 starts is seen in table 5 as x̂∗i with the misfit

F̂ = 67.78. Therefore x∗, which gives F = 69.94, cannot be the globally optimal
set with the claimed property. It also cannot be the set x̂∗i which gives a misfit
of F = 136.27 when using the original initial values. If there is such a global
optimizer, we have not found it.

7.2 Simultaneous Optimization of Parameters and initial
Values without using a spinup year

With the assumed loss of information about the inititial conditions during the
spin-up year being much in doubt, we turn to the simultaneous optimization
of parameters and initial values without using a spinup year, i.e. we start the
optimization for 1991-1995 at 1.1.91. This does not necessarily mean a lifting
of restrictions, since we do not know what kind of mapping the spin-up year
represents with regard to the state variables. However, it turns out that still
lower values of the cost function F can be reached that way.

The bounds lji , u
j
i (with j = n, p, z, d for the four state variables N,P,Z,D,

and i = 1, . . . , 32) on the initial values are based on the initial values vji used in
the previous sections and shown in figure 1. For the lower bound we take

lji = max{0,min{0.1vji , v
j
i − 2sj}}

and for the upper bound

uji = max{2vji , v
j
i + 2sj},

with values sj = 0.1, 0.01, 0.01, and0.02 mmol N m−3 for j = 1, 2, 3, 4, roughly
corresponding to the weights σj given in section 3.

We use 120 random starts for the optimization. The distribution of the
minima obtained is displayed in figure 3.
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Figure 3: Histogram of cost function values obtained for simultaneous optimization
of parameters and initial values (section 7.2). Left a zoom.

We get 16 identical (w.r.t. parameters) results x∗∗ with F = 66.30. The
initial values also show little variance for these 16 hits, see figure 4. Again we
tentatively accept this as an unique optimum (albeit only w.r.t. the parameters)
within the given bounds.

We see in table 5 that seven parameters lie outside the spread found in the
sensitivity test. This is especially prominent for the parameters Φzm,Φ

p
m,Φ

∗
z and

ws. To put it differently, for these parameters the optimal values are not found
without optimizing for the initial values, too.

xi min xi max xi x∗i x̂∗i x∗∗i x∗∗∗i
F 69.4820 71.9196 69.9368 67.7760 66.3039 65.8409
β 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

µm 1.1555 1.2056 1.1831 1.3742 1.2530 1.3109
α 0.1028 0.1211 0.1068 0.0765 0.1298 0.1312

Φzm 0.0471 0.0519 0.0498 0.0301 0.0166 0.0175
κ 0.0730 0.0730 0.0730 0.0399 0.0730 0.0730
ε 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000
g 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000

Φpm 0.0028 0.0037 0.0034 0.0053 0.0015 0.0017
Φ∗z 0.0310 0.0456 0.0373 0.1543 0.2225 0.2142
γm 0.0100 0.1017 0.0447 0.1500 0.1500 0.1500
kN 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ws 128.0000 128.0000 128.0000 9.2566 9.5248 9.0023

Table 5: min xi, max xi and x∗
i as in table 4. x̂∗

i is the result of section 7.1. x∗∗
i

and x∗∗∗
i are the results of section 7.2 and section 7.2.1, respectively.
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Figure 4: Optimized initial values of section 7.2 and upper bound used. Blurred
lines are the only visible differences in 16 hits.

7.2.1 Broader Bounds

Now we broaden the lower bounds on the initial values substantially to lji = 0,
for j = n, p, z, d and the upper bounds to

uni = max{2, 3vni }, u
p
i = 2, uzi = 1, udi = 1

and do 200 random starts.
Here we are interested in the best misfit and do not claim to be able to

identify the initial state with any precision. We see no conceptual difference
between a (possible) particularly bad fit in the (unknown) initial values and one
at any other (temporal) point. Given the magnitude of the misfits obtained so
far, we feel justified to allow for relatively large bounds.

For the broader bounds, we get only one distinct optimizer x∗∗∗ with a misfit
of F = 65.84, see table 5, but a cluster of minima nearby as seen in figure 6. The
representation of the solution space by the local optimization method indicates
that a substantially higher number of optimizations would be needed to build
trust in a minimum based on multiple identical hits. We conjecture, that since
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x∗∗∗ (and its most direct neighbors in terms of misfit F ) differ only marginally
from x∗∗, that we are very near the optimizer within the bounds prescribed on
the parameters xi.

The optimized initial values are well within their prescribed bounds as de-
picted in figure 5.
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Figure 5: Optimized initial values, model of section 7.2.1.

For this final result of our optimization efforts in terms of misfit, see figures
7, 8. The trajectories of the model’s state variables compared with those of the
original optimization of section 6 are depicted in figures 9, 10, 11, 12.

7.2.2 Dependency on Error in initial Values

Here we step back to the problem in section 6 to assess how much uncertainty
in initial values may affect optimal parameters. This is interesting in the case
that some initial values are insisted upon, e.g. when using observations. To
investigate this further, we add Gaussian noise to the ’original’ initial values
of figure 1, i.e. we treat these values as measurements subject to error and
optimize only for the parameters. We use 640 initial distributions and start the
optimization from the ’optimal’ parameters x∗ of section 6.

For the assumed standard deviations of the error in the initial conditions,
we find for parameter γm a standard deviation of 10% of the mean and less
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Figure 6: Histogram of optimization of parameters and initial values in section
7.2.1.

than 0.5% for the others, see xσ, sσ together with x∗ in table 6. Only when we
allow a normal distribution with the σn,p,z,d multiplied by five, we get for γm a
standard deviation of 50% of the mean and less than 3% for the others.

We conclude, that for initial values known up to measurement error, this
error adds only little uncertainty to optimized parameters.

Often, measurements will be available for N only, whereas P, Z, D have to
be estimated. To assess the respective contributions of the state variables we
do two tests with the results seen in table 6:

• First we add Gaussian noise with σn,p,z,d multiplied by 20 to get mean
x20σi and standard deviation s20σi .

• Secondly we repeat this test with the original σn and only σp,z,d multiplied
by 20 to get xNi , s

N
i .

The results of both tests are also displayed in table 6.
As a second test we optimize (using the spinup) firstly for the parameters and the
initial N-profile and secondly for the parameters and the initial P,Z,D-profiles
simultaneously, in each case holding the other profiles fixed at the ’original’ val-
ues of figure 1. Again the bounds were as in section 7.2. In the first case
we get 4 identical results (in F with F = 67.94) after 80 starts. For the
parameters µm, α, φ

z
m, κ, φ

p
m, φ

∗
z, ws the relative errors (i.e. |x̂∗i − xi|/x̂∗i ) are

1.6, 3.8, 6.4, 12.2, 6.7, 7.0 and 16% respectively.
In the second case no definite result is obtained. The optimizing algorithm does
only find a minimum x at F = 69.78 if started at x∗ and the original initial
values. Hundreds of random starts yield only suboptimal results. For this op-
timum we get relative errors |x∗i − xi|/x∗i of 0.4, 1.7, 0.6, 3.8, 6.7 and 17.4% for
the parameters µm, α, φ

z
m, φ

p
m, φ

∗
z, ws.

We see that although much of the variance in the optimized parameters can
be attributed to the uncertainty in the initial N -profile, P,Z and D can not
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be chosen completely arbitrary. To achieve variances on the same order as in
section 6.1 all profiles will have to be determined with some accuracy.

xi x∗i xσi sσi xNi sNi x20σi s20σi

F 69.9368 69.9495 0.0373 70.1853 0.0651 70.7074 0.8207
β 1.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000

µm 1.1831 1.1825 0.0040 1.1614 0.0107 1.1034 0.0987
α 0.1068 0.1071 0.0004 0.1149 0.0050 0.1216 0.0117

Φzm 0.0498 0.0498 0.0001 0.0495 0.0004 0.0469 0.0034
κ 0.0730 0.0730 0.0000 0.0730 0.0000 0.0730 0.0000
ε 4.0000 4.0000 0.0000 4.0000 0.0000 4.0000 0.0000
g 4.0000 4.0000 0.0000 4.0000 0.0000 4.0000 0.0000

Φpm 0.0034 0.0034 0.0000 0.0032 0.0001 0.0025 0.0011
Φ∗z 0.0373 0.0370 0.0001 0.0349 0.0007 0.0421 0.0081
γm 0.0447 0.0419 0.0042 0.0107 0.0023 0.0281 0.0347
kN 1.0000 1.0000 0.0000 1.0000 0.0000 0.9439 0.0984
ws 128.0000 128.0000 0.0000 128.0000 0.0000 127.3863 5.5200

Table 6: Results of section 7.2.2.

8 Conclusions

We summarize our results as follows.

• Based on our experience, the random start method using a SQP local
solver with AD generated derivatives gives reliable and quick results for
parameter optimization problems encountered here. This is true even
for relatively high number of free parameters as when initial values are
optimized, too. The performance though, depends on the parameter space.

• With fixed initial values, only little variance in the optimal parameters
due to observational uncertainty is found with the notable exception of
γm.

• Small disturbances as normal error in the initial values will also have only
small influence on the optimal parameters, again with the exception of the
detritus remineralization rate γm.

• Using optimized initial values and parameters gives results that lie way
outside the uncertainty inflicted by measurement error alone. When there
is no cogent reason to use particular initial values, e.g. observations, to
get the best fit and the matching parameters, simultaneous optimization
for initial values and parameters is required.

• The use of a spin-up without optimization of the initial conditions does
not change the situation. It still gives suboptimal results.
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Figure 7: Fit to data in depth 0-5 meters for optimized model of section 7.2.1
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