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THE COOLEST PATH PROBLEM

MARTIN FRANK, ARMIN FUGENSCHUH, MICHAEL HERTY, AND LARS SCHEWE

ABSTRACT. We introduce the coolest path problem, which is a mixture of two
well-known problems from distinct mathematical fields. One of them is the
shortest path problem from combinatorial optimization. The other is the heat
conduction problem from the field of partial differential equations. Together,
they make up a control problem, where some geometrical object traverses a
digraph in an optimal way, with constraints on intermediate or the final state.
We discuss some properties of the problem and present numerical solution
techniques. We demonstrate that the problem can be formulated as a linear
mixed-integer program. Numerical solutions can thus be achieved within one
hour for instances with up to 70 nodes in the graph.

Continuous and discrete optimization are at present two distinct areas of math-
ematics. From time to time, discrete optimizers stumble over a problem which has
some intrinsic nonlinear continuous structure, sometimes modeled using partial dif-
ferential equations. Then they most likely would try to get rid of these continuous
parts, such that a pure combinatorial problem remains. Similarly, if a person with
a background in continuous optimization gets involved with a problem that involves
discrete decisions, he or she would most likely try to relax the discontinuities to
some continuous constraints, in order to apply some well-understood methods of
the field. For both of them it is true that if one only owns a hammer then every
problem must be a nail. However it is also true that if one always stays within its
own cosy corner of the world, nothing new can emerge from that.

Our research is motivated by the fact that both worlds can inspire the respective
other by sharing ideas and methods. So to start the discussion at some point we
combine two problems into a new one that was not studied before (to the best of our
knowledge). From the discrete world we consider the shortest path problem on a
directed graph. The contribution from the continuous world is the heat conduction
problem. Both problems are combined into a new optimization problem, which we
suggest to coin the coolest path problem.

1. THE COOLEST PATH PROBLEM

We consider the following problem. Given is a directed graph D = (V, A) with
vertex set V and arc set A, and two distinct nodes v,w € V. An v-w-path P
in D of length n is defined as a sequence of vertices and arcs of the form P =
(vo, a1, v1,a2,V2, ..., Vn_1,An, Vpn), Where vg = v, v, = w,a; = (v;—1,v;), and the
arcs in P are pairwise different. Imagine that a geometric object Q C R? traverses
the network from v to w. The initial temperature of the object is given by ug : 2 —
R, . Associated with each arc a € A is a temperature T,(x) € Ry for z € 992. On
each arc a the boundary of the object 02 is exposed to the prevalent temperature
T, (z) for x € OQ for a certain, arc-dependent time, so that the object is heated
up or cooled down. At the end, at vertex w, the temperature distribution within
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the object is given by the path-dependent function up : 2 — R;. The coolest path
problem (CPP, for short) asks for an v-w-path P such that the average temperature
Up = #(Q) fﬂ up dV of the object at w is minimal. The coolest path problem
thus combines the combinatorial problem of finding a shortest v-w-path, where
“shortest” refers to the amount of absorbed heat on the path, which is modelled
by the heat equation.

As a real-world application of this problem one might think of a production line
where some product (the object) has to pass certain manufacturing steps. These
steps impose some heating or cooling to the material. After the end of one step
there is a number of other succeeding steps that have to be carried out afterwards,
until the product reaches the output. At the end, the product should be as cool as
possible.

Besides this basic version of the problem, there are natural variations and ex-
tensions which we also consider in the sequel.

(1) Other objective functions. For example, one can take the temperature
up(x) at a certain point = € Q or the maximum temperature max{up(x) :
x € Q} as objective functions.

(2) Temperature gradients. The goal here is to find a path P such that the
norm of gradient ||grad(w)(-)|| is minimal, either at a given point z, at the
maximum within 2, or in the average.

(3) Restrictions along the path. The above objective functions, together with
a lower or upper bound can be taken as constraints. In this case we have to
deal with a feasibility problem (i.e., finding a path with the given property),
or together with any other of the objective functions from above, as an
optimization problem with further constraints on the path.

(4) Control problems. The goal is to achieve a final state, such as a desired
heat distribution at vertex w, and finding a path such that the actual heat
distribution is closest possible to the prescribed one.

Another interesting variant is the coolest Hamiltonian cycle (CHC, for short)
in a digraph. In the classical Hamiltonian cycle (HC) problem one is interested
in a tour (or cycle) through all nodes that starts and end at the same node, and
enters and leaves every node exactly ones. We remark that HC is N P-complete,
see the monograph by Garey and Johnson [7]. In the “cool” version, one wants to
end up with the coolest possible object (with respect to some objective functional).
The CHC can also be combined with all variations from the above list. We will
demonstrate that our methods are also able to solve CHC as a by-product.

The combination of shortest path with heat conduction gives rise to the question
whether some of the combinatorial shortest path algorithms can be modified to
solve this new problem. We will demonstrate in the sequel that this is only possible
in a very special case. In the general case we are in the same situation as with
the general shortest path problem with negative arc weights and negative cycles.
Thus we cannot give a simple combinatorial algorithm for its solution. Instead we
will formulate the problem as a mixed-integer linear program, which can be solved
numerically within the general linear programming (simplex) based branch-and-cut
framework (see Schrijver [14] or Nemhauser and Wolsey [11] for an introduction).

To formally state the coolest path (or coolest cycle) problem we introduce some
more notations. Denote by F' one of the objective functionals from above. Select
two distinct nodes v,w € V. Let P, ,, be the set of all paths from v to w in D. The
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time for traversing arc a € P is denoted by 7,. If we assume that the object 2 starts
at time ¢ := 0 then the end time is t* := ), 7,. Function u(z,t) describes the
heat distribution in the object at location z and time ¢, depending on path P. To
be more precise, t — u(x,t) depends only on those arcs that were traversed before
time ¢, for all x € Q and ¢ € [0,t*]. Note that each point in time ¢ € [0,¢*] can be
mapped onto an arc a(t) € P which the object traverses at time ¢.

Using this notation the problem can be formally stated as follows:

(1) WA F(u(z,t))
2
(2) such that %(m,t) =k- %(m,t), Ve QVtel0,t7],
(3) aﬁnu(ac, t) = h- Ty (x) —u(z,t)), VredQ,Vtel,t],
(4) u(z,0) = uo(x), Ve

2. MATHEMATICAL BACKGROUND

Before actually solving the problem at hand we start with a survey of the shortest
path problem and the heat equation. From this study we can also show in which
directions our methods can be extended.

2.1. Shortest Paths in Graphs. One major ingredient is the classical shortest
path problem on (directed or undirected) graphs (SPP, for short). An instance of
the SPP is defined by a directed weighted graph D = (V, A, ¢), where ¢ : A — R
are arc weights, and two distinct nodes v,w € V. The cost (or length) of an v-w-
path P is hereby defined as the sum of weights of its arcs, i.e., ¢(P) := Y, p Ca-
The problem asks for an v-w-path P of minimal length. In this spirit the coolest
path problem can be seen as a combination of a pure combinatorial problem with
an objective function that takes the amount of absorbed heat along the path into
account.

The mathematical study of the combinatorial shortest path problem in graphs
can be dated back to the 1950s (see Schrijver [15]). There exists several algorithms
for its solution.

The key observation that leads to efficient, i.e., polynomial time algorithms,
is the property that all subpaths of a shortest path are as well shortest paths.
However, this property holds if and only if the graph does not contain a negative
cycle. In this case we can use an algorithm due to Moore [10], Bellman [2], and
Ford [6], which has a running time proportional to the number of vertices cubed.
In the special case that all edge weights are non-negative one can use Dijkstra’s
algorithm [4] which has only a quadratic running time.

In the general shortest path case negative weights (and negative circles) are
allowed. There is no efficient combinatorial algorithm known in that case, and it is
most likely that no such algorithm exists (unless P = NP). A special case of the
shortest path with negative cycles is the longest path problem, which asks for the
longest possible path (also called critical path) between two distinct nodes. More
general than this, one can consider the path problem with given length, where a
path is sought which connects the two nodes with a path of a prescribed length (or
to decide that no such path exists). This problem is also N P-hard. Later on, this
problem will occur as a subproblem in one of our solution methods for the CPP.
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The solution of the corresponding linear program from above is still integral, but
most likely cycles (with negative sum of its arcs) will occur. In order to obtain cycle-
free solutions, one can use the following model. Let a weighted digraph D = (V, A, ¢)
with arbitrary arc weights ¢, € R for all a € A be given. Select two distinct nodes
v,w € V. We define a set A* := A x {1,...,|A|} and introduce binary variables
zijp € {0,1} for all (i,7,p) € A*. If z;;,, = 1 then arc (4, ) is selected as the
p-th arc in the v-w-path. Every arc of A can in principle occur in this v-w-path.
Hence the number of elements in A, i.e., |A], is an upper bound on the number
of arcs in the path. Moreover we introduce binary variables y, € {0,1} for all
p € {1,...,|A|}, where y, = 1 indicates that the path consists of exactly (JA| — p)
arcs.

Using these definitions the shortest path problem with arbitrary arc weights can
be formulated as follows:

(5)111111 Z Cij . Zi,j,p;

(i,5,p)EA*
(6) s.t. Z Ziw,|Al = 1,
i:(t,w)EA
(7) > zujp=up YpE{l... |A]},
ji(v,j)EA
(8) Z yp =1,
ped{l,..., |A|}
(9) Z Zi,5,p S 1; V(l,j) € Aa
pe{l,..., |A|}
(10) Z Z’L,k,pfl = Z Zky]]Pv Vk € V\{’U, w}avp € {25 AR |A|}7
i:(i,k)EA ji(k,j)EA
(11) yp €{0,1}, 25, € {0,1}, V(i,j) € A Vpe{l,...,|Al}.

Constraint (6) forces the last arc of the path to end at node w. By constraints (6)
the last arc of the path, which is the p-th arc within the path, connects node w.
Exactly one arc is the first arc, which is modeled by (7) and (8). Constraints (9)
ensure that every arc occurs at most once in the v-w-path. The connectivity of the
paths is due to the flow conservation constraints (10).

We note, that it is possible to formulate this problem only using a set of variables
that indicates whether an arc is in the path or not. In that case we can ensure the
condition that no cycle occurs by adding suitable cut constratints to the model.
This polyhedron has also recently been studied by Stephan [17]. However, for our
later models we will need an explicit encoding of the order of the arcs in the path
to help us compute the temperature distribution.

As a possible solution technique one can apply branch-and-bound or branch-and-
cut, which re-introduces the integrality after its relaxation. This technique will be
briefly described in the subsequent section.

This model can be replaced with a much simpler one if no negative cycles occur.
We introduce variables

(12) zij €{0,1}, V(i,5) € A.
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Then the shortest path problem can be formulated as the following integer program:

(13) min Z Cij * Zij,
(4,5)€EA

(14) such that Z Zyj =1,
ji(v,j)EA

(15) Y ziw=1,
i:(t,w)EA

(16) Z Zik = Z Zkj, VkeV\{v,w},

i:(i,k)EA ji(k,j)€A

where ¢; ; are some arc weight coefficients. Constraints (14) and (15) ensure that
the path starts in v and ends in w, respectively. Constraints (16) ensure that the
path is leaving a node as many times as it was entered. These constraints are also
called flow conservation constraints. The objective function (13) guarantees that
the path is of minimum cost. Since there are by definition no cycles with negative
costs in the digraph the objective ensures that the optimal path is simple, i.e., it
has no node repetitions.

Despite being an integer program the above formulation of the shortest path
problem can be solved by relaxing the integrality constraints (12) to its continuous
counterpart

(17) Zi,j € [0, 1], V(’L,]) € A.

Since the constraint system (14), (15), and (16) is total unimodular, i.e., for every
square submatrix of the constraint system its determinant is in {—1,0, 1}, and the
right-hand side is integral (if all variable terms are on the left-hand side, only 0 or 1
remains as constants on the right-hand side), all feasible solutions are automatically
integral [11]. Hence the shortest path problem with non-negative weights can be
solved by linear programming. From a computational point of view it is of course
preferred to use one of the above mentioned special purpose algorithms (Dijkstra or
Moore-Bellman-Ford) to solve the shortest path problem, instead of using a general
purpose linear program solver.

2.2. Solving Mixed-Integer Programs. The usual way one follows when solving
general integer programs

(18) min{c’x : Az < b,z € {0,1}"}

(where ¢ € Q", A € Q"*™,m,n € N) is to relax the integrality constraints on the
variables, and thus to replace it by their continuous counterparts, z € [0,1]". In
this way one obtains a linear program, which can be efficiently solved with Dantzig’s
simplex algorithm [3] or with Karmarkar’s interior point method [8]. In either case
one obtains a solution vector z*, and ¢’ z* is a lower bound on the objective function
value of the integer program. Now one of the following two cases will occur. Either
the solution vector z* is already integral, i.e., 27 ; € {0,1}. In this case the solution
is global optimal. Otherwise z} is not integral for some index ¢. Then there are
basically two methods to successively re-introduce the integrality constraints.

One can show that there always exists a linear inequality that separates * from
the convex hull of all feasible solutions of (18). If one can find such an inequality
(which in general is difficult both theoretically and in practice), then it is added to
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the LP relaxation. Such an inequality is also called cutting plane, since it cuts off
a* from the set of feasible (integral) solutions. In this way we obtain a stronger
LP relaxation which is again solved with a linear program solver. This procedure
is carried out until no further cutting plane is found (or some other termination
criterion is reached).

The other method is to select a fractional variable, say =} ¢ {0,1}. Then
the entire problem is split into two sub-problems. In one sub-problem we enforce
xz; := 0, and x; := 1 in the other. So we now have two linear problems, which
are solved separately. From there on, the procedure is iterated, which is called
branch-and-bound algorithm.

If in addition cutting planes are used within branch-and-bound, then the whole
procedure is called branch-and-cut algorithm. This approach is today the most
successful way to numerically solve a general linear mixed-integer programming
problem. Several computer codes are implementing this framework, such as the
commercial XPress from Dash or CPlex from ILOG, or the academic codes SCIP
from ZIB [1] or BCP from COIN-OR [9].

2.3. Heat conduction. The heat equation models heat conduction in a solid or a
fluid at rest. It describes one of the three modes of energy transport. The other two
are convection and radiation. The heat equation is based on Fourier’s law which
states that the heat flux is antiproportional to the temperature gradient. This leads
to a so-called diffusion process, which is modeled by the partial differential equation
for the unknown temperature u:

(19) 2u(ﬁ, x) = kAu(t, ).

ot
The time evolution of the temperature is governed by the second-order space deriva-
tive of the temperature. The heat equation is the classic example of a parabolic par-
tial differential equation. To obtain a well-posed problem, i.e., a uniquely solvable
problem whose solution depends continuously on the data, one has to supplement
the heat equation with an initial condition

u(0,2) = up(x)

and boundary conditions. The heat exchange of a body with an external reservoir
can be modeled by the Robin type boundary conditions

%u(t,x) = h(up(t,z) — u(t, z)),

which state that the normal derivative of the temperature at the boundary is pro-
portional to the difference in temperatures. Altogether, this problem admits a
unique solution, which, given appropriate boundary conditions, after an infinitesi-
mally small time is arbitrarily smooth, i.e., infinitely differentiable in space.

The theory of the heat equation is very well-developed, and its properties are
well-known, see Evans [5], for instance. Thus it often serves as a test case for
both new theoretical or computational methods, and it will be our first model to
investigate the interplay between discrete decisions and continuous processes.

There are several properties of the heat equation (and of partial differential
equations in general) that might be of use when designing algorithms as in Section
3.2. For simplicity we assume Q := [0, 1], and thus 9Q = {0, 1}.
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2.3.1. Mazimum principle. Let u be a solution to Zu(t,z) = kaa—:zu(t, x) for (t,x) €
]0,1[x]0,1[ and let w be continuous on the closure of this set. Then w attains its
maximum and its minimum on the parabolic boundary ¥, = {(t,z) : t =0 or 2 =0, 1}.
This corresponds to the well-known fact that the maximal temperature cannot be
greater than the maximal initial or boundary temperature.

2.3.2. L'-estimate. If we integrate the heat equation over space and time and use
integration by parts, we get

/0 u(l,z)dx = /0 w(0, z)dx + 2hup — h/o (u(t,0) +u(t,1))dt

Since the temperature is positive, we obtain an estimate for the average temperature

1 1
/ u(l,x)dr < / (0, 2)dx + 2hup,
0 0

which says that the average temperature increases at most by 2huy,.

2.4. Evolution Equations and Semigroup Theory. There exist a variety of
approaches to treat the heat equation (19). While there are other well-established
methods and approaches, in the following we focus on semigroup theory. We only
present basic ideas of the semigroup theory and refer the reader to [5, 12, 13| for
more details.

We think of equation (19) as an initial-value problem for an ordinary differential
equation in a suitable Banach space. Let
(20) %u = Au, u(0) = uo,
where X = L?([0,1]") and let the operator A be a mapping A : D(A) = {u €
H2([0,1]")} — X by A = —kA,. For fixed time ¢ the value of the solution u(t) is
viewed as element in D(A). Intuitively, one expects the solution to (20) to be

u(t) = exp(At)ug.

Semigroup theory now gives a meaning to exp(At) when A is an operator. The
properties of the exponential exp(At) motivate the following definition of a semi-
group [13, Chapter 11]:

Definition. Let X be a Banach space. A family {T(¢)} of bounded linear operators
in X is called a strongly continuous semigroup, if T(t+s) = T(t)T(s) and T'(0) = Id
and if for every x, t — T'(t) x € X is continuous.

The relation between the semigroup 7'(¢) and the exponential exp(At) for some
operator A can be stated as follows. We expect that a strongly continuous semi-
group generalizing the exponential fulfills % exp(At) = exp(At)A. Also, we ask
if any semigroup can be given as exp(At) for some operator A. In fact, for every
strongly continuous semigroup {7'(¢)} of bounded linear operators we can define
the infinitesimal generator of the semigroup by
T(h)(z) = T(0)x
h—0+ h

and the domain of A where the above limit exists is dense in X. Furthermore, it
holds [13, Lemma 11.11]
d

(21) ET(t)x =T(t)Az Yoz € D(A).
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Hence, whenever we have a semigroup {7'(¢)} it behaves in the previous sense like
exp(At) for A being the infinitesimal generator.

Using property (21) one proves that if T'(¢) is a semigroup with generator A,
then the initial-value problem (20) has a classical solution v € C*([0,T]; X) N
C(]0,T); D(A)) for any ug € D(A) which is given by u(t) = T'(¢)uo.

Finally, we need to discuss the following question: Given the partial differential
equation (20), under which conditions is the operator A an infinitesimal generator
of a semigroup? The answer is given by the Hille-Yosida theorem [13, Theorem
11.17]:

Theorem. Let A be an operator in the Banach space X. Then A is the infinitesimal
generator of a strongly continuous semigroup T(t) satisfying ||T(¢)||x < M exp(wt)
if and only if D(A) is dense in X, A is a closed operator and every A > w is in the
resolvent set of A and ||(A— A)™"|| < M(A —w)™™ for every n.

If the previous conditions are satisfied, one typically denotes the semigroup 7'(¢)
with generator A as exp(At). It can be proven that (20) satisfies the assumptions of
the Hille-Yosida theorem and hence the initial-value problem for the heat equation
is a well-posed problem with solution u(t) = exp(At)ug, where exp(At) is a strongly
continuous semigroup (in fact, it is an analytic semigroup).

3. SOLVING THE COOLEST PATH PROBLEM

To solve the CPP we will transform it into a mixed-integer programming prob-
lem. We will discretize the heat equation and starting from this discretization we
will derive two mixed-integer programming models based on the shortest path mod-
els described above. Of these models the second one will be clearly preferably to
the first one which can also be seen in the computational results.

3.1. Semi-discretization. As for the theory the numerics for the heat equation is
well-known and simple schemes can be found in standard textbooks, e.g. [18]. Here,
we apply a second-order finite difference approximation to discretize the Laplace
operator and solve the resulting semi-discretize ordinary differential equation exact.
Since we are only interested in the interplay of the discrete and the continuous
dynamics, we do not investigate other numerical discretizations.

In order to make the coolest path problem solvable numerically, we use a semi-
discretization in space using finite differences and solve exactly in time. To that
end, we consider an equidistant grid x; = i - Ax with a gridsize Az = % for
i€ N:={0,...,n}. The function u,;(t) approximates u(t, x;). This can be written
as a system of ordinary differential equations (ODESs) in the form

d
(22) %u(t) = Au(t) + b(t),
where
—1—-hAz 1 Up
) 1 -2 1 h 0
1 -2 1 0
1 —-1-hAz Up

Note that any semi-discretization of the heat equation can be written in the form
(22). Furthermore, this formula is written in semi-group notation. In fact, the
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discretization is only needed for the explicit computations, whereas the following
algorithm can be formulated for semi-groups. If u, does not depend on time, the
solution to the ODE system is

u(t) = exp(At)ug + (exp(At) — I) A™'b.

The solution at time ¢ = 1 and thus the new temperature in the final node of the
arc can be written as

u = Ry 4 S,
where R = exp(A) and S = (R —I1)A~%

3.2. Modifying Combinatorial Shortest Path Algorithms. To solve the coolest
path problem we will try to transform it into a variant of the shortest path prob-
lem. We will propose two such variants later on. First, however, we will describe a
case where we can give a particularly simple algorithm for a PDE-constrained path
problem.

Proposition. Assume the objective function F is a monotone functional and we are
given initial values ls = uo(z). Then an optimal assignment of values | : V — R%
is given by:

(23) 1= {Rlv + Sb, where v = argmin{ F(Rl, + Sb) : (v,w) € A}, w # s,

uo(z), w=s.

We can now use a variant of Dijkstra’s shortest path algorithm to solve the
coolest path problem. To this end, each node ¢ € V\{v} is labeled by a function
li(x) := +oo for all z € Q, and node v is labeled by the initial temperature [, (z) :=
ug(x). Then the update formula for the re-labeling in each step of the algorithm
has to be modified to
(24)

J =

[ Rl; + Sb  F(RIl; + Sb) < F(l;)
l; otherwise.

3.3. Shortest Path Based Mixed-Integer Model. We will now direct our at-
tention to the general coolest path problem. In this case we will need more general
techniques. As a first approach we will try to adapt the integer programming model
for the shortest path problem without negative cycles to our problem.

We introduce continuous non-negative variables for the space-discrete tempera-
ture distribution

(25) ur € Ry, VieV,VkeN.

Then we include the following constraint family, which originates from the semi-
discretization of the heat equation:

(26) |Uj,k - (R’(M - Sb”)k| S Mi,j,k . (1 - Zij)7 V(Z,]) S A,Vk S N.

Here M, ;1 is a large constant with M; j i > |ujx — (Ru; — Sbyj)i| for all possible
temperature distributions for u; and u;. For example, one might set M; ;. =
2 -max{T,(z):x € Q,a € A}
As objective function we select the minimization of the average end temperature:
1
(27) min Z Uy -

nJrlkeN




10 MARTIN FRANK, ARMIN FUGENSCHUH, MICHAEL HERTY, AND LARS SCHEWE

Summing up, our first coolest path model is to minimize (27) subject to the
constraints (14), (15), (16), and (26), the integrality constraints (12), and the non-
negativity constraints (25).

The weak point of this model is the coupling of the heat distribution and the
shortest path equations via the infamous big-M-constraints (26). Such constraints
are known to lead to weak LP relaxations and other numerical difficulties. Due
to the weak LP relaxation one has to examine many nodes in the branching tree,
which leads to an almost full enumeration of all v-w-paths. Thus, the approach
becomes computationally infeasible for more than, say, 10 nodes.

The second — vastly superior — approach is to model the coolest path problem
as a general shortest path problem in a graph with negative cycles. We can derive
such a formulation directly from the semi-discretization.

For a given time t* and all arcs on the path so far, the temperature distribution
at time t* can be explicitly computed as us = R ug + Y o<tcts Rt*’tSba(t), where
a(t) is the arc chosen at time ¢. Thus, we need to take into account not only if an
arc was used in a path, but also at which point in time it was used. For a linear
objective functional F' we obtain, using our introductory remark, the equation

Fluw) = F(R uo) + ) F(R""Sbyy).
0<t<t*

If we select as before the minimization of the average end temperature as the
ultimate goal then the objective function of corresponding MIP-formulation is:

. 1 . 1 ._
(28) min nt 1 Z R' tUOyt + n——|—1 Z Z R tSbaza,ta
t t acA

subject to the constraints (6), (7), (8), (9), and (10).
A slight modification of the latter model allows us to tackle the coolest Hamil-
tonian cycle problem which was alluded to above.

4. COMPUTATIONAL RESULTS

The second mixed-integer programming model can be used to tackle networks
of sizes up to 70 nodes. We will first give some examples which show that we will
not be able to drastically simplify the given model.

4.1. A Small Example Network. The network in Figure 1 serves as an ex-
ample in which the coolest path or the optimal path in some sense is different
from the shortest path. The nodes are numbered from 1 to 5. On each arc, the
external temperature is shown. There are four paths connecting nodes 1 and 5,
namely 1 — 5,1 -3 -5 1 —»2 >3 -5 1— 2 — 4 — 5. Figure
2 shows the temperature distribution in every node for each of the paths. It
is an attempt to show how the different boundary conditions shape the temper-
ature profile. Depending on the objective, we get the following optimal paths:

Shortest path w.r.t. unit weights: 1 -5,

shortest path w.r.t. temperature weights: 1—-3—-5,
lowest maximum temperature at node 5: 1—-3—-25,
highest minimum temperature at node 5: 1—-2—-4-—5,
lowest average temperature at node 5: 1-2—-53-—35,
highest average temperature at node 5: 1 -5,

lowest temperature gradient over the path: 1 —-2—3 — 5 ,and 1 — 3 — 5.
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FicURE 1. Example network.

TABLE 1. Parameters of the random graphs

[V 20 30 40 50 60 70
|[E| 80 200 350 500 900 1200

4.2. Medium Scale Networks. As basis for our computations we only look at
the case that we want to minimize the average temperature at the sink of the
network. To compare the different modelling approaches we used a testbed of
randomly generated graphs. The number of vertices and edges can be found in
Table 1. In all the cases we used 31 discretization points in space and set h := 1072
and k := 10. The temperatures were chosen randomly between 20 and 200. The
starting temperature was set to 110. The naive model cannot solve instances with
20 vertices, because the lower bounds that are produced by the relaxations are
extremely bad. With the second model, we can treat examples of up to 70 vertices
in reasonable time. The combinatorial problems then start to take over. From
Figure 3 one can see that the time needed to solve an instance grows roughly
exponentially with the instance size. However, with growing size of the graph, the
variability between the instances becomes much bigger, which hints at the fact that
the combinatorial problems become more difficult in general.

In Figure 4 we show a detailed comparision of 100 random networks with 50
vertices and 500 edges each. The running times for the instances vary greatly.
After only a modest 98 seconds half the instances have been solved to optimality.
However, it takes 955 seconds until the last instance has been solved.

4.3. A Large Example Network. With the methods presented in this article,
and the use of modern MILP solver codes and recent computer hardware, we are
able to solve instances of the coolest path problem having about 100 nodes. The
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Path1l 5 Path1 3 5
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level 00 M
(a) Path 1 — 5. (b) Path 1 — 3 — 5.

Pathl 2 3 5 Pathl1 2 45

level 00 level 00

(c) Path1 —2— 3 — 5. (d) Path1 —-2—4 —5.

FiGURE 2. Temperature distributions in the nodes of the four
paths of the example network, form the first node (level 0) to the
final node.
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FIGURE 3. Running time for random samples

example shown in Figure 5 needed about four weeks of computation on a 2.4Ghz
AMD Opteron computer with 32GByte RAM. From the 8 available CPU cores
the MILP solver Cplex11l used one (i.e., we only had a single-core license of this
software). To compute the matrix exponential we used the library Expokit (cf.
[16]). The branch-and-bound tree cosists of approximately 2.4 mill. nodes, among
them 14 nodes with feasible solutions. At its peak, there were 828 000 unresolved
nodes in the tree, needing 8.3 GByte storage memory. The overall computation
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FI1GURE 4. Comparison of running times for networks with 50 ver-
tices and 500 edges (time given in seconds)

time was 2.2 mill. seconds (25 days). The solid lines in Figure 5 indicate the
coolest path (with respect to a certain initial temperature of the traversing object).
The path starts in the top-left corner and ends at the vertex in the bottom-right
corner. It consists of 64 arcs. The widths of the arcs in the network are scaled with
respect to their temperature: thin lines are “cool”, thick lines correspond to “hot”
arcs.

Informally speaking, one can see the following overall “behaviour” of an optimal
solution to the coolest path problem: If the initial temperature is low in comparison
with the temperatures of the arcs, then the coolest path usually is short in the sense
that it consists of few arcs. Vice versa, if the initial temperature of the object is
relatively high, then each arc is cooling it down. Hence the coolest path will then
consist of many arcs. For initial temperature that are in the same range as the
temperatures within the network the path will be of “average length” (as shown in
our example in Figure 5). Moreover one can observe that the coolest path might
well include some “hot” arcs, as long they are at the beginning of the path, so that
the increase in the object’s temperature can still be compensated towards the end.
Finally, we observed that the solution times of the numerical MILP solver CPlex
are higher the longer the coolest path is.

In Figure 6 we show the relative gap between the current best primal solution
and the current known lower bound on the optimal value after n nodes have been
processed. One can clearly see the exponential relation between the number of
nodes and the decrease of the relative gap.

5. CONCLUSIONS AND OUTLOOK

In this article we introduced the coolest path problem, which is in part a com-
binatorial MIP and in part a continuous PDE problem. We demonstrated that an
understanding of both worlds is necessary for its solution. With our techniques
we were able to solve problem instances with up to 100 nodes to proven global
optimality.
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FIGURE 5. A 10 x 10 network with random temperatures, and a
coolest path.
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FIGURE 6. Computation of the 10 x 10 network: remaining gap
(in percent) after n nodes

There are a number of possibilities to further speed up the solution process. One
can imagine that specialized cutting planes or branching rules can lead to a reduc-
tion of the solution times. On the other hand the structure of the mixed-integer
problem formulation allows a decomposition into a shortest path problem and ad-
ditional set packing constraints. Thus one can apply a Langrangian relaxation
scheme to compute the value of the LP-relaxation by solving a couple of shortest-
path problems on the time-expanded network each of which can be solved in time
(|VI?> 4+ |V] - |A]). The master problem of the relaxation can then be used using
a bundle or a subgradient method. Although the linear relaxation are expected
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to be solved faster, the combinatorial structure of the problem will be always the
bottleneck for larger instances.

ACKNOWLEDGEMENTS

The main work on this article was done during a research stay of the authors
at the Hausdorff Institute in Bonn. This work has further been supported by the
DAAD research grants no. D/06/28176, D/06/19852, HE5386/5-1, and Seed Funds
(RWTH Aachen, 2009).

REFERENCES

[1] T. Achterberg, SCIP - a framework to integrate Constraint and Mixed Integer Programming,
Technical Report ZR-04-19, ZIB, 2004.

[2] R.E. Bellman, On a Routing Problem, Quarterly of Applied Mathematics, Vol. 16(1), pp. 87
- 90, 1958.

[3] G.B. Dantzig, Linear Programming and Extensions, Princeton University Press, 1963.

[4] E.W. Dijkstra, A Note on Two Problems in Connexion with Graphs, Numerische Mathematik
1, pp. 269 — 271, 1959.

[5] L.C. Evans, Partial Differential Equations, AMS, 1999.

[6] L.R. Ford, Network flow theory, Technical Report P-923, The Rand Corporation, Santa Mon-
ica, 1956.

[7] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W.H. Freeman, 1979.

[8] N. Karmarkar, A New Polynomial Time Algorithm for Linear Programming, Combinatorica,
Vol. 4(4), pp. 373 — 395, 1984.

[9] F. Margot, BAC: A BCP based Branch-and-Cut Example, IBM Research Report RC22799
(W0305-064), 2003, revised 2008.

[10] E.F. Moore, The shortest path through a maze, Procedings of the International Symposium
on the Theory of Switching, Havard University Press, pp. 285 — 292, 1959.

[11] G.L. Nemhauser, L.A. Wolsey, Integer and Combinatorial Optimization, Wiley-Interscience,
1999.

[12] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,
Springer, 1983.

[13] M. Renardy, R.C. Rogers, An Introduction to Partial Differential Equations, Springer, 1996.

[14] A. Schrijver, Theory of Linear and Integer Programming, Wiley, 1998.

[15] A. Schrijver, On the history of combinatorial optimization (till 1960), in: “Handbook of Dis-
crete Optimization” (K. Aardal, G.L. Nemhauser, R. Weismantel, eds.), Elsevier, Amsterdam,
pp. 1-68, 2005.

[16] R.B. Sidje, Expokit: a software package for computing matrix exponentials, ACM Transac-
tions on Mathematical Software, Vol. 24(1), pp. 130-156, 1998

[17] R. Stephan, Facets of the (s, t) — p-path polytope. Online available at arxiv:math/0606308v1.

[18] R. Stoer, D. Burlisch, Numerische Mathematik, Springer, 2000.



