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Abstract

The modeling of the physics of pulsed plasma thrusters requires the numerical solution of the
Boltzmann equation for rarefied plasma flows where continuum assumptions fail. To tackle this
challenging task, a cooperation between several institutes has been formed with the goal to
develop a hybrid code based on Particle-In-Cell and Direct Simulation Monte Carlo techniques.
These development activities are bundled in the project " Numerische Simulation und Auslegung
eines instationdren gepulsten magnetoplasmadynamischen Triebwerks fiir eine Mondsonde™ which
is funded by the Landesstiftung Baden-Wiirttemberg within the subject area "Modellierung und
Simulation auf Hochleistungscomputern™. In the frame of this project, the IHM is in charge to
develop suitable physical-mathematical and numerical models to include charged particle collisions
into the simulation, which can significantly affect the parameters of such plasma devices.
The intention of the present report is to introduce the Fokker-Planck approach for electron-electron
interaction in standard charged particle simulations, where the impact parameter is usually large
resulting in a small deflection angle. The theoretical and applicative framework is discussed
in detail paying particular attention to the Particle-In-Cell approach in velocity space, a new
technique which allows the self-consistent computation of the friction and diffusion coefficients
arising from the Fokker-Planck treatment of collisions. These velocity-dependent coefficients
themselves are responsible for the change in velocity of the simulation particles, which is determined
by the numerical solution of a Langevin-type equation. Simulation results for typical numerical
experiments computed with the new developed Fokker-Planck solver are presented, demonstrating
the quality, property and reliability of the applied numerical methods.



Modellierung der Elektron-Elektron Streuung fiir Particle-In-Cell
Simulationen

Uberblick

Die Modellierung der Physik von gepulsten Plasmatriebwerken erfordert die numerische Lésung
der Boltzmanngleichung fiir den Fall verdiinnter Plasmastromungen im kinetischen Regime. Um
diese herausfordernde Aufgabe zu meistern, ist eine Zusammenarbeit zwischen mehreren Insti-
tuten mit dem Ziel zustande gekommen, ein hybrides Rechenprogramm zu entwickeln, das auf
"Particle-In-Cell” und " Direct Simulation Monte Carlo” Techniken beruht. Diese Entwicklungsak-
tivitdten werden im Rahmen des Projektes "Numerische Simulation und Auslegung eines insta-
tionaren gepulsten magnetoplasmadynamischen Triebwerks fiir eine Mondsonde” ausgefiihrt, das
von der Landesstiftung Baden-Wiirttemberg durch das Programm " Modellierung und Simulation
auf Hochleistungscomputern” finanziert wird. Im Rahmen dieses Projektes fillt dem IHM die
Aufgabe zu, geeignete physikalisch-mathematische und numerische Modelle zur Simulation von
StoBprozessen geladener Teilchen in Plasmen zu entwickeln, welche die Betriebsparameter der
Triebwerke signifikant beeinflussen konnen.

Der vorliegende Berichte wurde mit der Absicht verfasst, den Fokker-Planck Ansatz fiir die
Kleinwinkel-Elektron-Elektron Wechselwirkung vorzustellen und diesen in die standardmaBige Sim-
ulation geladener Teilchen einzubinden. Das theoretische und handwerkliche Geriist wird im fol-
genden ausfiihrlich diskutiert, wobei besonderes Augenmerk auf die " Particle-In-Cell” -Technik im
Geschwindigkeitsraum gelegt wird, die es erlaubt, die bei der Fokker-Planck-Behandlung auftre-
tenden Reibungs- und Diffusionskoeffizienten in selbstkonsistenter Weise zu ermitteln. Diese
geschwindigkeitsabhingigen Koeffizienten sind ihrerseits fiir die Geschwindigkeitsinderung der
Simulationsteilchen verantwortlich, die sich durch das numerische Losen einer stochastischen Dif-
ferentialgleichnung vom Langevin-Typus berechnen lassen. Simulationsergebnisse fiir typische
Testprobleme, die mit dem neu entwickelten Fokker-Planck Loser erzielt wurden, runden den vor-
liegenden Bericht ab, und geben Auskunft liber die Qualitdt, Eigenschaft und Verl3sslichkeit der

verwendeten numerischen Methoden.
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1. INTRODUCTION

The present work is a piece of a much bigger puzzle whose final picture will be the develop-
ment of a hybrid Particle-In-Cell (PIC) / Direct Simulation Monte Carlo (DSMC) code (work-
ing title: PICLAS) for the investigation of the physics of a Pulsed Plasma Thruster (PPT)
[2]. For that purpose, a cooperation between IRS (Institute of Space Systems, University
of Stuttgart), IAG (Institute for Aerodynamics and Gas Dynamics, University of Stuttgart),
HLRS (High Performance Computing Center Stuttgart) and IHM (Institute for Pulsed Power
and Microwave Technology, Research Center Karlsruhe) has been formed to tackle this really

challenging task.

A PPT is a kind of thruster which uses a different principle to push an object in the space:
the classical view of huge tanks burning tons of liquid hydrogen expanding in nozzle, must
now be abandoned in favor of a small box connected to two electrodes emitting a nice blue
plume when tested in a vacuum chamber. This way to move in space is called electric propul-
sion. According to a classical definition [22] the electric propulsion is “the acceleration of
gases for the purpose of producing propulsive thrust by electric heating, electric body forces,
and/or electric and magnetic body forces”. For more information about this topic we refer
the interested reader to the book of Jahn [22].

In order to understand why the rocketry researchers are interested in such unconventional
devices, it might turn useful to review very shortly the basics of aerospace propulsion [40].
The mother of all rocketry equations is no doubt, the Tsiolkowsky equation

m;
A'Umis = Vexh ln(_) 5

me

where m;, m¢ and vexn denote the initial and final mass of the propellant and the exhaust
velocity, respectively. The Awy;s is the integration over time of the magnitude of the acceler-
ation and deceleration by using only the rocket engine. Although an extreme simplification,
the rocket equation captures the essentials of rocket flight physics in a single short equation.
The change of the mission velocity Avp;s is the most important quantity in orbital mechanics
because it quantifies how difficult in terms of energy it is to go from one trajectory to another;
to achieve large Awvmis, consuming a reasonable quantity of fuel, the exhaust velocity must
be very large. This brief overview on some rocketry parameters brings to the conclusion that
if one wants really to explore the deep space, then propulsion systems which are capable of
producing very large vexn must be developed. In other words the limitations intrinsic in the
chemical propulsion must be overtaken. In fact we cannot do any better than breaking a
chemical bound and converting its energy in kinetic energy in a totally adiabatic way. On

the contrary, charged particles can be accelerated in principle up to the speed of light.

Since more than two decades, the IRS has started a “small satellite” program, in whose frame
a lunar satellite is under development. Mission BW-1 will be accomplished by a PPT, named
SIMPLEX (Stuttgart Instationary Magnetoplasmadynamic Thruster for Lunar Exploration).

In this frame, a PPT is a natural choice for its properties of compactness, reliability and ease
1



of construction. Moreover the pulsed energy release allows for low average power without loss
of performances, a tight constrain on board small satellites [35]. As illustrated in Figure 1.1
a condensator charges the electrode to a potential difference which , thanks also to a common
sparkle ablates a layer of the block of Teflon (PTFE). The charged particles will move because
of the electric fields and will self-induce a magnetic field. The Lorentz force that is born by
the interaction of the electric and magnetic fields will push the particles outside of the truster.
Having this device changed the momentum of the particles it will get an equal and opposite

reaction. The ignition process is very complex still not completely understood; candidate pro-

capacitor spring igniter
l cathode

PTFE T y

anode

FIGURE 1.1. Schematic representation of a PPT. Technical specifications
[34]: Single pulse duration: 8us; current: 30 kA; exhaust velocity: 12 km/s;
specific impulse: 1200 s.

cesses are the initial plasma discharge near the propellant surface and the ultraviolet radiation
from the igniter. No matter what, the discharge becomes an arc, with the voltage between
the electrodes dropping to hundreds of volts. The rising current creates the sufficient heat
transport at the low particle densities to overcome the tendency for current concentration in
regions of higher plasma temperature installing an ideally diffused arc. Typically, the PPT
plasma consists of electrons and heavy particles (neutrals, positives and negatives) in quasi
neutrality condition. Non-equilibrium conditions exist in several degrees and kinds because
the downstream vacuum permits high velocities and low densities. Possible local equilibrium
can be realized in proximity of the propellant surface where velocities are low and densities
high, although the temperatures can vary from specie to specie [8]. In other words, it is not
possible to use the moments of the Boltzmann equation and the phase space distribution must

approximated mathematically by means of Dirac distribution functions. With this picture in
2



mind, it is clear that particle methods [19, 4] are recommended for the simulation of such a
device, for its capability in catching charged particles movement in magnetic fields in a self

consistent manner.

Maxwell Solver

(P )K—>(E B),
Assignment Interpolation

(xV),—= (), (EB)—~ (EB),
Pos/Loc/BCs Lorentz Solver
n+1 n+1
VU K AP At (av),
DSMC Fokker Planck
@Av)ye s AP 1 (av ):P
K = Nodes
P=Particles

F1GURE 1.2. The different building blocks of the hybrid code
PICLAS (Pos/Loc/BCs means Posistion/Localization/Boundary

Conditions).

In order to model the physics of the PTT, the PIC code developed by IHM [32, 33] has to be
extended by means of models for binary intraspecies charged particle collisions and binary
interspecies reactions. A coupling cycle of the integrated hybrid code PICLAS is seen in Figure
1.2, which consists of four main building blocks: (A) Maxwell solver [31], (B) Lorentz solver
[32], (C) Fokker-Planck block (see below), and (D) DSMC part [26, 2] for the treatment of
chemical reactions. Note, that part (A) represents a finite volume scheme, based on an un-
structured computational grid while the blocks (B)-(D) are particle based systems involving
the spatial grid only to determine possible particle interactions. Moreover, interpolation and
assignment techniques form another main constituent of the coupling [14]. For a given par-
ticle distribution within the computational domain, the charge and current densities define
the electromagnetic eigenfields. Therefore, their values at the particle positions have to be
assigned to node or cell values for the Maxwell solver, where they act as source terms. After
completing the Maxwell step, the electrical field and the magnetic induction are known as
cell averages in the finite volume context. They have to be evaluated at the particle positions

to determine the Lorentz forces acting on the charged particles. Hence, the field values have
3



to be interpolated from grid positions to particle positions with the desired order of accuracy.
The Lorentz solver then determines the acceleration of the particles. Next, Fokker-Planck
and DSMC steps determine additional velocity changes of the charged as well as uncharged
particles due to elastic and inelastic interactions. These steps, as well as the Lorentz solver,
act on the same particle distribution, i.e. the distribution at the beginning of the time step.
FEach step changes the velocity of the particles without actually moving them. The movement
of the particles is done in a separate pushing step which determines the changed distribution
function of the different particles species. Within this step, the particles have to be localized
with respect to the spatial grid to assign the charge and current densities to the nodes and/or
barycenters of the computational mesh. Furthermore, this information is also important for
the application of the correct boundary conditions. Finally, this closes the self-consistent

determination cycle, which have to be run through at each time step of the simulation.

Coulomb interaction between charged particles like electron-electron collisions play an im-
portant role in many application areas of plasma physics and accelerator physics. For the
thruster under consideration, for example, they can significantly affect the performancies
causing momentum and charge losses, the latter due to recombination. Due to the long-range
nature of this force, there is a fundamental difference in treating these collisions compared to
short-range reactions in the Boltzmann approach of dilute gases and plasmas, where different
kind of hard sphere models are important tools of description [3]. The purpose of the present
report is to introduce the Fokker-Planck approach for charged particle interaction in PIC
simulation, where the impact parameter is usually large and, consequently, the deflection per
collision is small. Especially, this diffusion approximation of the Boltzmann collision integral
is customary to describe electron-electron interactions in a plasma, which mainly determine
the shape of the electron energy distribution function (EEDF). In the case where the energy
input into the plasma goes primarily into the thermal part of the EEDF, the high-energy tail
is mainly populated by energy up-scattering caused by these collisions. It is clear from en-
ergetic considerations, that the high-energy tail also controls reactions like atomic excitation
and ionization — the energy sinks for electrons — and to some extent the plasma chemistry.
Furthermore, the electron-electron collisions always drive the EEDF towards a Maxwellian
distribution. Due to the important role of the EEDF for the plasma properties it is essential

to model electron-electron collisions as realistic as possible.

The report is organized as follows: After the introduction of the governing equations and
some properties of the Fokker-Planck model in Section 2, the equivalence of this approch to
stochastical differential equations is discussed in Section 3. There, also the numerical approx-
imation of these Langevin-type equations is given and numerical schemes are introduced. In
Section 4 the numerical framework and implementation issues are sketched out. Afterwards,
in Section 5, numerical results are presented which helps to assess the applied numerical

schemes. Finally, a short outlook of the further scientific goals are given in Section 6.



2. FOKKER-PLANCK MODEL FOR CHARGED PARTICLES INTERACTIONS

2.1. Governing Equations. One basic starting point to investigate plasma phenomena is

the Boltzmann equation [29, 13]

o, K o, _ (%
W‘FC sza‘f‘m—a'vcfa—(&)c()l: (1)

which describes the evolution of the distribution function f, = f,(x,c,t) of plasma specie
“a” in phase space. Here, K = K(x,c) represents the electromagnetic force acting on the
particles of the ensemble “o” with charge ¢, and mass mg. The term on the right-hand side
(rhs) of equation (1) is the Boltzmann collision integral which reflects the rate of change with

respect to time of f, due to collisions.

A well-established mathematical description to model the collision contribution is given by
the Fokker-Planck (FP) equation [29, 9, 28, 25, 36]

5fa D Toia 0% [
() = —aa [0 2] + e (P88 1] @

This model represents the lowest order approximation of the Boltzmann collision integral,
where the leading terms are a consequence of the cut-off for small scattering angles (see
Appendices A and B). By passing we note, that equation (1) with the rhs (2) is known as the
Landau equation for the distribution function f,. In the latter equation the coefficients of the
dynamical friction force F}® = F{*(x, ¢, t) (unit: [m/s?]) and diffusion DY) = D{¥ (x, c,t)
(unit: [m?/s?]), are defined by

)]
&) _ N ples) oH
F; ’—EBIFP no(xt) =5 (3)
and
2G(8)
(o) — (ap) g
Dy, grp ns(0,) goae (4)

respectively, where the index “B” runs over all “scattering” populations (also called field

particles). Here, ng(x,t) represents the local density of the scatterer,

ped = Gl (5)

P Ame3m?
is the plasma parameter [13] in SI-units ([m®/s*]) and In(A) denotes the Coulomb logarithm
(see Appendix B). Note, that the factor 7,5 = ng Fg,aﬂ ) / v3, may be considered as an energy-
weighted average of the speed-dependent momentum transfer collision frequency (cf. [28])
between the particles of the species “a” and “B”, where the thermal velocity is defined

by v3, = kgTp/mg. The key quantities to determine the coefficients (3) and (4) are the
5



Rosenbluth potentials [28] given by

H('B)(X,c,t) — ;::a /fﬁ(T:gTV;t) dw (6)
aB

oo
0 et) = [ lglfatewt)du, ™
—o0
where 1/my3 = 1/my + 1/mg is the reduced mass of the species “a” and “4” and g =
c — w is the difference between the velocity of the scattered-off particles (also called test
particles) and the velocity of the particles which serve as scatterer (field particles). It is
apparent from the latter two expressions that the Rosenbluth potentials and, consequently,
the friction force F and the diffusion tensor D depend on the velocity ¢ of test particles.
Hence, the FP model represents a complicated nonlinear problem which, in general has to
be solved numerically in an appropriate — namely, self-consistent — manner. Note, that the
self-consistent approximation includes the situation where the test particles and scatterers are
identical. Consequently, the friction and diffusion are a result of a complex interplay among
the particles of the complete ensemble which, in addition, depends on the velocity c¢. An ideal
numerical method to tackle this difficult problem represents the PIC technique [19, 4] which
will be discussed below. Analytical solutions of the FP equation are available only for very
special cases of the friction force and diffusion tensor. For instance, the short-time solution
of the FP equation is obtained if one assumes that the friction and diffusion coefficients do
not depend on the velocity (see Appendix C). A further analytical solution is known for
the Lenard-Bernstein model (also called Ornstein-Uhlenbeck process) which is established by
F = A(x,t) - ¢ (A is a matrix) and D = D(x,t) (see, e.g. [12, 15, 20, 37] and also Appendix
D).

2.2. Computation of the Rosenbluth Potentials. In this section we review approaches to
recast the Rosenbluth potentials into an appropriate form which is advantageous for numerical

computations.

2.2.1. The Fourier Transformation Approach. It is obvious from the relations (6) and (7) that
the Rosenbluth potentials are convolutions of the field particle distribution function and the
absolute value of the relative speed. This suggest to apply Fourier transformation techniques
to compute the integrals, where no assumptions concerning the distribution function have to
be imposed. In the following, we consider intra-species scattering which means, that the test
and field particles belong to the same type (for instance, electron-electron collision) and drop

for convenience the species indices “a” and “B”. Performing a change of variables according

to g = ¢ — w with d®w = —d®g and applying some standard manipulations [17], we obtain
the results .

A f(k)

(k) =8l 3 (8)

and

g(k) = -8 kA ’ (9)



for the transformed quantities with k£ = |k|, where the identity Vg = 2/g (see Appendix E)
has been used to obtain the second relation. Clearly, the expressions (8) and (9) reveal once
again the convolution character of the Rosenbluth potentials: In k-space this leads to the

~ 0o .
product of the Fourier transform f(k) = (27)=%/2 [ d®ce~i% f(c) and 1/k?, which is the

analytically obtained Fourier transformation of the “Coulomb potential” 1/g (see Appendix
F). Since only the derivatives of the Rosenbluth potentials enter in the determination of
the friction and diffusion coefficients, we apply the differentiation property of the Fourier

transformation and get directly

T _ o i fbo
acp—87rz}' {k2 (k)} (10)
and )

0°G _1[kpkq 2

acpacq—SW}' {—k4 f(k) (11)

for the derivatives of the potentials, where F~! denotes the inverse Fourier transformation
of the arguments in the braces. Moreover, this proceeding considerable reduces “computa-
tional noise” often associated with differentiation on the velocity grid. In essence, the main
advantage of the Fourier approach is that we obtain a first principle, fully self-consistent
determination of the deterministic friction (3) and stochastic diffusion (4) since no specific
model assumptions on the field particle distribution are necessary to compute the Rosenbluth

potentials.

2.2.2. Hypothesis: Isotropic Field Particle Distribution. It is well known that the assump-
tion of an isotropic but non-Maxwellian velocity distribution of the field particles implies
an enormous reduction of the three dimensional problem [28, 27, 1]. As above, we consider
intra-species scattering of charged particles (for instance, electrons) and suppress the species
indices “a” and “B”. The assumption of isotropic velocity distribution function f (= fg) of
the scatterer means that f depends only on the absolute value w = |w| of the field particle
velocity: f = f(w). In order to compute the integrals (6) and (7), we introduce spherical

coordinates in velocity space and replace |¢ — w| by

lc —w| =V +w? — 2cwcos O .

The integration over the azimuthal angle @ and the polar angle © yields the results (cf.,
[29, 28, 27])

H(x,c,t) :87r{%/w2fdw+/wfdw} (12)
0 c

and

G(x,c,t) = 4w{%/w4fdw+c/w2fdw
0

0



where f = f(x,w,t). To calculate the derivatives of the isotropic potentials in velocity space
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with respect to the velocity cp, we use the fact that gT‘; = %P and get the equations

oM(x,c,t)  OMH(c) é
dc,  O0c *

(14)
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and
9*G(x,¢,t) 629() 19G(c) ..
Sede = B Gt g g [ —Gal, (15)

where d,, denotes the Kronecker symbol and ¢, is the p® component of the unit vector

¢ = c¢/c. Then the friction and diffusion coeflicients are given by

F(c):nI‘pag((:C ——nI‘p 2 /w fdw, (16)
2 - F

D||(c)=anaachC)=an%{c—3/w fdw—}—/wfdw}, (17)
0 c

c )
D,(c) = %62(;) :nl“p4;{cg /(3c —w )wzfdw+2/wfdw}. (18)
0 c
Clearly, if we identify é with the unit vector e,, then the matrix established by (15) have only
non-vanishing diagonal elements. It is obvious, that the coefficients (16)-(18) are decreasing
functions of ¢ with high-velocity behavior proportional 1/c¢?, 1/¢® and 1/c, respectively. Con-
sequently, friction and diffusion based effects like approach to equilibrium are much weaker
at high energies of the particles. Furthermore note, that field particles with speed w greater
than the speed ¢ of the test particles do not contribute to the friction coefficient (16). This

effect is a pecularity of Coulomb scattering off an isotropic distribution of scatterers. To
9



get a quantitative picture, the friction and diffusion coefficients (16)-(18) are seen in Figure

2.1 as a function of the velocity ¢. For this, a Gaussian distribution function of the form

2 th
tion, which possesses a constant number density n, = 10'® m~=3 and a temperature T* = 10

flw) = ﬁ exp(—lg—z) with v3 = kg T/m. is assumed for the field electron distribu-
T V¢h

eV. It is apparent from these plots, that the accurate velocity-dependence is very important
for modeling these coefficients, especially in the low-velocity region. Furthermore, in Figure
2.2 we depict the dependence of the coefficients |F(c)|, D1 (c)/c and \/Dj(c) (see below)
from the velocity c¢. Note, that these coefficients possess units of an “acceleration” and that
D, (¢)/c is the dominant contribution at very small velocities, which is responsible that the
particles diffuse up towards the thermal velocity vy, where they feel strong friction that tends

to center the velocity around the mean value.

2.2.3. Inter-Species Collision: The FElectron-Ion Case. Here, we exploit the fact that the
velocity of the electrons is much larger than this one of the ions (|c| > |w|) and, furthermore,
the smallness of their mass ratio ( ;"1—‘? < 1) is taken into account. Clearly, this means, that
the electrons are scattered off by infinitely massive ions, where the energy coupling is quite

weak. In this situation the Rosenbluth potentials (6) and (7) can be simply approximated by

HO(x,c,t) = (19)

C
¢V(x,et) = ¢, (20)

where it is assumed that fi(x, w,t) is normalized in velocity space. It is straightforward to

obtain the components of the friction force and the diffusion tensor, which, respectively, reads

as
FO(x,¢,t) = T ni(x, 1) Z—g (21)
and
i 1 A
D) (x,e,t) = T mi(x,8) = [0 = 84 (22)

where ¢, is the abbreviation for ¢,/c. With the ion charge ¢ = Ze, the plasma parameter
(5) for electron-ion collision is given by
Z2e4

2,2
4dmegm?

r{e) = z2rie) = In(A), (23)

where the parameter A for this process is proportional to

_ €0 ks Te T
A~dp = \/e2 neTs +1ni Z22T,) ’ (24)

where kg is the Boltzmann constant (see Appendix B).

2.3. Diffusion Process. A short introduction to stochastical processes is here needed to
show how Coulomb collisions can be easily modelled (at expense of heavy algebra) using a
stochastic approach. Physical phenomena influenced by stochastical processes like chemical

reactions or non-Newton fluid flows are, in fact, quite frequent in nature (see, for instance
10



[15, 20]). A weakly correlated stochastical process is called a Markov process if the conditional

probability density is given by the condition
Pn(mn, tn|$n—17tn—1; ey .Z'l,tl) = P2(xn7tn|$n—1; tn—l)

for t; < ty < --- < t,,. This means, that the transition probability to (z,, t,) depends not on
the complete history (z,—1, th—1;-..;Z1, t1) but only on the last state (x,—1, t,—1). Then,
Py(zp, tn| Tn-1tn—1)dz, is the probability that, for instance, a particle travels the distance
ZTp — Tp—1 during the time ¢, —t,—1. A well-know example of a Markov process is the decay of
unstable nuclei. A central property of a Markov process is that it is completely defined if the
probability density Pj(z1, t1) and the common probability Pa(z2, t2|z1, t1) — which is also
called conditional or transition probability —is given. A special Markov process is realized by
the diffusion. Strictly speaking, one is interested in the short-time behavior of the transition
probability P> which is characterized by a diffusion process. This process is defined by the

following requirements [15, 20]

/d3u (u=c), Po(u,t +7lc,t) = Fyle, t) 7 + O(r) (25)
Q
/d3u (u—c), (u—c)y Po(u,t +7|c,t) = Dyy(c,t) 7+ O(1%) (26)
Q
/d3u (W—2¢)p, ... (u=rc)p, Po(u,t +7lc,t) = O(T?) ;n>2, (27)

Q

where 7 is a small time step increment. Obviously, these conditions state that the short-
time behavior of the diffusion process up to the first order in 7 is completely specified by
the first two moments of the transition probability P, while higher-order moments can be
neglected in this order '. Moreover, note that the second moment (26) is linear in 7 which
indicates that the root of the variance — that is the standard deviation — is proportional to
/7. In essence, the requirements (25)-(27) means that the short-time transition probability
for given ¢ and ¢ is normal (Gaussian) distributed with mean value Fjy(c,t) 7 and variance
D,,(c,t) T which obviously, characterize the underlying stochastical process. In order to find
the evolution equation of the diffusion process (25)-(27) we follow Honerkamp [20] and start

from the expression

/ Be p(c) Pa(c,t|x1, 1) =

Q

.1
lim = [ dc $(e)[Bale,t+rixi,t1) = Pale,thxi )] (28)
Q

where 1(c) is an arbitrary function with the properties that 1 and its first derivative V4
vanish at the boundary of the domain Q. Applying to Pa(c,t + 7|x1,t1) the relation (which

INote, that either the requirements (25)-(27) are possible or an infinite number of moments are necessary
to characterize the process (Theorem of Pawula [42]).
11



is known as the Chapman-Kolmogorov equation)
Py(c,t + 7|x1,t1) = /d3u Py(c,t + 7|u,t2) Pa(u, t2|x1,t1) , (29)

performing a Taylor series expansion of 9(c) arround ¢ = u + Au, assuming that Pa(c,t +
T|u, t2) is normalized with respect to ¢ and taking into account the definition of the diffusion
process (25)-(27), we get
/J%wq{@&@JWhhy+flpgg]—E—EL{DMRJ}ZO, (30)
Ocp 2 Ocplcy
with F, = Fp(c,t) and Dp; = Dp4(c,t), where also integrations per parts were carried out.
Since 9 (c) is an arbitrary function, we conclude that the expression in the curly braces must
be zero, and the evolution equation for the transition probability of the diffusion process is
established by a FP equation. Note, that the probability density P;(c,t), which can be iden-
tified with the particle distribution function f,(c,t), fulfill the same FP equation. Obviously,
this result makes then a link with the Boltzmann integral approximation (2): The charged
particles collisions are modeled as a diffusion process that describes the short-time behavior

of the interacting system.

2.4. FP Equation in Spherical Coordinates. We start with the FP equation in covariant

form given by [43]
@f:—UFﬂ +%UDW] : (31)

v VLl
which is valid for any set of curvilinear coordinates z!, 2% and 22 in the non-relativistic case.

Here, the commas indicate covariant derivatives with respect to z*, repeated Greek indices
imply summation (Einstein’s summation convention) and f = f(z!,z2,2%) is the particle

distribution function. The covariant derivatives can be written as [21, 43]

valre] = lvare] (32)
and X
Varom] =tV o]+ o [V e, ). (33)

respectively, where g = |g,,| is the derterminant of the metric tensor g,, and I', ; denotes
the Christoffel symbol of second kind defined by (see, e.g. [45])

1 69046 6965 agaﬁ
L, 7 —
Faﬂ 2 g ( ozb oz~ oxd ) ’ (34)

which, in general, is not a tensor. Inserting (32) and (33) into equation (31), we get after

some rearrangements

L B e

where f = V9 f- Obviously, in the latter equation the drift term (first term on the rhs) is
modified by the geometry term %F’; 5 DB which vanishes in the case of Cartesian coordinates.
In the following we consider spherical polar coordinates in velocity space, where 2! = ¢, 22 = 6

and 23 = ¢. The metric tensor g,, (g = c* sin? @), the physical components of the vector F*
12



as well as the tensor D#” and the Christoffel symbols Fgﬁ may be adopted from the literature
[45], resulting in a quite lengthy expression for the rhs of (35). The first simplification of
this expression is obtained by choosing the velocity difference vector g to be parallel to the
unit basis vector e.. This leads to the fact that the vector F possesses only the component
F, and the tensor D is diagonal. Furthermore, assuming azimuthal symmetry, we obtain the
equation

hf= - %{f[Fc + %C(Daa +DW)] } + %g—;[chc]

2

%% [f COteDWp] + %% [fDog] s (36)
where f as well as the coefficients F,, D.., Dyg and D,, depend on ¢ and §. A further
reduction of the latter equation is obtained if we assume that the friction and diffusion
coefficients depend only on the velocity ¢, then F. = F', D.. = D) and Dpg = Dy, = D
are given by the relations (16)-(18). The resulting form of the FP equation then reads as (see
also [1])

N D\] 1 D, 9 5. Oh
on=go 0 (7 25+ g [np] + g |0 | (37

where h = ¢? f(c,0) and a is given by a = cos 6. Finally, in the case of an isotropic distribution

function, where h is independent of the polar angle § we get the result

=2 i (e 2] s 15 o] =

which will be considered below in the context of code assessment.
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3. NUMERICAL SOLUTION OF STOCHASTICAL DIFFERENTIAL EQUATIONS

3.1. Historical Notes. In order to study the problem of Brownian motion, Langevin con-

sidered the equation
o(t) = —yu(t) + K(1)

for a particle moving in a suspension with a friction coefficient v, where K(t) is a highly
irregular force acting on the particle with mass m. From this equation he deduced Einstein’s
result for the variance of the displacement of the particle — Var{z(t)} = % t —, where he
argued that the average (expectation value) of < z(t) K(t) > vanishes because the irregularity
of K(t) (see, [15] and the references given therein). This may be regarded that X(t) represents
a time-dependent “random force”, which is a model for the highly fluctuating influence of a
very rapid sub-system whose action cancels out in the limit when a large number of particle
trajectories are considered. Historically, the Langevin equation was the first example of
a (linear) stochastical differential equation (SDE), which represents the so-called Ornstein-
Uhlenbeck process [15, 23]. In the context of SDE the Langevin equation is symbolically
written as

dv(t) = =y V(t)dt + o dW () ,
with 02 = 4kg T/m. Here, the change of the stochastical variable V = V(t) within the

time step size dt is considered, where the so-called Wiener increment dW (t) “sublimates” the
irregular processes mentioned above. Note, as a consequence of the Wiener increment, that
the latter equation requires a new mathematical interpretation — this means, the definition of
an extended calculus —, which can be consistently introduced for the corresponding integral

equation (see, for instance, [15, 23]).

In the following, we focus our attention to generalized Langevin equations, introduce some
basic results for SDEs and discuss methods for the numerical solution of SDEs. Furthermore,
we will recognize that the numerical solution of SDEs provides a powerful tool to include
small-angle Coulomb collisions between charged plasma species into the framework of PIC

techniques.

3.2. General Ideas and Basic Relations. In this sub-section we consider the straightfor-

ward extension of the Langevin equation in one dimension
dv(t) = F(V,W,t)dt + B(V,W,t)dW(t) , (39)

where the coefficients are functions of the stochastical variable V' = V() and time ¢ and, in
general, also of the Wiener variable W = W (¢). Note, that in the case where B is a constant
the random forcing is called additive noise, otherwise, if B (linearly) depends on the stochastic
quantity V(t) the forcing is called multiplicative noise. The SDE (39) has to be interpreted
mathematically as a stochastic integral equation of the form
¢ ¢
Vt) = V(to) + /F(V(s), W(s),s) dt + /B(V(s),W(s),s) aw (s) . (40)

to tO
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Here, the second term on the rhs is an ordinary integral (of Riemann or Lebesgue type), while
the third term is a stochastical integral, which has to be interpreted consistently. The Wiener
increment dW (t) appearing in equation (39) and (40) may be defined as an integral over the
rapidly fluctuating random term 7(t) (see, for instance [15, 20])

t+dt
AW (1) = / n(s)ds | (41)

i
with the requirements that for ¢ # ', n(t) and n(t') are statistically independent, the mean
value< 7(t) >= 0 and and the variance < n(t) n(t') >= §(t — t'). For our purposes, we
introduce the Wiener increment by considering the sequence {ni}ieN of independently and
identically distributed random numbers with the expectation values E{n;} = 0 and E{n?} =1
[short notation: n; ~ iid(0,1)] and define

1 o n
i=1

with At; = t;41 —t; = 1/N. Then, the Wiener increment reads as

1
AW; = Wiy = Wi = —= niy1 = VAL Dy, 43
+1 VN Ni+1 Mi+1 (43)

and possess the properties E{ AW;} =< AW; >= 0 and E{AW; AW;} =< AW; AW; >=
At; d;;, where the latter relation indicates that the variance is linear in At;. Now, setting

in the integral equation (40) V(tg) = F = 0 and replacing B by the random function G =
G (W(t), t), we obtain the formal definition of the It6 integral:

t
1G] = / G(W(s),s) dW(s) . (44)
to
For the discretization ¢y < t; < t2 < --- < t,41 = t, this integral is usually approximated by
the sum
n
6™ =36 Aw; (45)
i=1

where Gg") =Gm (W(Ti), Ti) with 7; = ¢; and the Wiener increment AW; = W;,1 — W is
given by (43). On should expect that the “random variable” I[G(™)] has zero mean since it

is a sum of random numbers AW, with zero mean. However, to guarantee this, appropriate

measurability conditions of the random function Gg") must imposed to ensure that GE") and
the Wiener increment AW; are “independent”,
E{G{" aw;} =E{G("} E{ aw;} =0 (46)

which means, the nonanticipativeness of the integrand. The appropriate conditions, the mean-

square convergence of the integrals I[G(™)] to I[G] and the corresponding proofs are discussed
15



in great detail by Kloeden & Platen [23]. Here, we only cite some important results, for

instance, the It6 isometry

E{I[G]} =0, (47)
E{IQ[G]} - / E{GQ(W(s),s)}dS, (48)
E{1c)1H]} = / E{G(W(s),s) H(W(s),s) }ds (49)

which may be immediately obtained by starting the computations from the approximate form
of the Itd integral (45). A crucial point is the fact that the partial sums (45) depend on the
particular choice of the intermediate point 7; within an interval [¢;, t;11] where the integrand
G(W(Ti), Tz') is evaluated. As mentioned above, for the choice 7; = t; the expression
(45) define the It stochastic integral of the function G. This It6 interpretation and the
corresponding calculus is used in this report. Another often useful choice of an intermediate
point, namely, 7; = (¢; + ti+1)/2 leads to the Stratonovich interpretation, which satisfies the
usual transformation rules of classical calculus. Note, that different interpretations lead to
different solutions of the SDE which, however, can be related to each other [15, 23].

3.3. It6 Formula. In this sub-section we introduce the It6 formula and refer the reader for
further details to the books of Gardiner and Kloeden & Platen [15, 23]. For this purpose, we
consider the stochastical quantity V' (¢) which obeys the SDE (39), where the coefficients F'
and B are now independent of W, and assume that the function ® depends on this variable:

® = ®(V,t). Then, the growth of ® during the time step dt is given by the expansion

do(V,t) = ®(V +dV,t+dt) — d(V,t)

. 1
O(V,t)dt + &' (V,t)dV + §<I>”(V, t)dv?, (50)

where the dot and prime indicate the differentiation with respect to ¢ and V, respectively.
Since the Wiener increment (49) is proportional to v/ At, we also have to consider the second

order term and get for the growth
B 1
ad(V,t) = [<I> + @' F(V,t) + 59" BX(V, t)] dt
+ &' B(V,t)dW(t), (51)
2
where we have applied that [dW(t)] = dt, which is one of the key properties of the Ito
calculus. The later relation is called Itd6 formula or stochastic chain rule and states that

changing variables is not obtained by ordinary calculus (exception: @ is linear in V'), because

of the appearence of the third term in the square braces of expression (51).

In order to obtain the multi-dimensional version of the It6 formula one has to start from the
16



multi-dimensional generalization of (39) which is given by
dvV (t) = F(V,t)dt + B(V ,t) dW (t) , (52)

where 17, F € RY are d-dimensional vectors, the matrix B € R4*™ is related to the diffusion
tensor according to D = BBT € R4*4, and W € R™ represents the m-dimensional Wiener

process. Then, one can show that the growth of the function ® = ®(V,¢) has the form
_, 0P ~ % 0°®
P = —— F,(V,t dt
de(V,1) {6t+§ p(V,t 22 6V 5v}

+ > Bp(V, t)g—i dw(t) , (53)

p,q
where Dy, and B, are the elements of ) and B, respectively. This equation establishes the
multi-dimensional form of the It6 formula for multi-dimensional stochastic differentials with

multi-dimensional Wiener processes

3.4. Equivalence between the FP and SDE Approach. In this sub-section we introduce
the most attractive and important property, namely, the link between the FP equation and
the SDE; see [15, 23] for further informations and stringent proofs. We consider the stochastic
variable T_/"(t) with the transition probability Pg(V,ﬂ%,to), and assume that the arbirtary
function (V) is twice continuously differentiable and vanishes at the boundary of the
domain Q. Applying the expectation value operator E to the Ité6 formula (53) for 1, we

obtain the expression

(v P} = B{G+ SR 5}

82y
+ 22 { Dy (V1) (mavq}, (54)

where we already use the fact that the expectation of the last term of expression (54) vanishes

]E{B i dW()} 0

prq av
because of the nonanticipativeness requirement (46) and the result that E{dW,(t)} = 0.
Using for the expectation the expression E{ (...)} = [ d®V Py(V,t|Vy, to) (...), keeping in mind
Q

the imposed properties on ¢ and performing integration by parts we get the result

/d3V¢(‘7,t) {8P2 +Z o7 [F Pg] %Z%;%[qu P2]} =0. (55)
Q p,q

Clearly, because 1 is an arbitrary function, the expression in the curly braces must be zero,

yielding the FP equation
oP, 3} 1 0?
KRR r A LR RSP A LA (50

for the transition probability P, of the variable V. Obviously, we recognize the complete

equivalence between the SDE (52) and the diffusion process — described by the FP equation
17



(56) — which is defined by the drift coefficients FP(V, t) and diffusion coefficients qu(V, t) (cf.
equations (25)-(27)). This equivalence will be exploit in the following: instead to solve the FP
equation (2) for the distribution function f, of the particle specie “a”, we solve numerically
the corresponding SDE (52) for the particles of this ensemble. Due to this close connection,
the small-angle electron-electron collisions will be treated by the solution of a Langevin-type
SDE and, consequently, fits in a natural way into the PIC method, which is one basic concept

of the hybrib PIC/DSMC code development [2].

3.5. Ito-Taylor Expansion. In contrast to the Taylor expansion for the function f : R - R
of a deterministic variable X, we expect a more complicated series expansion for a stochastic
variable V' due to the modified chain rule in It6 calculus (see, relations (51) and (53)). The
stochastic counterpart of the deterministic Taylor formula for the expansion of a smooth
function is, especially, important for the derivation of numerical methods for SDEs. There are
several posibilities to introduce stochastic Taylor series expansion (see, for instance [20, 23]),
which is called “It6-Taylor Expansion” (ITE) in the following. In the context of the present
report the ITE is obtained by iterated application of the Ité6 formula (51) in one dimension
or (53) in the multi-dimensional case; more details about this proceeding is found in the
books [23, 24]. The integration of the multi-dimensional It6 formula (53) for the function
f: R = R yields

Firk = F{to} + / s [0 s+ 35 [ aws [e0 ], 67

q= lto

where the operators £(®) and £() are defined by

62
E(O)f={8t+z s -+ = Z ’k(‘?V@Vk}f (58)
and

d
£ f= {ZBJQ av; } (59)

j=1

respectively, and {t} abbreviates {t} = (V(t), t). To obtain the multi-dimensional ITE of

the variable V (¢), we integrate the SDE (52) over [to, t = to + 7], use equation (57) for f = F;
18



and f = By, respectively, and get after some rearrangements the expression

Vi(t) = Vi(to)

t t 82
+ Fi{to}/d32+/d82/d81 I:,C(O) Fz] {81}

+ Z/dSQ/qu L(q)F]{sl}

q= 1t0

+ ZBiq{to}/dW‘l +Z/dW‘1 /ds >qu {31}
q=1 q= lto

+ Z / dwe / dw?, £<P) Bw]{sl} (60)
p,g=1y,

for the i component of V € R?. In order to simplify the presentation, we define the multiple

Ito integral of the function f according to

L doreni) tort L] = // /f s1) dW! ... Wit dW]!

to to

/ dwi / dwi-r . / dwir f (61)
to to

with j; € {0,1,...,m} for ¢« € {1,2,...,l} and m = 1,2,..., where it is assumed that

dW? = ds 2. Obviously, from (60) we recognize that multiple stochastic integrals are central
building blocks for the representation of the approximate solution of the SDE (52). With
the additional abbreviation L, j,. . i) = L(j1.jar..ji)sto,t 1], We immediately can express the

terms including only multiplicity one It6 integral. These are

¢
Fi{to}/dsz = Fi{to} I(O) (62)
to
and
m t m
> Big{to} / dW{ =" Bigf{to} Iy - (63)
g=1 to g=1

For our purposes it is enough (for the moment) to consider a stochastic Taylor expansion up
to first order in 7. Because ds ~ 7 and dWJ ~ 71/2 a closer inspection of relation (60) reveals
that besides the terms (62) and (63) only the last term on the rhs of (60) contributes to a

first order stochastic Taylor expansion. Inserting f = £() B;, into (57) and using definition

2Note, that for f=1 and j1 = j2 = --- = j; the It0 integral (61) can be expressed according to
/2 wi-w} 2 4l 2
t—t _ . .
LGgyenid)s ot = ﬁ( 3 0) Hl( oo too))’ where H;(z) = (—1)le? szl e~ %" are the Hermite polynomials.

19



(61) yields
m ¢ s2 m

3 / dwe / W5 [£D Big|{s1} = 3 [£7) Big | {to} Ty (64)
Pe=1 to p,q=1
for the last term on the rhs of (60) up to first order. Then, the final expression of the first

order ITE for the stochastic variable V' (t) reads as

Vi(t) = Vilto) + Fi{to} Io) + >_ Big{to} Iy)

q=1

+ i [5(” ) Biq]{to} L(p,) +R<0(73/ 2)) : (65)

p,q=1

where the remainder is given by

R((’)(T3/2)) - Z/dSZ/qu L’(’I)F {31}

q= lto

+ Z/dwq /dsl £< >B,,, {sl}

q= 1t0

+ Z / dwe / dw? / dwr, c“) £® B,q]{sl}

p,q,7= lto

+ Z /qu /dW”/dsl [£© £® By] {s1)

P,a=14,
n / dss / ds [L‘,(O) F] . (66)
t t

Note, that the first three terms on the rhs of the latter expression vanish at least with O(73/2)

while the last two terms vanishes at least with O(72) when 7 tends to zero.

3.6. Explicit Strong It6-Taylor Schemes. Based on the previous sub-section, we present
here schemes for the numerical solution of SDEs, where we follow the textbooks of [23, 24].
In general, the numerical solution of SDEs requires to determine random numbers and the
schemes are classified in weak and strong convergence approximations. If these random vari-
ables only have to coincide in their lower order moments with those of — for instance — Gaussian
random numbers to provide an accurate approximation, the corresponding schemes are called
weak convergence approximations. Unfortunately, a clear (and stringent) distinction between
the weak and strong approximation of a SDE is seldom found in the literature [20, 27, 41, 1],
and, therefore further investigations should decide whether weak approximations are suitable
in the scope of electron-electron collision modeling. In the context of the present report,
we apply strong Taylor schemes to approximate the solution of the SDEs with respect to the
strong convergence criterion. Roughly speaking, this kind of approximation needs in a certain

sense the resolution of the “inner structure” of the random variables, which is much more
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difficult to achieve than the agreement with lower order moments (see below).

One-Dimensional Schemes (d = m = 1): The simplest strong Taylor approximation of the SDE
(39), is the Euler scheme of the form (At, = 7)

fokas :C’"+F(C”,tn) Atn+B(C”,tn) At » (67)

for the approximation C(t) of the stochastic variable V (t), where C™ = C(t,,) and Cy = V(o).
It is obvious from the ITE that this scheme contains only Wiener integrals of multiplicity one,
which are given by Ig) = At,, and 11y = AW,, = \/At, 1,11 (see relation (43)), respectively,
where 1,11 ~ N(0,1) is a Gaussian distributed random number with mean p = 0 and variance
0? = 1. Note, that the Euler scheme converges with strong order v = 1/2. The order of the
Euler scheme can easily be improved by considering the next term of the ITE (65), which is

t D)
given by B % L1,y with Iq py = [ dW,, [dW;,. The It6 integral Iy 1y of multiplicity two
to to

can be computed analytically (see footnote 2) and approximated with (43) according to
T = %[(WHM — W)’ - Al %[(AWn)Z ~ A (68)
Finally, the Taylor scheme of strong order v = 1 reads as
C™ = O+ F(Ctn) At + B(C, 1) AW,
n %B B [(AWn)2 _ Atn] , (69)

which was first proposed by Milstein, where AW,, = \/At, 7,41 and B’ = dB/dC. Clearly,
the latter equation reveals a certain disadvantage of the strong Taylor approximation, namely,
the derivative of the diffusion coefficient B = /D must be evaluated. Note, that in the
general case, the derivatives of various orders of the diffusion and drift coefficients have to be
considered. Strong schemes which avoid the computation of derivatives at each time step are

known as explicit strong approximations. To obtain the explicit Milstein scheme we consider
B(c" n AC") _ B(C") - [F(C") At + B(C") \/Atn] B' ~\/At, BB,

and get in the lowest order of this approximation the explicit strong order v = 1 scheme due
to Platen

crtt = ¢gn +F(C”,tn) Aty +B<C",tn) AW,

+ 2\/1A—tn [B(C’",tn) - B(C",tn)] [(AWH)2 - Atn] : (70)
with the supporting value
C‘":C"+F(C",tn) Atn+B(C",tn> VAt (11)

where AW,, = /At,, N1 with 9,1 ~ N (0,1).

Multi-Dimensional Schemes: In the following we present strong Taylor approximations for the
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multi-dimensional SDE (52). In order to find the lowest strong order schemes in vector form,

we first introduce the auxilary vector
" ]B(C",tn) g, € R (72)

at the time level ¢,,, which represents the p*® column of the matrix B, and €p € R™ is a unit
vector with the entry “1” in the pt® row. Then, for the approximation o} (t) of the stochastic
variable V/ (t), we obtain from the ITE (65)

m
C'v’n-i-l = é’n+ﬁ<é",tn) I(O) +ZE$I(Q)
q=1

Y BV g + O(AE) (73)

Pq=1

where we used the result that £(») can be expressed by

£® — 5’; Ve

8C1* 8Cs 8C3
of the rhs (73), we obtain the forward Euler scheme of strong order v = 1/2. Including

T
with the nabla operator V., = ( o 9 9 ) . Considering only the first three terms

the remaining term, expression (73) establish the stong v = 1 order Milstein scheme, where
the analytical form of the diffusion coefficients are needed to perform the derivatives. The
explict — which means derivation free — strong Milstein scheme in the multi-dimensional case

is obtained by replacing the derivation according to

—on n ]- n an g ~n
bp Ve bq,i = \/Ttn [bq,z’ (Sp) - bq,i (C )] (74)
with the supporting vector
Sp = Cn+ A0 AC" = F(C, 1) At + 5 /Bt (75)

where by ; is the it component of l_;q" Similar to the one-dimensional case, the Ito integrals
of multiplicity one are approximated according to I,y = AW? = /At, ne i, with gl ~
N(0,1). However, an additional difficulty arise in computing the It6 integrals of multiplicity
two. In order to evaluate these integral, we adopt from the literature the result
% [(AI/VTZL’)2 — Atn] forp=gq

)

Lipg) = (76)

Jw.0) for p # q
which allows to compute the It6 integral I(, ;) from its Stratonovich counterpart J, o). It is
possible to represent multiple stochastic Stratonovich integrals in effectiv approximate way.
The method for multiple Stratonovich integrals based on the Fourier (Kahunen-Loéwe) series
expansion; for details we refer the reader to the books [24] or [23]. In essence, the series

expansion is truncated at Ps and the multiple Stratonovich integrals J;, j,,....j,); A+ are ap-
3(Ps)

(J1,525--
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proximated by Riemann-Stieltjes integrals RYUNT which converge to the Stratonovich



integral. After a simple, but lengthy computation we obtain the result (see also Appendix G)

At
Yo = 3 GG+ AR (“é”” & — ) fp)
At <5 1 /s 5
+ % ; ; Cp,r( 2€q + nq,r) - Cq,r( 251) + np,r) (77)
with
Ps
1 1 1
GRS TRE =D SrE (78)
r=1

where &;, Cjk, 7j,, and “g'PS)

are independent standard Gaussian random variables (which
means, zero mean and variance one: N(0,1)). It is obvious from the latter expression that
the strong Milstein scheme is numerical much more expensive than the strong forward Eu-
ler, because a lot of additional random variables have to be generated. Furthermore, if we
interpret It0 integrals as random numbers, it is clear from equation (77) that, especially high
multiplicity integrals possess a very complex “inner structure” which may be resolved by

standard Gaussian random numbers.

Numerical Experiment: In order to investigate the approximation behavior of the strong for-

ward Euler and Milstein scheme (73) experimentally, we consider the one-dimensional It
process V = {V(t) 0=t <t<T-= 1} satisfying

dv (t) = —% V(t)dt + V(t)dW(t) + V (t) dW?(t) (79)

on the time interval 0 < ¢ < 1 for the initial value V; = V(0) = 1, where W(t) and W2(t)
are two independent Wiener processes. Using the multi-dimensional Itd formula (53) for
& =1nV(t), we can immediately check that the SDE (79) has the analytical solution

V() :Vbexp{—gt+Wl(t) +W2(t)}, (80)

where AW (t) is determined from relation (42). For the comparison of the strong approxi-
mation of the SDE (79) according to (73) with the analytical solution (80), we organized the
simulation into M = 40 batches of N = 100 trajectories each and compute the mean € of the

batch average € from

1 M 1 M 1 N
= — E €& = — E — E |Vie(T) — Cjx(T)| (81)
M M N
k=1 j=1

for different discretizations At = 27" of the considered time interval, where C; ; (T') represents
the solution of the strong Euler or Milstein approximation. The results depicted in Figure 3.1,
where the mean of the batch averages € is plotted as a function of the discretization exponent n
for the Euler (full line with gradients), the Milstein (full line with squares; Ps = min(2", 512))
and the derivation-free Milstein (dashed-dotted line with open circles; Ps = 16) scheme.
Clearly, this plot demonstrate that the agreement between the Milstein scheme with and
without derivations is very good and suggests to use the less expensive derivation-free scheme.

Furthermore, we derive from the slope of the curves that the experimental order of convergence
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FI1GURE 3.1. Comparison of the mean batch average é (= eps) as a function
of the exponent n (corresponding to the discretization At = 27") for the
Euler scheme (full line with gradients), the Milstein scheme with derivations
(full line with squares; Ps = min(2", 512)) and the derivation-free Milstein
scheme (dashed-dotted line with open circles; Ps = 16).

is ~ 0.54 and ~ 1.01 for the Euler and the Milstein scheme, respectively, which agree very well
with the nominal strong order of v = 1/2 and v = 1. Finally note, that ¢ may be considered
as a (statistically) measure of the pathwise closeness at the end of the time interval [0, 1],
which represent the absolute error criterion. Moreover, the quality of the estimate (81) can
be assessed with the variance
M 2

of the batch averages, which is necessary to evaluate a confidence interval for € based on the
Student t-distribution [24].
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4. NUMERICAL FRAMEWORK: PIC IN VELOCITY SPACE

The key quantities to solve the Langevin-type differential equation are the velocity depen-
dent friction (3) and diffusion (4) coefficients at each time step ¢ = ¢,. For this purpose a
PIC-type, self-consistent numerical scheme is constructed in the velocity space. Schematically
a typical PIC-cycle is depicted in Figure 4.1. The peculiarity of this PIC scheme [19, 4] is the
fact that it is built in the velocity space, and then classically divided in two areas, one mesh-
free and one grid-based. In the following the different building blocks of the PIC scheme are

discussed in detail. For sake of clearness, we consider here a single grid cell of the spatial com-

Mesh-free

Langevin Solver -
F,D) ——aV' |
(F, D)= AV,

Reconstruction
n
Vp — f(VJ. )

-
-

-

-

-

Interpolation
(F, D)J. — (F, D)Io

PP L Rosenbluth Solver

Grid-Based

FIGURE 4.1. Schematical description of the Fokker-
Planck solver based on the PIC method in the velocity

space.

putational domain, containing a sufficient large number of particles (of a certain specie “a”).
Furthermore, if it is skilful and pedagogical sensible we will introduce the three-dimensional
formulation of the numerical schemes, else we switch to lower-dimensional descriptions which

could be straightforward generalized.

Associated with each local grid zone is a Cartesian mesh in velocity space with an equidistant
spacing Au, Av and Aw in z—, y—, and z—direction, respectively, which is built up according

to

Uik = w+@E—1DAu, 1<i<I+1
Vigk = Vot (j—1)Av, 1<j<J+1
wijre = wo+ (k—1)Aw, 1<k<K+1. (82)
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T
Here, u, v, and w are the components of the velocity grid vector @ ;1 = (u, v, w) and
4,4,k

T
(uo, 0, wo) are the coordinates of the starting point of the velocity grid.

Reconstruction Block (Localization and Assignment). From the actual location of the plasma

particles in mesh-free velocity space, the distribution function f(c) is constructed on the

Cartesian velocity mesh in two steps. At first the particles have to be located with respect

z
a,
(i,j,k+1) ¢~ = (i,j+1,k+1)
o,
(i+1,j,k+1)
7 - Y
,/
Ai+1,j+1 Re Ai+1,j
————————— ’-—————— (i,j+1,k)
Aiji Lo A /
s,
X ° (i+1,j+1,k)

FIGURE 4.2. Assignment of the particle’s velocity to the nodes
(grid-based model) and interpolation of the results obtained in
the nodes onto the particle’s position in velocity space (mesh-

free model) with the aid of the volume-weighting approach.

to the velocity grid. To identify the adress of the cell Z; ; where the particle’s velocity is

found, we apply the localization strategy

iy = AiuINT([Vl];; - uo) +1
iy = ﬁINT([Vg]Z —v) +1

1
ky = A—wINT([Vg]Z - wo) +1, (83)

R T
where V' = ([Vl]g, [Valy, [Vg]g) is the velocity vector of the p*! particle at time t, and
INT(.) denotes the integer part of a real number. Note, that the strength — namely, the
high efficiency — of this approach is a consequence of the equidistant grid spacing. Secondly,

after the particle is localized in the grid cell Z;, ;.
26

k, of the velocity mesh, we have to bridge



the gap between the mesh-free and grid-based computations. For this purpose we introduce
the relative weighting coordinates @) = (a? ) ag” ) (p ) of the pt* particle at t = t,

according to

agp) — Ai ( Uzp,Jp,kp)
o = - (Vl} Vit
agp) = 1 ( wip:Jp’kp)' (54

It is obvious, that the weights g

ik of the considered particle have to be calculated with

respect to the surrounding eight nodes of the grid (see Figure 4.2). The first step to do this,
is to compute the four areas of the section parallel to the (z, y)-plane, where the particle is

located. According to the area-weighting method [30, 19] we get

b = (1) (1-o)
Aipr; =aP (1 - ag’))
Agn = (1-af)of?
Aivigr =af” o . (85)

These areas form the bases of eight cuboids

(p) _
?i;; * =Aij '
Iijjht1 o)
(p) _
9it+1,5,k = Air 1—oaz
p 9,
9i41,5,k+1 agp)
(p) ()
gi,pj+1,k A 1— oy
g@ bt (p)
4,j+1,k+1 Qg
(p) 1—a?
9iv1,5+1  _ Ai1 1 3 (86)
g ’ ()
i+1,5+1,k+1 a3

which represent the relative coordinates @® depending weights of the pt* particle located in

the grid cell Z; As one would expect, the weights fulfil the relation

piipskp -

1
(p)
Z ng—mﬁu k+X =1, (87)
L, vA=0

and, obviously can be interpreted as fraction of the volume of the actual grid cell. Further-
more, the applied method may be considered as an extension of the well-known area-weighting

method to three dimensions and, hence will be called volume-weighting technique.

Rosenbluth Solver. The reconstructed field particle (scatterer) distribution function on the

velocity grid is used for the computation of the Rosenbluth potentials and their derivatives,
27



from which the friction and diffusion coefficients for the test particles are determined. In
order to be free of any model assumption — like isotropic distribution of the field particles —,
we apply Discrete Fourier Transformation (DFT) techniques [7, 6, 41]. As it is discussed in
detail by Brigham [7], the DFT represents a special case of the (continuous) Fourier integral
transformation, to which three “modifications” are necessary. The DFT in one dimension

may be defined according to

-1
1 o ire
fTZNZerZMT; 7=0,1,...,N -1 (88)
o=0
and
N—-1 )
fo=>_ £ ¥ 0=0,1,...,N-1, (89)
=0

where the signal f; in c-space and the spectrum fg in k-space form a discrete transform pair
indicated by f; & f(, 3. The application of the DFT implicitly requires a periodicity of the

discrete signal and spectrum
fr=fromn and fo = foymn ; m=0,£1,%2,... , (90)

which means, that the N sampling values of both representing one period of a periodic
(discrete) function. Instead to apply directly the discrete convolution to the integrals (6)

and (7), we use the DFT to get an approximation of the Fourier transform fscat(ks) =

oo

[ dege=?micsks £ 1(cs) of the field particle distribution fsq:(cs), where the quality of this
—0o0
approximation depends strongly on the shape of the signal under consideration (cf., [7]). Ac-

cording to the relations (8) - (11), multiplications are performed in k-space to obtain the
Fourier transforms of the Rosenbluth potentials and their derivatives. Afterwards, the DFT
is applied once again for the approximation of the inverse Fourier transforms from which the

friction (3) and diffusion (4) coefficients are computed in velocity space.

Numerical and Algorithmical Aspects of the FFT. A fast Fourier transform (FFT) is
an efficient algorithm to compute the DFT and its inverse. FFTs are of great importance
to a wide variety of applications, from digital signal processing to solving partial differential
equations to algorithms for quickly multiplying large integers [38]. The DFT is defined by the
formula (89) and can be rewritten as

N-1
Fo=) W"f; n=01,...,N-1 < F=Wf (91)
k=0

where the complex number W is given by
W = e—27rz'/N (92)

and fn is replaced by F), for convenience. In other words, the vector f is multiplied by a

matrix W, whose (n, k)-th element is the constant W to the power n -k, yielding the vector F

3Note, the comparison with the continuous Fourier transformations requires a scaling with Kg and Cs,
respectively, which are the constant sampling intervals in k- and c-space.
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with components F},. This matrix multiplication evidently requires N? complex multiplica-
tions, plus a smaller number of operations to generate the required powers of W. Evaluating
these sums directly would take O(N?) arithmetical operations [7]. The FFT computes the

same result in only (9<N log(N )) operations. In general, such algorithms depend upon the

factorization of N, but (contrary to popular misconception) there are O (N log(N )) FFTs for
all N, even prime n. The difference between N log(N) and N is immense: With N = 10° ,
for example, it is the difference between, roughly, 30 seconds of CPU time and two weeks on a
microsecond cycle time computer [39]. Since the inverse DFT is the same as the DFT, but with
the opposite sign in the exponent and a 1/N factor, any FFT algorithm can easily be adapted
for it as well. By far the most common FFT is the Cooley-Tukey algorithm. This method
(and the general idea of an FFT) was popularized by a publication of J. W. Cooley and J.
W. Tukey in 1965 [10], but it was later discovered that those two authors had independently
re-invented an algorithm known to Carl Friedrich Gauss around 1805 [16] (and subsequently
rediscovered by as many as a dozen individuals in limited forms [18]). This is a divide and
conquer algorithm that recursively breaks down a DFT of any composite size N = Nj Na
into many smaller DFTs of sizes N; and N», along with O(N) multiplications by complex
roots of unity traditionally called twiddle factors. Also, because the Cooley-Tukey algorithm
breaks the DFT into smaller DFTs, it can be combined arbitrarily with any other algorithm
for the DFT. Finally, although the basic idea is recursive, most traditional implementations
rearrange the algorithm to avoid explicit recursion.

One rediscovery of the FFT, that of Danielson and Lanczos in 1942 [11], provides one of
the clearest derivations of this algorithm. The Danielson and Lanczos lemma shows that a
discrete Fourier transform of length N can be rewritten as the sum of two discrete Fourier
transforms, each of length N/2. One of the two is formed from the even-numbered points of

the original N, the other from the odd-numbered points. The proof is simply this:

N-1 ]
I, e )
F, = ) "N f

J=0
N/2-1 N/2-1

— o 2miF (24) foj + Z e 2mi % (24+1) fajn
Jj=0 Jj=0
N/2-1 . N/2—-1 .

— L — LI

— e 27'er/2 f2]+WTb Z e 27rtN/2 f2j+1
Jj=0 Jj=0

— e n o

= FE+WNE?. (93)

In the last line, W is the complex constant, F¢ denotes the n'" component of the Fourier
transform of length N/2 formed from the even components of the original f;’s, while F? is the
corresponding transform of length N/2 formed from the odd components. It is worthwhile to
note that the evaluation of the DFT by just one splitting of the input sequence requires N?2/2
multiplications and N?/2 additions which is a factor-of-two-savings, that is encouraging for

further splitting. Although there are ways of treating other cases, by far the easiest case is the
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one in which the original N is an integer power of 2. With this restriction on N, it is evident
that we can continue applying the Danielson-Lanczos lemma until we have subdivided the data
all the way down to transforms of length one. The Fourier transform of length one is just the

identity operation that copies its one input number into its one output slot (.7-" {A ) (t)} = A,

with A = constant )!

This algorithm which belongs to the class of the decimation-in-time since it involves the
splitting of the input (or time) sequence consists of two phases: a reordering stage in which
the input array is successively subdivided into even and odd sequences and a combine phase,
in which sequences of length 1 are combined into sequences of length 2 then sequences of
length 2 into sequences of length 4 and so on until the final transform sequence is formed
from two sequences of length N/2. The following table 4.3 explains how to perform the

former phase in a smart way, by means of the so-called bit-reversing order [39, 7]. Suppose

0 L A 6 o 10
AN EE e

bl 0 46T S0
70 W0 f 00 00 f o oo f g o
SRR

FIGURE 4.3. Reordering phase in the case

of 8 samples.

that the input array consists, for simplicity of 8 samples, numbered from 0 to 7 (line 2).
Moving the evens on the left side of table and the odds on the right means in other words
to separate those positions which have rest 0 from those which have rest 1 when divided by
2, as indicated in the third line, yielding two sequences by four elements each. Inside these
two new sequences (line 4) it is still possible to distinguish even and odd positions, which
are rearranged as showed in line 6. This step corresponds to a further division by 2 whose
rest is indicated as the second digit in line 5. Keeping on splitting the input sequence in
an even/odd fashion until N sequences of length 1 remain, and assigning successively a 0 to
the even and a 1 to the odd sequences, is evidently nothing else than the standard technique
to convert from decimal to binary notation. Observing the first and the penultimate line of
the table, it is evident that the original array is now rearranged in a fashion which could be
directly obtained by simply reversing the binary sequences of its original entries, i.e. position

number 44, (100)2 , goes finally to position 1, because 119 = (001)2.
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FIGURE 4.4. Combine phase in the case of 8 samples.

The combine phase starts now with N trivial one-point transforms. Then the sequences of
length 1 are combined in pairs (fo with f4, fo with fg ...) according to formula (93) to form
DFTs of length 2 (see table 4.4). Again, DFTs sequences of length 2 are combined in pairs
(Xo and X7 with Yy and Y3 ...) to form two DFTs of length 4 (N/2) and finally these two
are combined to form the desired F}, (see table 4.4).

Each combination takes of order N operations, and there are evidently log,(N) combinations,
so the whole algorithm is of order N log,(N) (assuming, as is the case, that the process of
sorting into bit-reversed order is no greater in order than N log,(N)). This, then, is the
structure of an FFT algorithm: It has two sections. The first section sorts the data into
bit-reversed order, but this takes no additional storage, since it involves only swapping pairs
of elements (If k; is the bit reverse ka, then ks is the bit reverse of k1). The second section has
an outer loop that is executed log, IV times and calculates, in turn, transforms of length 2, 4,
8, .., N. For each stage of this process, two nested inner loops range over the subtransforms
already computed and the elements of each transform, implementing the Danielson-Lanczos
lemma. The operation is made more efficient by restricting external calls for trigonometric
sines and cosines to the outer loop, where they are made only log,(N) times. Computation
of the sines and cosines of multiple angles is through simple recurrence relations in the inner

loops.

Problems and Remedies. The most important class of signals appearing in practical
applications are those with an arbitrary unlimited shape in c-space which are not band
limited in k-space. To obtain a discrete signal one has to multiply the arbitrary distribution

o
function fscat(c) with the sampling (or repetition) function repg d(c) = Y. &(c —nCs)

n=—0oo

(with the transform pair: repc d(c) & Z-rep; /o, 8 (k) ) to get

fs(€) = fscat(c) repe 6(c) = Z fscat(nCs) 6(c—=nCy) , (94)

n=-—00
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where C; is the sample interval. In general, the spectrum fscat(k) of the signal fscq:(c) is
not band limited and aliasing is natural consequence of the sampling process. To reduce the
influence of aliasing it is recommended to sample the signal with high “frequency” 1/C; which
means, with a sufficient small Cs.

Clearly, the discrete signal (94) is not suitable for numerical purposes because an infinite
number of sampling points are used. Therefore, the sampling signal f4(c) have to be limited

in velocity space by the application, for instance, of the rectangle function of unit height
recte, (¢) = - S (95)

where Cj is the duration of the limitation and rectc, (c) < e~ 7k(Co—Cs) % Then, the

velocity limitation yields

N-1
fule) = fa(c) rectoy (0) = D facat(nCs) 5(c = nCy) (96)
n=0

where it is assumed that N equidistant d-functions occur within the period of observation, that
is Cp = N (. The difficult point concerns the choice of the duration of the observation. It is
well-known that for the ideal case of a band limited periodic signal the observation duration
Co should be the period of the signal or a multiple of this period. Otherwise — greater than a
period —, additional “frequency” components are generated in the Fourier transform fscat(k),
which leads to ripples in the spectrum and sharp discontinuities of the signal in velocity space.
These discontinuities are also expected in the case of an arbitrary signal, where the period is
determined by the number N of sampling points. A convenient remedy to cure these “errors”
(side lobes amplitudes) is to replace the rectangle velocity limitation by a more appropriate
window functions. The net effect, for instance, of the Hanning-function is a strong attenuation

of the rectangle function induced discontinuities [39, 7].

Interpolation Block. After the grid-based computations are executed, the essential information

(derivation of the Rosenbluth potentials) has to be brought onto the particle location in
velocity space. This link between the grid-based and mesh-free numerical model is established
by the interpolation step, which is nothing else than the inverse operation of the assignment
procedure. The friction and diffusion coefficients R,(t,) = {Fp, Dyo; o, =1, 2,3} at the

velocity V;)" of the pt® particle at time ¢,, are computed from the coefficients RY; \, stored at

the surrounding nodes ¥; ;1 of the actual velocity grid. For this task, we apply the volume-

weighting interpolation formula [19]

1
Ry(tn) = Z 9§i)u,j+u,k+/\ Rivpjaven s (97)
w,vA=0

where the weights ggg.),k

particle-based weights (97) have to be computed only once at the interface mesh-free/grid-

are already determined in the assignment step. The fact that the

based and used for assignment as well as for interpolation is a very attractive feature, which
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enhance the efficiency of the numerical scheme. Finally note, that the way of computing the
particle weights (86) reveals that interpolation and assignment are multidimensional linear

approximations.

Langevin Solver. Simulations of phenomena caused by a non-neutral plasma requires the

solution of the time-dependent Maxwell-Vlasov equations in two or even three dimensions in
space [32]. The numerical method of choice to solve this non-linear problem is the PIC method.
There, the Lorentz force at the charged particle position is responsible for the redistribution
of the different particle ensembles. The new phase-space coordinates are obtained by the
numerical solution of the deterministic Lorentz equations, where the special tailored leapfrog
scheme of Boris is applied [5]. In the context of the present PIC approach, the Langevin
“forces”, which consists of the deterministic friction and the stochastic diffusion moves the
particles in velocity space. Under the action of this velocity-dependent Langevin forces, each
particle evolve in velocity space according to the Langevin-type equation (52). However,
this equation represents a SDE whose mathematical character contrasts sharply with the
deterministic Lorentz equation. Especially, this fundamental difference find expression in the
numerical approximation of the stochastic law of dynamics (52). Within the here considered
Fokker-Planck module, we are interested in the individual trajectories of the dynamical system
described by this SDE. To obtain a pathwise good approximation of equation (52) in our direct
simulations, we apply explicit strong It6-Taylor schemes. As discussed in detail previously
(see Section 3.6), we used the scheme
3

grtl = gn +Atnﬁ(én,tn) + Aty ZE: ney1  (Euler)
g=1

+ b Veb T (Milstein) (98)
p,q=1
which converges strongly with order up to v = 1, where 5}, ~ N(0,1) and the derivatives
and I, o) are approximated by (74) and (76), respectively.
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5. RESULTS

The goal of this section is the assessment of the Fokker-Planck module which is used for the
self-consistent computation of the friction and diffusion coefficients arising from the diffusive
treatment of intra-species collision. For that, we first present a sequence of numerical experi-
ments in one-dimensional velocity space in order to study the quality, property and reliability
of the approximation characteristics of each building block of the FP module seperately. Af-
terwards, a further numerical test problem should demonstrate the approximation properties
of the complete code. Finally, in order to gain additional experience with the applied nu-
merical methods, we consider the collisional relaxation of an isotropic non-Maxwellian to the

equilibrium particle distribution function.

5.1. Experiment 1: Mesh-free / Grid-based Interface Handling. Since interpolation
is the inverse operation of the assignment procedure, we restrict ourselves to inspect the latter
one in this experiment. For this, we generate N = 10* Gaussian distributed (pseudo) random
numbers with mean p = 3 and variance o2 = 4 according to the Miiller-Box method [39] and
the transformation

Xi=oG;+p; i=1,...,N, (99)
where G; ~ N(0, 1), which represent the velocity of the N particles in mesh-free velocity space.
After the localization with respect to the velocity grid, each particle contributes according
to its weights (86) to the particle distribution function, which is depicted in Figure 5.1 for
a coarse (Ng = 32) and a fine (Ng = 64) velocity grid. As we would expect, the Gaussian
recorded on the coarse velocity mesh (line with open circles) is slightly broadened compared
to the analytical result (full line), which results in the reduced maximum height. Clearly, the
doubling of the discretization points (Ng = 64) cures this inaccuracy as seen in the lower plot
of Figure 5.1. From this numerical experiment we conclude that the linear approximation
established by the assignment and interpolation procedures in conjunction with a moderate

fine discretization of the velocity grid is sufficient for our purposes.

5.2. Experiment 2: Grid-based Approximations (Rosenbluth Solver). The central
task of this building block is to provide the grid-based Rosenbluth potentials and their deriva-
tives. For this, we apply DFTs which are most effectively algorithmical realized by FFT
techniques. To demonstrate the quality and property of the coded Cooley & Turkey algo-
rithm, we simulate the approximation path outlined in sub-section 2.2.1 inclusive the back

transformation to velocity space. For that, we prescribe the Gaussian

2 w?
flw) = oz exp <—%> (100)

with the temperature T = 10 eV on the velocity grid. Afterwards, we compute the convolu-
tions (8) - (11) in k-space and perform the inverse DFT to velocity space. The results of this
proceeding (open squares) and the analytical solution (full line) is seen in Figures 5.2 till 5.4,
where the velocity space is discretized by Ng = 32 grid points. Obviously, this comparison

indicates that the Rosenbluth solver produces accurate approximations and runs in a very
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FIGURE 5.1. Reconstruction of the velocity
distribution function from N = 10* particles
with Gaussian distributed random velocities
(b = 3, 0 = 2). The discretization of the
velocity grid is established by Ng = 32 (up-
per) and Ng = 64 (lower plot) nodes.
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FIGURE 5.2. Fiction coefficient as a function
of velocity obtain with the Fourier approach
(squares: Ng = 32 and circles: Ng = 64 grid

points) and the analytical solution (full line).

reliable manner. In order to investigate the influence of the velocity-grid discretization to
the approximation behavior, we rerun the computations for a finer (Ng = 64; open circles)
mesh. For comparison, these results are also plotted in the Figures 5.2 - 5.4. Clearly, we
observe the tendency of the finer grid to better resolve, especially, the high-energy tail, which
is explicitly seen in Figure 5.3, where the second derivative of the Rosenbluth potential G
is approximated. The results obtained with the Rosenbluth solver recommend this building
block for the application of self-consistent friction and diffusion coefficients computing arising

from Fokker-Planck treatment of collisions.

5.3. Experiment 3: Mesh-free Approximations (Langevin Solver). The particles law
of motion in mesh-free velocity space is established by the SDE (39), where the friction and
diffusion coefficients are unknown functions of velocity and time. The intention of the present
experiment is to study the approximation behavior and quality of the applied explicit It6-
Taylor schemes (98), which are one building block of the Fokker-Planck module. To do this,
we start from the very simple — but analytical solvable — situation, where the friction and

diffusion are given by

F(V,t) =—aV(t) and D(V,t) =02, (101)
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FIGURE 5.3. Velocity-dependent parallel dif-
fusion coefficient computed with the discrete
Fourier approach (squares: Ng = 32 and circles:
Ng = 64 grid points) and the analytical solution
(full line).

respectively, with constants a and o. The corresponding linear SDE (which is the Langevin

equation) reads as
dV(t) = —aV(t)dt + o dW (1) (102)

and possesses the analytical solution [23]
¢
V(t) — e~ (t—to) Vo + Ue_at/dWS e (103)
to

where Vj denotes the initial value at t = ¢9. Note, that the additive noise random forcing (102)
is also known as (one-dimensional) Ornstein-Uhlenbeck process [15, 23]. If we interpret the
appearing It integral in (103) as a random number, then V' (t) represents a time-dependent

random number whose mean and variance are found to be [23]

my(t) = e ¢ (t-0) 7 (104)
and
2
205y = 7 (1 _ o—2a(t—t0)
s2(t) 2a(1 e ) , (105)

respectively. Furthermore, we note that the FP equation for the transition probability p(V,t)

corresponding to (102) (see Section 3.4) also has a closed solution of the form (see Appendix
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G)
V) = Lo T (106)
) = € 2o )
P V2Tsy

where m, and s, are given by (104) and (105). Clearly, for large times ¢t >> o the mean
value m, vanishes and the variance tends to s2 — %, which means that both p(V,t — o)
and the corresponding probability density function arrive their equilibrium states.

The short discussion suggests to design the numerical experiment in such a way that the
mean and variance as well as particle distribution (on the velocity grid) are “measureable”
quantities which could be compared with their analytical counterparts. For that, we use
N = 4-10* test particles, where each of them has the same initial velocity Vo = 2 (we drop
the units in this experiment, for convenience) in the mesh-free velocity space. Afterward, all
particles are forced according to the Langevin equation (102) — which is solved by the schemes
(98) for At = 2.5-10~* —, where the constants are fixed equal to a = 0.5 and o = 2. The
observables of the numerical experiment in mesh-free space are the mean and variance which

are determined according to

NOEES A (107)



and

~ 1 - 2
20 = 57 2|V — (0] (108)
I):
respectively, where V,(¢) denotes the actual velocity of the particles. These quantities as well
as their analytical counterparts (104) and (105) are recorded each 500 temporal cycles. The
results for the mean value and the variance are depicted in Figures 5.5 and 5.6, respectively,
where the Euler approximation (line with filled squares) and the exact solution (full line)

is plotted. Obviously, the overall agreement of the numerical result with the analytical

Exact
—&— Order0.5 (Euler}
—— Order1$

Mean

FIGURE 5.5. Temporal evolution of the
mean value of the Ornstein-Uhlenbeck pro-
cess. Full line: exact solution, line with filled
squares: Euler approximation (y = 0.5), line
with open circles: v = 1.5 strong order It6-

Taylor scheme

solution is very satifactory. The deviations between the Euler approach and the exact result
seen for the mean value in Figure 5.5 can be “cured” by using, for instance, a v = 1.5 strong
order It6-Taylor scheme [24] (line with open circles). Note, that v = 1.5 is the next ’valid’
order of approximation because the coefficient function B(V,t) is constant for the Ornstein-
Uhlenbeck process (see scheme (69)). An overview of the temporal evolution of the particle
distribultion function on the velocity grid is seen in Figure 5.7, where the Euler approximation
is used to solve the Langevin equation (102). These snapshots clearly demonstrate that the
particle distribution of the Ornstein-Uhlenbeck process tends to the expected Gaussian shape
distribution. We emphasize that this equilibrium state is reached approximately at ¢t = 5 (see

also Figure 5.6); afterward, the change of the shape is hardly visible in this representation.
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line).

A further comparison between the numerical results of the Euler scheme (open circles) and
the exact solution (full line) is seen in Figure 5.8, where the particle distribution function on
the velocity grid is plotted at time ¢ = 10. This as well as the other results presented in this
section convince us from the quality and reliability of the Langevin solver which is now used

for self-consistent collision simulations.

REMARK: This numerical experiment is tailored to study the moments of the particle veloci-
ties which are represented by random numbers (103). This means, that we are not interested in
pathwise good approximation of the SDE (102). In fact, we used the strong It6-Taylor schemes
based on Gaussian distributed random numbers for the so-called weak approximation of the
Langevin equation (102) [24]. In this case, we have much more freedom in generating the
“noise increments”, that is, we can use here two- or three-point distributed random variables
instead Gaussian random numbers. Furthermore, note that the (weak) approximation order
in the considered case is 8 = 1 and 8 = 2 for the applied Euler and It6-Taylor schemes,

respectively.

5.4. Experiment 4: Interplay of the different Building Blocks (Fokker-Planck
Module). This numerical experiment is designed for the assessment of the applied numerical

methods coded in the FP module. Moreover, diagnostic tools are introduced to get a better
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characterization of the relaxation process, which could help to identify possible insufficiencies
as well as to suggest further improvements.

The starting point of the current experiment is the fact that the isotropic function h(c) =
c? f(c) with the Gaussian distribution f(c) (see relation 100) represents a solution of the FP
equation (38) [29]. According to the results of Section 3.4, the corresponding Langevin-type
SDE has the form

AV (t) = [F(V) + DLT(V)] dt + \/Dy(V) dW (t) , (109)

where the friction and diffusion coefficients for the isotropic case are given by (16) - (18) and
plotted in Figure 2.2. Clearly, for isotropic considerations the latter equation (109) is coded
in the Langevin solver.

The numerical experiment is initialized as follows: In the mesh-free velocity space, the initial

velocities V, of the N = 2-10° particles are determined from

Vpo - \/Vp%l + ‘/;7%2 + VPZ,3 ’ (110)

where the V), ; ~ N(0,02) are independent identically distributed Gaussian random numbers
(with mean zero and variance o = v3). This procedure ensures that the initial velocity

distribution of the particles — which is the probability density function of the random numbers
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V) — is a Maxwellian [20] of the form

2 2 c2
h(c,0) = go(c) = Wortrbad o (111)
th th

where the thermal velocity v} = kpT./me is adjusted for a temperature T* = 10 eV.
Subsequently, the PIC cycle seen in Figure 4.1 is 2 - 10* times passed through, which is
equivalent to a simulation time of approximately 354.5 ns. Throughout this computation
the velocity grid which is needed for the Rosenbluth solver consists of 26 = 64 grid points.
A first result is depicted in Figure 5.9: There, the theoretical (Maxwellian) curve (full line)
together with the numerical solution (open circles) is plotted after 2 - 10* iterations. As we
expected, the temporal evolution of the distribution function obtained from the simulation
stays very close to the Maxwellian shape. Moreover, this result demonstrates that also the
high-energy tail is reproduced very well, although the resolution of this part is often critical
owing to the low number of particles. Furthermore, the friction (16) and transversal diffusion
(18) coefficients obtained from the simulation (open circles) after 2 - 10* iterations and the
analytical result for a Maxwellian (full line) are seen in the Figures 5.10 and 5.11, respectively.
Obviously, these results once again document the high approximation quality and reliability
of the Fokker-Planck solver. A basic concept for the characterization of an arbitrary (that

means a non-equilibrium) velocity distribution function is the method of moments. Here, the
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k*" moment of the distribution function f, = f,(x,c,t) of specie “a” is defined by

<ck >a:/ckfad3c i k=1,2,... , (112)
Q

where it is assumed that the velocity distribution is normalized: [ f, d®c = 1. The temporal
Q
evolution of the first two moments < ¢ >, and < ¢2 >, of the grid-based velocity distribution

function f. = h(c,t) are seen in the Figures 5.12 and 5.13, respectively, together with their
analytical counterparts. Obviously, the plots indicate that both numerical results (line with
open circles) are below their exact values (full line) and slightly decrease in the course of the
simulation. The observed deviations from the exact values may be attributed to the relatively
“poor” approximation order of the Langevin solver (y = 1/2) and the damping due to the
linear assignment and interpolation procedures. The further helpful quantity in characterizing

the distribution function is the variance
Vary(c) = 02 =< (c— < ¢ >a)” >a, (113)

which estimates the mean squared-deviation of ¢ from its mean value. The temporal evolution
of this measure is monitored in Figure 5.14, where the numerical result (line with open circles)
and the exact value (full line) are plotted. The slightly increasing shape of the curve above
the exact value can be interpreted as natural consequence of assignment and interpolation
which tend to broaden the distribution function resulting in an artificial heating of the particle
ensemble. Another important figure of merit in analysis of systems in non-equilibrium is the

local H-function [46, 12] applied in the form

Ha(xat) =—-< ln(fa) >a (114)
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which can be ascribed to Boltzmann (1872). This quantity can be used to show that the
entropy of a closed system can only increase in the course of time till it approaches a limit for
very large times (H-theorem) [44, 12, 3]. In this respect, this quantity provides an appropriate
measure of the extent to which the conditions of a system deviates from that corresponding to
equilibrium. As shown in Figure 5.14, in this experiment the H-function stays approximately
constant — besides small numerical oscillations — and slightly above the exact value, remarking
the fact that the whole code can hold a steady-state solution quite well and confirming a very

good synergy of the blocks previously considered.

5.5. Arbitrary Isotropic Initial Distribution. The final numerical experiment is tailored
to study the collisional relaxation of an arbitrary isotropic initial velocity distribution to its
equilibrium from first principles. The shape of the initial velocity distribution (see Figure
5.17 dashed-dotted line) is given by
3%, fore<®
h(c,0) = go(c) = * ; (115)
0, forc> v
where @ is set equal to & = v/5 vy, with a thermal velocity vy, corresponding to a temperature
of T = 10 eV. To establish such a velocity distribution, the initial velocities Vz? of the
N, = 2-10° particles are chosen according to V) = o Up/%, where the U, € [0, 1] are uniform
random numbers between 0 and 1. The temporal evolution of the initial distribution (115) is
monitored up to 2-10* cycles in time, where time step size is fixed equal to At = 0.177 ps and

the discretization of the velocity grid is performed by 64 grid points. The first measurement of

15
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FIGURE 5.16. Temporal evolution of the
H-function for the initial velocity distribu-
tion defined by relation (115).
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interest is the temporal evolution of the H,(t)-function (114), because the curve progression
yields some information whether the equilibrium state of the system is reached or not. From
Figure 5.16 we conclude that the equilibrium velocity distribution should be existent after

approximately 150 ns (~ 8400 iterations). A further simulation result is depicted in Figure
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8E-07

6E-07

h(c)

4E-07

2E-07

0 2 5E+06 5E+06 7.5E+06 1E+07
c [m/s]

FIGURE 5.17. Temporal evolution of the
initial velocity distribution (dashed-dotted
line) to its equilibrium distribution func-
tion recorded after 10* iterations (open cir-
cles). For comparison a Maxwellian is plot-
ted (full line) corresponding to a tempera-
ture of T} = 10 eV.

5.17, where the initial profile (dashed-dotted line) and the equilibrium velocity distribution
(open circles) recorded after 10* temporal iterations are plotted. Additionally, the Maxwell
velocity distribution corresponding to a temperature of T = 10 €V is seen in Figure 5.17
as a full line. Clearly, this plot demonstrates that the final state of the collisional relaxation
process agrees very well with the analytical Maxwellian shape for 10 eV. Note, that the
numerical simulation slightly underestimate the high-energy tail of the velocity distribution.
This observation is once again confirmed in Figure 5.18, where the function f(c,t) = h(c,t)/c?
recorded after 2000 (dashed), 6000 (dashed-dotted line) and 14000 (line with circles) iterations
is plotted with the analytical result (full line). Similar to previous investigations [27, 1], we
observed for the proposed collision model that the high-energy part of distribution relax more

slowly than the core of the velocity distribution function.
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6. OUTLOOK

The most important near future goal is the extension of the existing Fokker-Planck module
to a highly efficient, three-dimensional parallel production solver. For that, the reconstruc-
tion and interpolation strategies outlined in this report are already coded and tested. The
three-dimensional FFT based on the algorithm of Cooley and Tukey is implemented, and
an intensive testing campaign has been started to assess this building block. The low order
FEuler scheme for the numerical solution of the three-dimensional Langevin-type equation is
available. However, higher order strong Ito-Taylor approximations seems to desireable in our
opinion. Therefore, an explicit Milstein scheme has be constructed as proposed above, which is
tested in a less optimized version. In order to parallelize the Fokker-Planck solver, we employ
domain decomposition methods similar to those discussed in [41], where the parallelization
tools MPI and OpenMP are used. However, this item in conjunction with parallelization en-
deavor of the complete hybrid code is still under investigation.

A further focal point will concern the question how to reduce statistical noise due to the finite
number of particles in a spatial grid cell. This difficulty may be removed somewhat by averag-
ing the particles distribution over several spatial cells to get a better statistical representation
[41]. The possible drawbacks of such a proceeding are nonlocal (in space) momentum and
energy exchange among the particles, which seemed to disagree with the physical situation on
hand. An alternative to this approach consists in creating additional particles before sampling
the distribution function on the velocity mesh and destroying these particles after the grid-
based computations are finished [1, 47]. Another remedy for noise reduction may be obtained
by the fact that the short-time behavior of the distribution function is characterized by a
diffusion process. This means, the mean and variance have to be computed in an appropriate
manner to estimate the local velocity distribution function. All the mentioned techniques
should be assessed in near future to find out the suitable aspirant for the three-dimensional
Fokker-Planck solver

A further focus of our scientific activities will include the construction and optimization of
high-order approximations of the multi-dimensional Langevin-type equation. In this context
additional investigations should decide whether both weak and strong approximations are

suitable to model electron-electron scattering.
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APPENDIX A. BOLTZMANN COLLISION INTEGRAL AND FOKKER-PLANCK APPROXIMATION

The Boltzmann collision interal (cf. [29, 13]) is given by
(%) =D np(x.t) /d3w dQ? g Qap [%g(c’,w’) - ®,5(c,w)| , (116)
col B

where ®,3(c,w) = fu(c) fg(w) is the product of the test and field particle distribution
functions. Here, the index § runs over all “scattering” populations (field particles), ng is the
local number density of the field particle specie “8”, g = |g| = |c — w| is the absolute value
of the relative velocity, Qa3 = Qa,8(9, X, ) is the differential scattering cross section (in
the CM system) between the particles of the species “a” and “B” and the element of solid
angle dQ is given by dQ = sin x dx dp (x: scattering angle, : azimuthal angle). Moreover,
the prime refers to the value of a quantity after a collision and unprimed denotes the values
before the collision. In order to obtain from the collision integral (116) the Fokker-Planck
approximation, the following laws and approximations are applied. First, to describe charged
particles interaction we use the Rutherford differential scattering cross section (see Appendix
B). During the elastic collision g is rotated to g’ = ¢’ — w' with |g'| = |g| and, furthermore,
¢’ = c+Ac and w' = w+ Aw is assumed for small angle (large impact parameter) scattering,
where Ac and Aw are, respectively, given by Ac = mqg/mq Ag and Aw = —myg/mg Ag.
Then, a Taylor series expansion of ®,5(c’,w') is performed up to second order. Taking
into account conservation of momentum and performing some rearrangements, we can write

Ag = g' — g according to
Ag=gd(x; %), (117)
where the angle-dependent part is given by
—2sin®(x/2)

&(x,;) = | sinxycosp | . (118)
sin x sin ¢

Besides, the vector quantity (117) the tensor quantity
AgAgl =g T (119)

appears in the resulting expression of the approximated Boltzmann collision integral. For
small angle cut-off xmin (see Appendix B), the integration over the azimuthal and scattering

angles yields

27 T

<Ag> = /dso / dx sin€ Qap(X, ) Ag
0 Xmin
4w C? [ X ] g
= ———Infsin({Z)|e;, e == 120
miﬂg2 (2) g ( )
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for the vector and

27 T
<AgAg'> = /dso / dx sinx Qas(x, ) Ag Ag”
0 Xmin
47 C? 1
= —mg—cjfln [sin(%)] p (]I—ew ef) (121)
ap

for the tensor quantity, where expressions like 87 [1 + cos xmin] and 8 cos? (xmin/2) are

neglected, because they are very small compared to In sin(%) for small ¥ = Xmin. After

performing some straightforward but lengthy algebra, we finally obtaion the FP equation
(1) given in Section 2, which represents the lowest order approximation to the Boltzmann

integral (116) and takes into account small-angle scattering of point charges on the Coulomb

potential.
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APPENDIX B. DIFFERENTIAL RUTHERFORD SCATTERING CROSS SECTION

The classical Rutherford differential scattering cross section of two charged particles of

[{Pl

types “a” and “B” is given by (see, for instance [28])

1/ C\° 1
Qap(g: x> 90) = (maﬂ) . Sin4<§) (122)

where mqg denotes the reduced mass and the constant C'is given by C' = — ZZZZ . This result

is obtained for a Coulomb potential (V' = C/r) for which it is well-known that the total cross

section for isotropic scattering

or(g) =2n / Qap(g, x) sin xdx (123)

diverges at the lower boundary (£ = 0) as a consequence of this potential. Under the assump-
tion that the Coulomb fields of all particles are screened by the collective behavior of these
charges, the effective range of the Coulomb force may be estimated by the Debye length Ap:
1 Ny q(21
— = . 124
/\%) Z €0 k Ta ( )

a

Clearly, this length represents a natural estimation of the maximal impact parameter by ax =

AD, to which the minimal cut-off scattering angle xmi, is related according to

a(3) =53] - == =

2
1+(%)

for b = Ap, where by = m‘i‘gz is the impact parameter for xy = 7/2 scattering. In the case,
where by /Ap < 1, the minimal scattering angle is simply given by
. Xmin) bO 1
N— = — 126
sin(35) ~ 55 = 1 (126)

where A is defined by A = Ap/by and can be interpreted as the measure of the number
of particles in a sphere of radius Ap and is sometimes called “plasma parameter” in the
literature. For practical estimations and calculations it is sensible to approximate the mean

1

kinetic energy roughly by the thermal energy — $mag g ~ % ks T, — and replace by by

B = |90 (IB|
0= T -
127eq kg T,

Clearly, expression (126) relates the small scattering angle cut-off to maximal impact pa-

(127)

rameter by.x = Ap, which reflects the collective screening in a plasma. Obviously, it is not
amazing that the cut-off scattering angle y i, is responsible for the main contribution to the

totat Coulomb cross section according to (123):
or(g) =A% . (128)

Especially, if the parameter A is very large, large-angle collisions among plasma particles can
be neglected and the collisional dynamics is dominated by small-angle collisions, which is
well-modeled by the Fokker-Planck approach.
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APPENDIX C. SHORT-TIME SOLUTION OF THE FP EQUATION

To obtain the short-time solution S(c,t) of the FP equation (2) in Section 2 for given initial
data

Sole,t) = 6(c - co) : (129)
it is sufficient to study the solution of the equation
oS a8 0?8
P 24D, — . 1
ot P de, P OcpOcy (130)

This is correct, because for small 7 the solution of the FP equation will be sharply peaked
and, hence, the derivatives of the friction F, = Fp(c,t) and the diffusion Dp; = Dyq(c,t)
coeflicients can be neglected compared to those of S. Consequently, we will assume that Fj,
and D, are approximately constant within the time interval [¢, ¢t + 7]. To find the solution
of problem (130), we apply Fourier transformation techniques and exploit some properties of

this transformation to obain the result

R e—ik-co ) 1 T
$06,7) = Goryarm o —(zF-k+§k ]D)k)r , (131)

where 7 denotes the small time increment. To get the inverse Fourier transformation of the

latter equation we define the following auxiliary vector and matrix
V = ¢c—¢cg—7F (132)
D = [rI]D, (133)

where I denotes the identity. Since the diffusion matrix I (and consequently D) is a symmetric
matrix, it is convenient to apply the substitution
z=k—iD 'V (134)
to find the relation
k"Dk —2iV-k=2"Dz+VID 'V, (135)
To solve the remaining integral [ d3z exp{—%zT ]fl)z}, we once again apply the fact that D

— 00
is symmetric, which guarantees that there exists an orthogonal matrix @ with the property

S = 0" DO = diag[5?, 33, 52]. Finally, a straightforward computation leads to the result

S(c,7) = 7JH~V1| exp{—%VT ]folV}

(27)3/2
Graprs ezl rB D e m} s

which represents the back transformation of expression (131) and the solution of (130), where
dc = ¢ — ¢g. Clearly, this result represents a (two parameter) Gaussian distribution for dc
with mean value 7 F and variance 7 D. Note, that the matrix of the standard deviation B can
be expressed according to

V7B = /708Y20"
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where Q is a orthogonal matrix and S = Q' DQ = diag[s?, s3, s2]. Under the assumption

that D = diag[Dy, D2, D3] holds, we can immediately recast equation (136) into the form

3
1 (Ca - l/'a)2 }
S(e,7) = expq — , 137
R = (137
where the abbreviations
Pa =V0a+T7F, and o2 =71D, (138)

are used, which are, respectively, the mean value and the variance of the o Gaussian normal

distribution.
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APPENDIX D. THREE DIMENSIONAL SOLUTION OF THE LENARD-BERNSTEIN MODEL

In the following we briefly sketch the analytical solution of the Lenard-Bernstein model
(see, [37] for the one-dimensional and [12, 42] for the three-dimensional case), which is also
known in the literature as the Ornstein-Uhlenbeck process. The model is established by the

assumption that the friction force and the (symmetric) diffusion tensor are given by
F(x,c,t) = —Ac and D(x,c,t) =D(x,t), (139)

where the matrix A € R3*3_ in general, may be depend on x and t. Then, the FP equation

for the transition probability P(c,t) = P(c,t|(co,to) can be written as

0P(c,t) 1 0?P(c,t)
OpP(c,t) — Apgcq =Tr(A)P(c,t) + 5P W )

T (140)

where Tr(A) denotes the trace of the matrix A. This equation is complemented by the initial
condition FPy(c) = P(c,to|co,to) = d(c — cg). In order to replace the left-hand side of the

latter equation by the substantial derivative, we introduce the variable transformation
u=etl-tle & c=e Aty (141)

and get after some algebra the equation for P(u,t) = P(u,t|ug,to)

dPElltl7 ) _ Tr(A) P(u,t) + %VS A (t-t0) T A7 (-10) 7 (v, ¢) (142)

with the initial data Py(u) = P(u,to|ug,to) = 6(u — ug). Applying a Fourier transformation
A o .
according to P(k,t) = —L55 [ d*ue ™ ™“P(u,t), yields an ordinary differential equation

(o)

in time whose solution reads as

A~

Plk,t) =

1
72 exp{Tr(A) (t —to) —iul k — 5kTM k} , (143)

(27)

where the initial condition Py(k) = We_“"“o already has been inserted and M is given
by

t
M = / e (5=t0) T) A" (s=t0) gg (144)
to
To perform the integration with respect to time, we consider
eA(S*tO) D eAT (Sfto) — di I:eA(Sfto) G eAT (sfto) (145)
s

and conclude that G has to be a symmetric matrix (since D is symmetric) defined by
D=AG+GAT . (146)
Then expression (144) reads as

M = A (t—t0) ¢ AT (t—t0) _ 3 (147)
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which reveals that M is also a (real) symmetric matrix. Performing the inverse Fourier
transformation of the expression (143) we obtain the intermediate result
eTr(A)

(t—to) T 1
@ / &’k exp{—EkTMk+z'VTk}, (148)

Plut) =

where the abbreviation V = u — uy is introduced. With the auxiliary vector

x=k—-iM'V (149)
the exponent of the integrand can be reformulated in such a way that only the integral
?o d’x exp{—%xTM x} has to be evaluated. Since M is symmetric, we can find the (or-
—0

thogonal) eigenvector matrix B of Ml which has the property B MB = diag[\1, A2, A3]. With
the new vector y = B! x and the fact that d*z = |B| d®y we can perform the integration and

finally obtain for the distribution function

VM-t 1
P(ll, t) = eTT(A) (t_to)w exp{—ivTM_IV} y (150)

where M! is the inverse of (147). Switching back to the original variables ¢ according to

(141), we immediately get

v/ |H 1 N T ZA(f—
P(c,t) = #exp{—i(c—e A(t=to) co) H (c—e A(t—to) co)}, (151)

where H = eA” (t=to) M1 ¢A(t=t0) and the identity |eA"| = e7"(®7 is taken into account.

Furthermore, we note that the transition probability is normalized:
oo
/ d®cP(c,t) =1. (152)
—c0
Using the identities

Vee FETHE L _pig o beTHE

and
Ve Ve 367HE = (H,g ¢TH - Hg) e 3T HE

with £ = ¢ — &g, we conclude and that the first moment and the variance are given by

<c>= / d®ce P(c,t) = & = e A1) ¢ (153)
“oo
and
< (c—¢&)(c—&)T >=<(cc” > —¢¢&l =m! (154)

respectively, where we assumed that the integrals of e3¢ B¢ and V7 e~3¢" HE gver a surface

vanish at infinity.
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APPENDIX E. SOME PROPERTIES OF THE ROSENBLUTH POTENTIALS

The main interesting properties of the Rosenbluth potentials can be traced back to the

following identities for g =v —w and g = |v — w|:

Vog = % (155)
() - 3
Vy-g = 3 (157)
Vo [Vog] =V2g = 3 (158)
1 1 0, vEW
Vo [Vv<§)] e (5) N —47r5<v - W) , V=W 7 (159)

where & (v - w) is the Dirac distribution. Applying the latter relations to the potentials HB)

and G%)| we immediately obtain

V2B (x,v,t) = —4n Z””—“ fa(x, v, 1) (160)
aB
and
V2 g8 (x,v,t) = 2% HO) (x,v,1) (161)

which means, that the potentials H®) and G#) are determined by the solution of Poisson

equations with sources proportional to fz and HB) | respectively.
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APPENDIX F. FOURIER TRANSFORMATION OF THE COULOMB POTENTIAL

In order to obtain the Fourier transformation of the Coulomb potential 1/g (g =|v— w|) ,
it is convenient to start from the Yukawa (or Debye) potential
e "9

on(g) = P (162)

where 7 is a positive real number. Clearly, in the limit 7 — 0 one recovers the usual Coulomb

potential. The Fourier transformation of the latter equation

-ng 1 i . -ng
Pnll) :f{e }: ROEE / dgemis=_— (163)
Y3

g g

can be determined analytically. For that, one introduces spherical coordinates in g-space,

perform the integration over the azimuthal and polar angle and get

oo
1 ) )
pn(k) —=—= [ dge™"9 (e“‘"’g —e_’kg) . 164
onll) / g (164)
The final integration yields the Fourier transformation of the Yukawa potential given by

2 1
(k) = e ————
Pn(k) Vor k2412
from which one obtains immediately the Fourier transformation of the Coulomb potential in

(165)

the limit n — 0:

p(k) = 5 (166)
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APPENDIX G. APPROXIMATE MULTIPLE STRATONOVICH INTEGRALS

In the following we adopt the notation of Kloeden et al. [24] and summarize the approxi-

mation of multiple Stratonovich integrals up to multiplicity two. One gets

1
Joy=At, JG =VAtE, I = 3 At? (167)
At At
WG = T(VAtfj + aj,O) » Jog) = 7(\/“51' - am) ; (168)
where P
1 1 P
ajo = —_V2At Z; G — 2/ At pp "
r=1
At 1
i) = 5 € & — 5 VA (aM € — a0 gjg) +AtAD (169)
with

=N =

1
AiJZ = % Z (le’r nj2,7' - njl,"' Cj2v7‘) N

r=1
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