Forschungsbericht

Nutzbarmachung von Fernerkundungsdaten für Modelle der Hydrologie

gefördert durch Deutsche Agentur für Raumfahrtangelegenheiten (DARA)/ Deutsches Zentrum für Luft- und Raumfahrt (DLR)

Förderkennzeichen 50 EE 9503

Institut für Geographie, Lehrstuhl für Geographie und Geographische Fernerkundung, Ludwig-Maximilians-Universität München

Nutzbarmachung von Fernerkundungsdaten für Modelle der Hydrologie

Durchgeführt am:	Institut für Geographie Lehrstuhl für Geographie und Geographische Fernerkundung Ludwig-Maximilians-Universität München Luisenstr. 37 80333 München
Projektleiter:	Prof. Dr. W. Mauser
Projektwissenschaftler:	DiplGeogr. B. Eibl, Dr. I. Keding, Dr. K.P.Papathanassiou, Dr. D. Rieger, DiplGeogr. M. Rombach, DiplGeogr. R. Sigl, Dr. R. Stolz, DiplGeogr. G. Strasser
Projektdauer:	1995 - 1999
Gefördert durch:	Deutsche Agentur für Raumfahrtangelegenheiten (DARA)
Förderkennzeichen:	50 EE 9503

Inhaltsverzeichnis

1	Bedeutung und Potential der Fernerkundung für die hydrologis Modellierung	sche1
1.1	Allgemein	1
1.2	Ziele des Forschungsvorhabens	2
2	Untersuchungsgebiet	3
3	Integration von Fernerkundungsdaten in ein Modell	5
3.1	Übersicht	5
3.2	Das Modell PROMET	5
3.2.1	Das Strahlungsmodell	7
3.2.2	Das Bodenwasserteilmodell	8
3.2.3	Das Pflanzenteilmodell	10
3.2.4	Das aerodynamische Modell	13
3.2.5	Das Schneemodell	14
3.3	Nutzung von Fernerkundungsdaten zur Verbesserung des Dateninputs	
	und zur Validierung der Modellergebnisse	16
3.3.1	Datenmanagement im PROMET	16
3.3.2	Aus Fernerkundungsdaten abgeleitete Flächenparameter	18
4	Geländedaten	_21
4.1	Mikroklimatologische Messungen	22
4.2	Bodenfeuchtemessungen	27
4.2.1	Bodenfeuchtebestimmung mittels Gravimetrie	27
4.2.2	Tensiometer	27
4.2.3	TDR-Messungen	28
4.2.4	Vergleichende Diskussion der Messergebnisse	29
4.3	Pflanzenproben	30
4.3.1	Bestimmung von Wuchshöhe, Biomasse und Phänologie	30
4.3.2	Erfassung der Wiesenstruktur	34
4.3.3	LAI-Messungen	37
4.4	Landnutzungskartierung	38
4.5	Digitale Zusatzinformationen	40
4.5.1	Bodenkarte	40
4.5.2	Digitales Geländemodell	41
5	ERS.SAR-Daten	42
5.1	Datenprozessierung	42
5.1.1	RAW Daten Prozessierung	42
5.1.2	Radiometrische Kalibrierung	42
5.1.3	Geometrische und radiometrische Geländekorrektur	43
5.2	ERS.SAR-Interferometrie	48
5.2.1	Prinzip der SAR-Interferometrie	48
5.2.2	Prozessierschritte	50
5.2.3	Implementierung des interferometrischen Prozessors	54
5.3	Datensatz	56
6	Ableitung hydrologischer Parameter aus ERS.SAR-Daten	58
6.l	Ableitung der Bodenteuchte	58
6.1.1	Einführung	58
6.1.2	Methode	58

Ι

6.1.2.1	Eliminierung der Vegetation	58
6.1.2.2	Eliminierung des Bodentypes	61
6.1.3	Berechnung der Bodenfeuchte aus ERS-Daten	61
6.1.3.1	Verifikation der berechneten Bodenfeuchte	61
6.1.3.2	Räumliche Verteilung der Bodenfeuchte	62
6.2	Bestimmung der Biomasse von Grünland	64
6.2.1	Einführung	64
6.2.2	Geländedaten	64
6.2.3	Methode	65
6.2.4	Räumliche Verteilung der Grünlandbiomasse	67
6.3	Ermittlung des Mahdtermins	70
6.4	Vergleich des interferometrisch erstelltem Digitalen Höhenmodell mit	
	einem konventionellen Digitalen Geländemodell	74
7	Landnutzungsklassifikation aus LANDSAT-TM Daten	77
7.1	Einführung	77
7.2	Entwicklung des wissensbasierten Fuzzy Logic Klassifikators ENPOC	77
7.2.1	Methode	78
7.2.2	Datensatz und Vorprozessierung	82
7.2.2.1	Aufbereitung der Fernerkundungsdaten	82
7.2.2.2	Erstellung einer Agro-knowledge base für das Ammereinzugsgebiet	83
7.3	Erstellung der Membership Functions	84
7.4	Anwendung des Klassifikators	84
7.4.1	Darstellung der Ergebnisse	85
7.4.2	Einschränkungen	86
7.5	Multisensoraler Klassifikationsansatz	88
7.5.1	Erstellung einer Grünlandmaske	88
7.5.2	Ergebnisse	90
8	Ableitung der Globalstrahlung	92
8.1	Einführung	92
8.2	METEOSAT-VISSR-Daten	92
8.3	Modellierung der Globalstrahlung unter Einfluss der Wolken	93
8.3.1	Ableitung des effektiven Bedeckungsgrades	94
8.3.2	Bestimmung des Grauwertes für L _{max}	95
8.4	Globalstrahlungsdaten der Stationsmessnetze	95
8.4.1	Messungen des Deutschen Wetterdienstes	95
8.4.2	Messungen des Bayerischen Agrarmeteorologischen Messnetzes	96
8.5	Flächenhafte Modellierung der Globalstrahlung und Validierung	96
9	Ableitung der Albedo	98
9.1	Einführung	98
9.2	Ableitung der Albedo aus NOAA-AVHRR-Daten	98
9.2.1	Empfang der NOAA-AVHRR-Daten	98
9.2.2	Datensatz und Datenaufbereitung	98
9.2.3	Atmosphärenkorrektur	99
9.2.4	Ergebnis	100
9.3	Verwendung weiterer optischer Sensoren	100
9.3.1	Einführung	100
9.3.2	Datensatz und Datenaufbereitung	104
9.3.2.1	Geometrische Aufbereitung	106
9.3.2.2	Kalibrierung	107
~ ~ ~ ~	A two o cu b ö u ou ly o uu o ly ty yu	107

9.3.3	Berechnung der Albedo	107
9.3.4	Validierung der Reflexionswerte	111
10	Validierung modellierter Bodenfeuchtewerte	116
10.1	Einführung	116
10.2	Modellierung der Bodenfeuchte	116
10.3	Vergleich modellierte, aus ERS-Daten abgeleitete und gemessene	117
10.4	Bodenieuchte	11/
10.4	Diskussion	118
11	Fernerkundungsbasiertes Hochwassermodell IFFS	121
11.1	Einführung	121
11.2	Methodik	121
11.2.1	Fernerkundung und GIS-Analysen für die statische Beschreibung eines	
	Einzugsgebietes	123
11.2.2	Bestimmung der Bodenfeuchteverteilung	124
11.3	Hochwassermodellierung für die Ammer	125
11.4	Diskussion	127
12	Veröffentlichungen im Projekt	129
13	Vorträge und Präsentationen	131
14	Literaturverzeichnis	132

Abbildungsverzeichnis

Abb.	1.1: Überblick über das fernerkundbare Spektrum und die bestimmbaren	
	hydrologisch relevanten Landoberflächenparameter	_1
Abb.	2.1: Lage des Einzugsgebietes der Ammer	3
Abb.	2.2: Gliederung des Gebietes nach naturräumlichen Einheiten	3
Abb.	3.1: Die Modellstruktur von PROMET	7
Abb.	3.2: Schematische Darstellung der an der Verdunstung beteiligten Widerstände	_11
Abb.	3.3: Grundkonzept des Modelllaufes mit PROMET	_17
Abb.	4.1: Lage der Testfelder im Einzugsgebiet der Ammer	_21
Abb.	4.2: Messergebnis der Reflexions- und Globalstrahlung	_22
Abb.	4.3: Messergebnis der Relativen Feuchte und der Temperatur	_23
Abb.	4.4: Messergebnis der Verdunstung	_23
Abb.	4.5: Messturm	_26
Abb.	4.6: Tesiometer	_28
Abb.	4.7: TDR-Messgerät	_29
Abb.	4.8: Bodenfeuchte und Niederschlag gemessen an institutseigenen Messstationen	_30
Abb.	4.9: Verlauf der Vegetationsparameter für Wiese 1997	_32
Abb.	4.10: Verlauf der Vegetationsparameter für Mais 1997	_33
Abb.	4.11: Struktureller Aufbau von Wiesen	_34
Abb.	4.12: Änderungen der Wiesenstruktur während der Vegetationsperiode	_35
Abb.	4.13: Veränderung der Pflanzenarten vor und nach der ersten Mahd	_36
Abb.	4.14: Abnahme der Pflanzenvielfalt nach der ersten Mahd	_36
Abb.	4.15: LAI-Messungen	_38
Abb.	4.16: Kartierung des Gebiets Etting während der ERS-Tandem-Mission	_39
Abb.	4.17: Digitale Bodenkarte des Ammereinzugsgebietes	_40
Abb.	4.18: Höhen-, Gefälle- und Expositionsinformation aus MilGEO	_41
Abb.	5.1: Prinzip der Geländekorrektur der ERS.SAR-Daten	_44
Abb.	5.2: Erster Schritt der Geländekorrektur von ERS.SAR-Daten	_45
Abb.	5.3: Zweiter Schritt der Geländekorrektur von ERS.SAR-Daten	_46
Abb.	5.4: Vergleich "Ground Range"-Bild mit geländekorrigiertem Intensitätsbild	_47
Abb.	5.5: Interferometrische Aufnahmegeometrie	_48
Abb.	5.6: Interferometrische Prozessierschritte	_51
Abb.	5.7: Prinzip des "Phase Unwrapping"	_52
Abb.	5.8: Abhängigkeit der Auflösung von der Länge der Basislinie	_53
Abb.	5.9: Interferometrisch prozessiertes Digitales Höhenmodell	_55
Abb.	6.1: Rauhigkeitskorrigierte Beziehung zwischen der Oberflächenbodenfeuchte	
	und dem Radarrückstreukoeffizienten unter Verwendung aller Feldfrüchte	_59
Abb.	6.2: Transmissivitätsverhalten der Wiesen verglichen mit Ergebnissen der MIMICS	
	Simulation	_60
Abb.	6.3: Beziehungen zwischen Bodenfeuchte und Dielektrizitätskonstante für	
	unterschiedliche Bodenarten für eine Frequenz	_61
Abb.	6.4: Vergleich der berechneten mit gemessenen Bodenfeuchte	_62
Abb.	6.5: Räumliche Verteilung von Bodenfeuchtewerten berechnet aus ERS Daten	_63
Abb.	6.6: Korrelation zwischen der mittleren Bestandeshöhe und der trockenen Biomasse	_64
Abb.	6.7: Korrelation zwischen der trockenen Biomasse und der Radarrückstreuung	
	intensiver und extensiver Wiesen	_65
Abb.	6.8: Korrelation zwischen der trockenen Biomasse und der Radarrückstreuung	
	ohne und mit Pflanzenwasserkorrektur	_66
Abb.	6.9: Korrelation zwischen der trockenen Biomasse und dem Radarrückstreu-	
	koeffizienten der georeferenzierten Radardaten vor / nach dem ersten Schnitt	_67

Abb. 6.10: Berechnete Biomassen der Grünlandbereiche berechnet aus ERS-Daten	69
Abb. 6.11: Berechnete Entwicklung der Biomasse vor dem ersten Mahdtermin	70
Abb. 6.12: Kohärenzkarten der Datenpaare der ERS-1/-2 Tandem-Mission	72
Abb. 6.13: Kohärenz der Wiesen im Ammereinzugsgebiet	73
Abb. 6.14: Mahdkarte	73
Abb. 6.15: IF-DHM und MilGEO	74
Abb. 6.16: Korrelation zwischen dem IF-DHM und dem MilGEO	75
Abb. 6.17: Nord – Süd – Profil durch das Untersuchungsgebiet	75
Abb. 6.18: Vergleich der Fließwege berechnet aus interferometrischen Höhenmodell	
und MilGEO	76
Abb. 7.1: Die Zugehörigkeitsfunktion für die Klasse "Weizen" in Abhängigkeit von der	
Höhenlage.	79
Abb. 7.2: Ablaufkonzept des Environmental Possibility Classifiers (ENPOC)	80
Abb. 7.3: Der Ablauf der ENPOC-Klassifikation, dargestellt an einem Beispiel	81
Abb. 7.4: Die Beziehung zwischen dem Aufnahmewinkel und dem Höhenunterschied _	82
Abb. 7.5: Spektrale Signaturen verschiedener Landnutzungen	85
Abb. 7.6: Ergebnis der wissensbasierten Landnutzungsklassifikation	87
Abb. 7.7: Vergleich des Rückstreuverhaltens (in Vegetationsperiode 1995) und den	
spektralen Signaturen aus dem TM-Datensatz für ausgewählte Wiesen	88
Abb. 7.8: Der Rückstreukoeffizient für Mais, Getreide und Grünland	89
Abb. 7.9: Der Rückstreukoeffizient für die verschiedenen Grünlandtrainingsgebiete	90
Abb. 7.10: Das "Konsenzbild" des multisensoralen Klassifikationssatzes	91
Abb. 8.1: Regression zwischen Werten der Globalstrahlung aus METEOSAT-Daten,	
Wolkenmodell und Messungen	97
Abb. 9.1: Albedo aus NOAA-14 Daten für Süddeutschland	
(ohne Berücksichtigung der Geländehöhe)	101
Abb. 9.2: Albedo aus NOAA-14 Daten für das Ammereinzugsgebiet	
(unter Berücksichtigung der Geländehöhe)	102
Abb. 9.3: Vergleich von Albedowerten aus NOAA-14 Daten, Geländeerhebungen	
und Literatur	103
Abb. 9.4: Lage des Testgebietes	104
Abb. 9.5: Arbeitsschritte der Datenaufbereitung	106
Abb. 9.6: Ableitung der Kalibrierwerte für WIFS aus MOS	107
Abb. 9.7: Lage der Bildausschnitte für die Berechnung der Korrelation	108
Abb. 9.8: Korrelation zwischen der Reflexion in K1 und K2 von NOAA-14 und MOS_	109
Abb. 9.9: Korrelation zwischen der Reflexion in K1 und K2 von NOAA-14 und MOS_	109
Abb. 9.10: Korrelation zwischen der Reflexion in K1 und K2 von NOAA-14 und WIFS	110
Abb. 9.11: Korrelation zwischen der Reflexion in K1 und K2 von NOAA-14 und WIFS	110
Abb. 9.12: Spektrale Anpassung der Kanäle des MOS-B auf NOAA-14 und WIFS	111
Abb. 9.13: Reflexion in NOAA-14, MOS und WIFS-Kanälen für den 14.06.1996	112
Abb. 9.14: Anteil der vier Landnutzungsklassen	113
Abb. 9.15: Spektren der Landnutzungsklassen in MOS und WIFS für 14.06.1996	113
Abb. 9.16: Differenzbild der Reflexionen aus WIFS – MOS	114
Abb. 9.17: Korrelation zwischen MOS-B / WIFS und MOS-B / NOAA-14	115
Abb. 10.1: Schema des SVAT-Modells	116
Abb. 10.2: Räumlichen Verteilung der Bodenfeuchte aus ERS und PORMET-V	
Abb. 10.3: Vergleich der berechneten Bodenfeuchte (ERS, PROMET-V) mit Gelände-	
messungen (TDR, Tensiometer)	118
Abb. 10.4: Vergleich der modellierten Bodenfeuchtekarte mit der Bodenkarte	119
Abb. 10.5: Beziehungen zwischen der Bodenfeuchte und der Dielektrizitätskonstanten	
in Abhängigkeit der Bodenart	120

Abb. 11.1: Methodik zur statischen Beschreibung des Einzugsgebietes sowie für den	
dynamischen Aufbau von IFFS	122
Abb. 11.2: Räumliche Eingabeparameter für IFFS	123
Abb. 11.3: Landnutzung, digitalisierte Bodenkarte, CN-Werte	124
Abb. 11.4: Bodenfeuchte abgeleitet aus den ERS-Daten vom 23./24.08.1995	125
Abb. 11.5: Pegelstationen des Ammereinzugsgebiets	126
Abb. 11.6: Modellierter Abfluß des Hochwasserereignisses im Ammereinzugsgebiet	126
Abb. 11.7: Vergleich des gemessenen und modellierten Abflusses	127

Tabellenverzeichnis

Tab. 3.1: Potentiell erforderliche Flächenparameter für einen Modelllauf mit PROMET	18
Tab. 3.2: Übersicht der aus Fernerkundungsdaten abgeleiteten Flächenparameter	19
Tab. 4.1: Vergleich der unterschiedlichen Pflanzenhöhen vor und nach dem ersten	
Schnitt für unterschiedliche Wiesen 1995 und 1996	35
Tab. 4.2: Flurkartengrundlage für die kartierte Testflächen im Einzugsgebiet der Ammer	38
Tab. 5.1: Qualitätsbeeinflussende Parameter in der SAR Interferometrie	50
Tab. 5.2: Überblick über Verfügbarkeit der Programme	54
Tab. 5.3: ERS-1/-2 Datensatz	56
Tab. 5.4: ERS – Tandem-Mission-Daten	57
Tab. 6.1: dB vs. DC: Funktion der Beziehung zwischen dem Radarrückstreuko-	
effizienten und der Dielektrizitätskonstanten	60
Tab. 6.2: Statistik der ERS-Datensätze	66
Tab. 6.3: Verfügbare ERS Daten zur Biomassenbestimmung vor der ersten Mahd	67
Tab. 6.4: Mittlerer Niederschlagsmessungen vor und während der ERS-Aufnahme	68
Tab. 6.5: Wetterinformationen des DWD zu den ERS Aufnahmeterminen	71
Tab. 7.1: Die Definitionsbereiche der Expertenregeln f ür das Testgebiet	84
Tab. 7.2: Ausgewählte Klassen und die Anzahl der jeweiligen Trainingsgebiete für die	
ENPOC-Klassifikation	85
Tab. 7.3: Vergleich der Klassifikationsergebnisse der ENPOC und Standard ML-	
Klassifikation mit den statistischen Zensusdaten	86
Tab. 7.4: Der verwendete ERS SAR Datensatz	88
Tab. 9.1: Überblick über Sensoreigenschaften und verwendete Kanäle	_105
Tab. 10.1: Mittlere Abweichung der Bodenfeuchteergebnisse	_118

1 Bedeutung und Potential der Fernerkundung für die hydrologische Modellierung

1.1 Allgemein

Für die Erstellung komplexer Modelle in der Hydrologie werden in der Regel Datensätze benötigt, die flächendeckende, quantitative Informationen über die im System beteiligten Prozessabläufe und Prozessparameter liefern. Diese Informationen können über geeignete Interpolationsverfahren aus Punktmessungen abgeleitet werden, beinhalten jedoch das Problem, dass die interpolierten Bereiche aufgrund zu weitmaschiger Messnetze lediglich eine grobe Annäherung an die Wirklichkeit darstellen können. Die Fernerkundung ist dagegen in der Lage, über die Reflexions- und Emissionseigenschaften der Erdoberfläche flächendeckende Informationen von Landoberflächenparametern zu ermitteln. Voraussetzung dafür sind geeignete Algorithmen, die in der Lage sind das elektromagnetische Signal so zu interpretieren, dass eine optimale Korrelation mit den am Boden gemessenen Kalibrierungsdaten besteht.

Für die Erhebung hydrologischer Parameter kann das gesamte elektromagnetische Spektrum vom sichtbaren Bereich bis zum Mikrowellenbereich wertvolle Informationen liefern (Abb. 1.1). Im abgelaufenen Projekt wurde vor allem versucht durch die Kombination verschiedener Fernerkundungsdaten und –plattformen detaillierte Informationen für die Bestimmung der verschiedenen für hydrologische Modelle relevanten Landoberflächenparameter zu erhalten. Durch die Verwendung neuer optischer und Mikrowellen-Sensoren mit verbesserter radiometrischer und geometrischer Auflösung konnte neben der flächendeckenden Bestimmung der Einzelparameter auch deren zeitliche Dynamik näher betrachtet werden. Damit bietet die Fernerkundung hervorragende Möglichkeiten adäquate Datensätze für hydrologische Modelle zu liefern, die den Genauigkeitsanforderungen für den praxisbezogenen Einsatz gerecht werden.

Abb. 1.1: Überblick über das fernerkundbare Spektrum und die bestimmbaren hydrologisch relevanten Landoberflächenparameter

1.2 Ziele des Forschungsvorhabens

Das Gesamtziel des Vorhabens bestand in der Nutzbarmachung von Fernerkundungsdaten für die hydrologische Modellierung. Im Vordergrund stand dabei die Verwendung von ERS-Daten, um Landoberflächenparameter flächenhaft zu ermitteln. Gleichzeitig wurde aber auch die Eignung optischer Satelliten als Quelle für den Dateninput bei der Modellierung hydrologischer Prozesse untersucht. Durch diese synergetische Inwertsetzung der von verschiedenen Fernerkundungssystemen zur Verfügung gestellten Landoberflächeninformationen konnten neue Impulse für eine dynamische Modellierung hydrologischer Prozesse gegeben werden. Anliegen des Projektes war es dabei vor allem:

- geeignete Verfahren zu entwickeln, um die Fernerkundungsdaten gemeinsam auszuwerten und die von den jeweiligen Sensoren zur Verfügung gestellten Informationen zu kombinieren.
- geeignete Verfahren zu entwickeln, um die Oberflächenparameter, die von Fernerkundungssystemen in unterschiedlicher zeitlicher und räumlicher Auflösung erfasst werden, in einer GIS- und Modellstruktur dynamisch zu vereinen.

Am Beispiel der Untersuchungsgebietes "Einzugsgebiet Ammer" und des Teileinzugsgebietes "Ettinger Bach" (Kap. 2) wurde eine umfangreiche Datenbank erstellte, die sowohl die Flächeninformationen der Fernerkundungsdaten enthält, wie auch die weiterhin sehr wichtigen Basisdaten (Relief, Gewässer, Böden etc.) und terrestrischen Messungen (Abfluss, Bodenfeuchte, meteorologische Messungen). Für diese Testgebiete wurde exemplarisch die Umsetzung folgender Hauptziele durchgeführt, die im Projektantrag formuliert wurden:

- 1. Die Entwicklung eines Modells zur Bestimmung der Wasser- und Energiebilanz des Testgebietes auf der Basis von Informationen aus der Fernerkundung (v.a. ERS-Daten, wegen ihrer guten Eignung zur Bestimmung hydrologischer Parameter). Das Modell soll dynamisch und räumlich heterogen die einlaufenden Fernerkundungsdaten in die Modellrechnungen integrieren und damit die Vorteile der Fernerkundungsdaten voll nutzen (vgl. Kap. 3).
- 2. Die Entwicklung von Verfahren zur Nutzung des synergetischen Informationsgehaltes von Daten des ERS und anderen Fernerkundungssystemen zur Gewinnung von Landoberflächenparametern, die in der Modellierung hydrologischer Prozesse im gewählten Einzugsgebiet Verwendung finden (vgl. Kap. 6 9).

Der hydrologischen Modellierung kommt heute besonders aus Sicht der Anwender und der Praxis eine besondere Bedeutung zu. Gerade das Pfingst-Hochwasser 1999 in Bayern oder etwa das Oder-Hochwasser 1997 haben die Notwendigkeit geeigneter Vorhersagemodelle für die Katastrophenvorbeugung dramatisch vor Augen geführt. Genauso sind für die Klimamodellierung oder die Klimafolgeforschung räumlich und zeitlich hochaufgelöste Wasserhaushaltsmodelle erforderlich, da ca. 70 % des globalen Energieumsatzes durch den Transport bzw. durch die Aggregatsumwandlung des Wassers erfolgt. Die Fernerkundung bietet hervorragende Möglichkeiten, wichtige Teilkomponenten für die Modellierung des Wasser- und Energiehaushaltes bereitzustellen, wobei ein Maximum an Aktualität und Genauigkeit (v.a. räumlich) gewährleistet werden kann.

Die Modellierung selbst erfolgt am Institut für Geographie (Lehrstuhl für Geographie und Geographische Fernerkundung, IGGF) mit dem Modell PROMET. Das Modell wurde vom Antragsteller entwickelt (MAUSER 1989) und in den letzten Jahren ständig fortgeführt bzw. verbessert (STRASSER 1998, SCHÄDLICH 1998, SCHNEIDER 1999). Im folgenden soll ein kurzer Einblick in die Modellstruktur gegeben werden, Dabei wird aufgezeigt, welche Inputdaten aus der Fernerkundung hilfreich sind, um eine verbesserte Modellierung des Wasserhaushalts, besonders im Hinblick auf anwendungsorientierte Fragestellungen, zu gewährleisten.