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Abstract

For n � 6 we provide a counterexample to the conjecture that every

integral vector of a n-dimensional integral polyhedral pointed cone C can

be written as a nonnegative integral combination of at most n elements of

the Hilbert basis of C. In fact, we show that in general at least b7=6 � nc

elements of the Hilbert basis are needed.
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1 Introduction

Throughout this paper we resort to the following notation. For integral points

z
1
; : : : ; z

k 2 Zn, the set

C = posfz1; : : : ; zkg =

(
kX
i=1

�iz
i : � 2 R

k
�0

)

is called an integral polyhedral cone generated by fz1; : : : ; zkg. It is called pointed

if the origin is a vertex of C and it is called unimodular if the set of generators

fz1; : : : ; zkg of C forms part of a basis of the lattice Zn. By Gordan's lemma

[G1873] the semigroup C \ Zn is �nitely generated for any integral polyhedral

cone C, i.e., there exist �nitely many vectors h1; : : : ; hm such that every z 2

C \ Zn has a representation of the form z =
Pm

i=1mih
i, mi 2 Z�0. It was

pointed out by van der Corput [Cor31] that for a pointed integral polyhedral

cone C there exists a uniquely determined minimal (w.r.t. inclusions) �nite

generating system H(C) of C \Zn which may be characterized as the set of all

irreducible integral vectors contained in C. More precisely,

H(C) =
n
z 2 C \ Z

n
nf0g : z cannot be written as the sum

of two other elements of C \ Z
n
nf0g

o
:

(1.1)

The set H(C) is usually called the Hilbert basis of C. Although Hilbert bases

play a role in various �elds of mathematics, like combinatorial convexity and
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toric varieties (cf. e.g. [DHH98], [Ewa96], [Oda88], [Stu96]), polynomial rings

and ideals (cf. e.g. [BG98], [BGT97]) or in integer programming (cf. e.g. [Gra75],

[GP79], [Sch80], [Seb90],[Wei98]), their structure is not very well understood yet.

A �rst systematic study was given by Seb�o [Seb90]. In particular, the following

three conjectures about the \nice" geometrical structure of Hilbert bases of an

integral pointed polyhedral cone C � R
n are due to him:

(Unimodular Hilbert Partitioning) There exist unimodular cones Ci, i 2 I ,

generated by elements of H(C) such that i) C = [i2ICi and ii) Ci \Cj is a face

both of Ci and Cj , i; j 2 I .

(Unimodular Hilbert Cover) There exist unimodular cones Ci, i 2 I , generated

by elements of H(C) such that C = [i2ICi.

(Integral Carath�eodory Property) Each integral vector z 2 C can be written

as a nonnegative integral combination of at most n elements of H(C).

Let us remark that the question whether n elements of the Hilbert basis are

su�cient to express any integral vector of the cone as a nonnegative integral

combination (and thus having a nice counterpart to Carath�eodory's theorem)

has already been raised by Cook, Fonlupt&Schrijver [CFS86].

Obviously, (UHP) implies (UHC) and (UHC) implies (ICP). Seb�o also ver-

i�ed (UHP) (and thus all three conjectures) in dimensions n � 3 [Seb90]. An

independent proof was given by Aguzzoli&Mundici [AM94] in the context of

desingularization of 3-dimensional toric varieties. However, in dimensions n � 4

(UHP) does not hold anymore as it was shown by Bouvier&Gonzalez-Sprinberg

[BGS92]. In order to attack algorithmically the (UHC)-conjecture Firla&Ziegler

[FZ97] introduced the notation of a binary unimodular Hilbert covering which is

a stronger property than (UHC) but weaker than (UHP) and they falsi�ed this

property in dimensions n � 5.

Recently, Bruns&Gubeladze [BG98] managed to give a counterexample to

the original (UHC)-conjecture in dimensions n � 6. We show in this note that

also the weakest of the three conjectures, the (ICP)-conjecture, does not hold

in dimensions n � 6. To this end we de�ne for a pointed integral polyhedral

cone C � R
n its Carath�eodory rank (as in [BG98]) by

CR(C) = max
z2C\Zn

minfm : z = n1h
1 + � � �+ nmh

m
; ni 2 N; h

i
2 H(C)g;

and moreover, let

h(n) = maxfCR(C) : C � R
n an integral pointed polyhedral coneg

be the maximal Carath�eodory rank in dimension n. With this notation the

(ICP)-conjecture claims CR(C) � n, or equivalent, h(n) = n which holds in

dimensions n � 3. A �rst general upper bound on h(n) was given by Cook,

Fonlupt&Schrijver [CFS86]. They proved h(n) � 2n� 1 and they also veri�ed

the (ICP)-conjecture for certain cones arising from perfect graphs. Another

class of cones satisfying (ICP) is described in [HW97]. The bound 2n � 1 was

improved by Seb�o [Seb90] to h(n) � 2n� 2 which is currently the best known

estimate. Moreover it is known that \almost" every integral vector of a cone

can be written as an integral combination of at most 2n� 3, n � 3, elements of

its Hilbert basis [BG98]. Here we prove the following lower bound
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Theorem 1.1.

h(n) �

�
7

6
n

�
;

where bxc denotes the largest integer not greater than x, x 2 R.

Of course, this result implies that (ICP) is false in dimensions n � 6. More-

over, Theorem 1.1 shows that there is no universal constant c such that any

integral vector can be represented as a nonnegative linear combination of at

most n+ c elements of the Hilbert basis.

The proof of Theorem 1.1 consists basically of a 6-dimensional cone C6 with

CR(C6) = 7. This cone is, up to a di�erent embedding, the same cone already

used by Bruns&Gubeladze for disproving (UHC) and it will be described in

the next section. (Note that (ICP) and the stronger properties mentioned are

invariant under unimodular integral linear transformations.) Using this cone C6

the proof of Theorem 1.1 runs as follows:

Proof. First, we assume n = 6 � p, p 2 N, and we show inductively w.r.t. p that

there exist (6 � p)-dimensional cones C6�p with CR(C6�p) = 7 � p. For p = 1 we

have the cone C6 and therefore, let p > 1. Now we embed the cone C6�(p�1)

and C6 into two pairwise orthogonal lattice subspaces of R6�p and we denote

these embeddings by ~C6�(p�1) and ~C6, respectively. With C6�p = ~C6�(p�1) �

~C6 = posf ~C6�(p�1);
~C6g it is quite easy to see that CR(C6�p) = CR( ~C6�(p�1)) +

CR( ~C6) = CR(C6�(p�1)) + CR(C6) = 7 � p.

For the remaining dimensions n = 6 � (p � 1) + r, p � 1, r 2 f1; : : : ; 5g, we

apply the same construction, but instead of ~C6 we supplement ~C6�(p�1) by an

arbitrary r-dimensional cone.

2 The counterexample C6 to (ICP)

The cone C6 is generated by the following 10 integral vectors z1; : : : ; z10

z
1 = (0; 1; 0; 0; 0; 0)|; z

6 = (1; 0; 2; 1; 1; 2)|;

z
2 = (0; 0; 1; 0; 0; 0)|; z

7 = (1; 2; 0; 2; 1; 1)|;

z
3 = (0; 0; 0; 1; 0; 0)|; z

8 = (1; 1; 2; 0; 2; 1)|;

z
4 = (0; 0; 0; 0; 1; 0)|; z

9 = (1; 1; 1; 2; 0; 2)|;

z
5 = (0; 0; 0; 0; 0; 1)|; z

10 = (1; 2; 1; 1; 2; 0)|:

Observe that all the generators are contained in the hyperplane fx 2 R
6 :

ax = 1g where a = (�5; 1; 1; 1; 1; 1). Moreover, C6 has 27 facets, 22 of them are

simplicial, i.e., generated by �ve vectors. The remaining �ve facets are generated

by six vectors and can be described as cones over 4-dimensional polytopes which

are bipyramids over 3-dimensional simplices.

The �rst important property of C6 is that the set of generators coincides

with the Hilbert basis, i.e.,

H(C6) = fz
1
; : : : ; z

10
g: (2.1)

On account of (1.1), there is a straightforward way to check (2.1) by computing

all integral vectors in the zonotope Z = fx 2 R6 : x =
P10

i=1 �iz
i
; 0 � �i � 1g
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and then to verify that for each such nontrivial integral vector w there exists

a z
i, 1 � i � 10, such that w � z

i 2 C. However, there are also computer

programs available which have routines for computing the Hilbert basis of an

integral polyhedral cone (see e.g. normaliz [BK] or bastat [Pot96]).

Let S6 be the semigroup C6 \ Z
6. The automorphism group Aut(S6) of S6

is surprisingly large. In fact, the following permutations of the generators

� = (1 2 3 4 5)(6 7 8 9 10) and � = (2 5)(3 4)(7 10)(8 9)

induce automorphisms of S6 (the number i stands for the generator zi). The

group generated by them is isomorphic to the dihedral group D10 of order 10,

and coincides with the subgroup of Aut(S6) stabilizing one (or both) of the

subsets F1 = fz1; : : : ; z5g and F2 = fz6; : : : ; z10g (F1 and F2 generate facets of

C6). But there are also automorphisms exchanging F1 and F2, for example

� = (1 6)(2 8 5 9)(3 10 4 7);

� and � generate Aut(S6). Since � = �
2 and ���

�1 = �
2, Aut(S6) is isomor-

phic to a semidirect product of Z=(5) and Z=(4); in particular #Aut(S6) = 20.

Moreover, Aut(S6) operates transitively on H(C6). In order to verify these

claims one examines the embedding of C6 into R
27 by the primitive integral lin-

ear forms de�ning the support facets of C6; that � and � induce automorphisms

is already visible in the de�nition of C6.

Let

g = (9; 13; 13; 13; 13; 13)| = z
1 + 3z2 + 5z4 + 2z5 + z

8 + 5z9 + 3z10 2 C6:

(2.2)

We veri�ed that g can not be written as a nonnegative integral combination of at

most 6 elements ofH(C6) by two di�erent methods. In [BG98] it has been shown

that if (ICP) would hold for C6, then every integral vector could even be writ-

ten as the nonnegative integral combination of at most 6 linearly independent

elements of the Hilbert basis. Hence all what one has to do is to solve all linear

systems of the form (zk1 ; : : : ; zk6)x = g for any choice fk1; : : : ; k6g � f1; : : : ; 10g

such that zk1 ; : : : ; zk6 are linearly independent and then to check that no inte-

gral nonnegative solution occurs. The second approach veri�es the claim via an

integer linear program which reads as follows:

minimize

10X
i=1

ui subject to

10X
i=1

niz
i = g;

0 � ni � 13 � ui; ni 2 Z; ui 2 f0; 1g; 1 � i � 10:

The 0=1-variables ui control which element is used for the representation of the

vector g. If zk is used, i.e., uk = 1, then the scalar nk in front of zk can not

exceed the maximal entry in g, because all vectors are nonnegative and we are

just looking for nonnegative representations of g. Hence a solution of the above

integer linear program gives a representation of g with a minimal number of

vectors of the Hilbert basis. In order to solve this program we used the program

SIP (cf. [MW98], [M98]) and the output is the representation of g in (2.2) with

7 elements of the Hilbert basis.
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If we use the function dg(x) = ax as a graduation on the set C6\Z
6 then one

can show that, among all lattice points in C6 violating (ICP), the two lattice

points g (cf.(2.2)) and h = (11; 15; 15; 15; 15; 15)| 2 C6 are the only ones with

lowest degree (dg(g) = dg(h) = 20). (The automorphisms � and � leave g

invariant whereas �(g) = h.)

By the way, the lowest degree lattice point violating (UHC) is

t = (5; 7; 7; 7; 7; 7)| = z
1 + � � �+ z

10;

it has degree 10 and is obviously invariant under the full automorphism group.

Finally, we want to show CR(C6) = 7. Of course, the above argumentation

yields CR(C6) � 7. Let

K1 = posfz3; z4; z5; z6; z7; z8g; K2 = posfz2; z3; z5; z6; z7; z8g;

K3 = posfz2; z3; z5; z6; z7; z9g; K4 = posfz1; z2; z5; z7; z8; z10g;

K5 = posfz2; z3; z4; z5; z7; z8g; K6 = posfz2; z3; z4; z7; z8; z10g;

K7 = posfz1; z2; z3; z4; z5; z7g; K8 = posfz1; z2; z3; z4; z7; z10g;

K9 = posfz1; z2; z5; z6; z7; z8g; K10 = posfz3; z4; z6; z7; z8; z10g;

K11 = posfz2; z4; z5; z7; z8; z10g; K12 = posfz2; z3; z4; z5; z6; z8g;

K13 = posfz2; z3; z6; z7; z8; z10g; K14 = posfz1; z2; z4; z5; z7; z10g;

K15 = posfz1; z2; z7; z8; z9; z10g; K16 = posfz1; z2; z6; z7; z8; z9g;

K17 = posfz2; z6; z7; z8; z9; z10g; K18 = posfz1; z2; z3; z5; z7; z9g;

K19 = posfz1; z2; z5; z6; z7; z9g; K20 = posfz1; z5; z6; z7; z8; z9g;

K21 = posfz1; z2; z4; z5; z8; z10g; K22 = posfz2; z3; z6; z7; z9; z10g:

Via a computer program (for details see [BG98]) we have checked that the

cones Ki cover C6, i.e., C6 = [22i=1Ki. Except for the �rst three cones, all these

simplicial cones are unimodular and each sublattice spanned by the generators

of Ki, 1 � i � 3, has index 2 w.r.t. Z6. It turns out that the Hilbert bases of

the cones K1;K2;K3 consist of the generators and the additional point

u = (1; 1; 1; 2; 1; 2)| = z
4 + z

9 =
1

2

�
z
3 + z

5 + z
6 + z

7
�
:

The last relation shows that u is contained in the 4-face posfz3; z5; z6; z7g of

each of the cones Ki, 1 � i � 3. Thus with the help of u we can subdivide each

of these cones into 4 unimodular cones and CR(C) = 7 is established.

The embedding of C6 given above has been chosen because it displays many

automorphisms of S6 = C6 \ Z
6. However, one can also give an embedding by

0=1-vectors: set

y
1 = (0; 1; 1; 0; 0; 0)|; y

2 = (0; 1; 1; 1; 0; 0)|;

y
3 = (0; 1; 0; 1; 1; 0)|; y

4 = (0; 1; 0; 0; 1; 1)|;

y
5 = (0; 1; 0; 0; 0; 1)|; y

6 = (1; 0; 0; 1; 0; 1)|;

y
7 = (1; 0; 0; 0; 1; 0)|; y

8 = (1; 0; 1; 0; 0; 1)|;

y
9 = (1; 0; 0; 1; 0; 0)|; y

10 = (1; 0; 1; 0; 1; 0)|;
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then there is a unimodular integral linear transformation � : Z6! Z
6 such that

�(zi) = yi for i = 1; : : : ; 10. Hence (ICP) (and the stronger properties) do not

even hold in the class of cones generated by 0=1-vectors. The vector g above

that disproves (ICP) is transformed into (9; 11; 8; 8; 8; 8)|. (We are grateful to

T. Hibi and A. Seb�o for asking us about the existence of a 0=1-embedding.)

3 Remarks

Finally, we want to remark that the name Hilbert basis was introduced by

Giles&Pulleyblank in their investigations of so called TDI-systems in integer

linear programming [GP79]. An integral linear system Ax � b, A 2 Z
m�n,

b 2 Z
m, is called TDI (totally dual integral) if the minimum in the linear

programming duality equation

minfb|y : A|
y = c; y � 0g = maxfc|x : Ax � bg (3.1)

can be achieved by an integer vector y 2 Zm for each integer vector c 2 Zn for

which the optima exist. In this context the (ICP)-conjecture has the following

interpretation (for details we refer to [GP79] and [CFS86]): Let Ax � b be a

TDI-system, such that the polyhedron fx 2 R
n : Ax � bg is of dimension n.

Let c 2 Zn such that the minimum in (3.1) exists. Then the minimum can be

achieved by an integral vector y 2 Zm with at most n nonzero variables.

However, each integral pointed cone C � R
n gives rise to a TDI-system

Ax � b and an integral vector c 2 Zn such that the minimum in (3.1) exists and

this minimum can only be achieved by an integral vector with CR(C) nonzero

variables. To see this just set b = 0, let A be the matrix with rows consisting of

the Hilbert basis of C and for c we can choose any lattice point in C which can

only be written as nonnegative integral combination of CR(C) elements of the

Hilbert basis. Hence Theorem 1.1 and the construction used in its proof leads

to

Corollary 3.1. Let Ax � b, A 2 Z
m�n, b 2 Z

m, be a TDI-system and let

c 2 Zn such that the minimum in (3.1) exists. In general the minimum cannot be

achieved by an integral vector y 2 Zm with less than b(7=6)nc nonzero variables.
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