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Abstract

E�ciency of high-order essentially non-oscillatory (ENO) approx-
imations of conservation laws can be drastically improved if ideas of
multiresolution analysis are taken into account. These methods of
data compression not only reduce the necessary amount of discrete
data but can also serve as tools in detecting local low-dimensional
features in the numerical solution. We describe the mathematical
background of the generalised multiresolution analysis as developed
by Abgrall and Harten in [14], [15] and [3]. The functional analytic
background is ultimately reduced to matrix-vector operations of linear
algebra. We consider the example of interpolation on the line as well
as the important case of multiresolution analysis of cell average data
which is used in �nite volume approximations.
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1 Introduction

One of the most important tasks of Computational Fluid Dynamics (CFD) is
the design of highly accurate, robust and e�cient numerical methods for the
simulation of compressible uid ow. It is common knowledge in numerical
analysis that the three properties: accuracy, robustness, and e�ciency, are
orthogonal concepts in almost all areas of algorithmic development and that
problems due to the complementary nature of these properties can only be
circumvented if additional information about the problem to be solved is
available. A classical paradigm can be found in the well-known multigrid
methods, see [6]. Here, accurate and robust �nite element and �nite di�erence
methods for elliptic partial di�erential equations can be made e�cient by
analyzing the damping properties of linear systems solvers on a sequence of
grids with decreasing resolution.
The most sophisticated numerical methods combining accuracy with robust-
ness in the computation of compressible ow �elds are �nite volume approxi-
mations based on essentially non-oscillatory (ENO) recovery procedures, see
[2], [8], [23]. While the choice of the type of the recovery function is re-
sponsible for high accuracy the choice of the stencil to compute the recovery
function adds the required robustness. However, these methods are a priori
not very e�cient since all of the ow �eld is treated with the same expen-
sive algorithm: stencil selection, ENO recovery, solution of local Riemann
problems; but the full ENO algorithm is only required across and close to
shocks and contact discontinuities which form lower dimensional manifolds
in the solution. Would it be known in advance in which parts of the ow �eld
the discontinuities are located and which parts are dominated by smoothly
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