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SUMMARY

hanges in seawater salinity can have severe impacts of an organism’s physiological
Ccondition and fitness. Thus, salinity has an essential influence on the current distri-
bution of marine organisms.

With ongoing climate change and the associated increase in precipitation, surface
run-oft and melt-water, a decrease in salinity is predicted for many marine areas world-
wide. The capacity for salinity tolerance will thus be a crucial factor in determining the
impacts of salinity changes on individuals, populations and ecosystems. Projected salin-
ity changes could lead to habitat loss for many marine species currently living at their
distribution limit. It is thus essential to understand what limits the capacity for salin-
ity acclimation and to assess the potential for acclimation and rapid adaptation across
species.

The Baltic Sea stands out through a pronounced spatial salinity gradient that is mir-
rored by its fauna. The salinity gradient of the Baltic Sea can thus serve as a real-life
simulation to study consequences of future desalination. The study of Baltic Sea an-
imals may provide ideal case studies of local adaptation and physiological plasticity in
terms of salinity tolerance and potential ecosystem interactions. The blue mussel is
suitable model organisms for such experiments. As a reef-builder, it is a foundation
species of the Baltic Sea. The Mytilus species complex consists of a hybrid-population
of M. edulis x trossulus mussels. Western M. edulis-like populations live at high salinity
conditions whereas the more salinity tolerant M. trossulus-like populations occur in the
Eastern Baltic Sea.

The majority of marine animals are invertebrates most of which are osmoconform-
ers, whose body fluid osmolality follows that of seawater. Osmoconformers use cellular
volume regulation (CVR) to acclimate to changes in seawater salinity. This process
utilizes cellular osmotic solutes, osmolytes, to adjust intracellular osmotic pressure to
ambient seawater. Depletion of the organic osmolyte pool has been implicated to de-
termine critical salinity in osmoconformers, which is further accompanied by loss of
fitness (i.e. Syu-concept sensu Podbielski et al. [262]). Yet, little is known about the role
of inorganic osmolytes. Furthermore, while phenotypic biomarkers such as respiration,
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growth or survival are better described [197, 171, 143], information on the transcrip-
tomic responses to prolonged low salinity is rare.

The goal of this thesis was thus to assess the limits of salinity tolerance and its deter-
minants on multiple levels: organismal, biochemical and transcriptomic. This project,
thereby, concentrates on the process CVR in osmoconformers.

The first part of this project was a systematic review and meta-analysis of osmolytes
(both organic and inorganic) utilized by osmoconforming marine invertebrates after
long-term acclimation to reduced salinity. This is the first systematic review and meta-
analysis on osmolyte concentrations in osmoconformers acclimated to low salinity. A
total of 2389 studies was screened and search criteria produced a final reference library
of 38 studies that reported osmolyte concentrations in tissues. Overall, six organic com-
pounds and sodium were consistently reduced across phyla in response to low salin-
ity stress. This suggests that intracellular inorganic ion concentrations are reduced in
concert with organic osmolytes under long-term hypo-osmotic stress. The systematic
review further revealed a shortage of studies i) that quantified intracellular ion concen-
trations, ii) that comprehensively analysed both osmolyte pools and iii) that investigated
non-bivalve study organisms. Alanine, betaine, glycine and taurine were identified as
the major organic osmolytes that are universally employed across five phyla. However,
a methodological bias was revealed by the systematic review that favors the measure-
ment of free amino acids (FAAs), thereby neglecting methylamines and methylsulfo-
nium compounds, which can be equally important. Our meta-analysis suggests that
there are common osmolyte actors employed across phyla, but no uniform concept is
applicable to all. Based on these findings and shortcomings of the current literature
best-practice guidelines were established for future osmolyte research to streamline ex-
perimental designs and protocols.

The suggestions derived from the best-practice guidelines were implemented in the
next study. A comprehensive set of techniques was employed to measure a wide variety
of inorganic and organic osmolytes (i.e. metabolomics, photometry and chromatog-
raphy). This was further advanced by establishing a novel protocol for anion analysis
in tissue extracts. In addition to osmolyte systems, phenotypic parameters were mea-
sured to assess fitness (i.e. survival and net growth) and capacity for CVR (i.e. water
content). Further, a wider variety of organisms was chosen to counter the bivalve-
bias of previous studies. The salinity tolerance of six species (mussels, snails, sea stars,
sea anemones, shore sea urchins and green sea urchins) after a four-week acclimation
around their low salinity threshold was investigated and the S,,;-concept tested.

Our experiments corroborated the importance of the organic osmolyte pool. Methy-
lamines constituted a large portion in the organic osmolyte pool of molluscs, whereas
echinoderms exclusively utilize FAAs. Inorganic osmolytes were involved in CVR in all
species, except for sea urchins. This highlights the importance of this often neglected
osmolyte class. The organic osmolyte pool was not completely depleted at low salin-



ity, thereby disproving the S,,,;-concept in this case. Instead, organic and inorganic
osmolytes were often stabilized at low salinity. The reduction of osmolyte pools was
accompanied by a reduction of fitness and impairment of CVR. However, the inter-
play of parameters revealed a critical salinity range, before the actual limit is reached.
Reduction of net growth and increase of water content under fine-scale monitoring in-
dicate that the energetic trade-off for osmoregulation is aggravated until condition are
not sustainable and survival is impacted.

While the first two studies investigated CVR on an organismal and biochemical
level, the third study focused on changes of the transcriptomic response. Two mus-
sel populations that are locally adapted to divergent salinity regimes (Kiel 16 vs. Use-
dom 7) and also differ in the salinity tolerance capacity were long-term acclimated
(four weeks) to five different salinity treatments (4.5, 5, 6, 7 and 16). At the end,
population-specific and conserved transcriptomic response to the low salinity was as-
sessed. A larger number of differentially expressed genes was found in mussels from
Kiel than in mussels from Usedom. Additionally, genes upregulated in the more sus-
ceptible Kiel population were downregulated in the more tolerant Usedom mussels.
The common transcriptomic response to low salinity of Kiel mussels was an upregu-
lation of solute transport and amino acid metabolism. Transcripts involved in stress
response, energy storage and lipid metabolism were also enriched. Low salinity adapted
Usedom mussels did not perform equally well as Kiel mussels at high salinity condi-
tions. The results suggest that Usedom mussels are not affected by the low salinity
treatment, whereas a clear stress response and a selection for more tolerant individuals
in the Kiel population under low salinity stress was found.

Despite species’ phenotypic plasticity, future salinity changes will likely perturb pop-
ulations living close to their distribution limit. When salinity conditions are reduced,
the cost of osmoregulation and subsequent energetic trade-off will not be sustain-
able. This could potentially lead to geographic range shift with decreasing salinity,
if species are not able to adapt. In the case of the Mytilus species complex, a shift in
allele-frequencies towards the low salinity tolerant genotype is expected. When consid-
ering other species, a selection for more tolerant phenotypes and/or genotypes is likely.
Rapid adaptation might facilitate survival in lower salinity conditions if phenotypic
plasticity reaches it limits.

Future salinity changes and its potential consequences underline the importance to
understand salinity tolerance capacities and limits. This thesis, is an important corner-
stone for future research in salinity tolerance as it employs an integrative approach to
measure phenotypic plasticity towards low salinity across a wide range of species from
biochemical to transcriptomic levels. The study of the capacity for acclimation and
adaptation to salinity changes in marine species will thus be a highly relevant field of
research in the future to predict the effects of desalination on species, populations and
ecosystems.
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/ZUSAMMENFASSUNG
Anderungen des Salzgehalts des Meerwassers konnen schwerwiegende Auswirkungen
auf die physiologische Leistungsfihigkeit von Arten haben. Daher hat der Salz-
gehalt des Meerwassers einen wesentlichen Einfluss auf die Verbreitungsgrenzen von
Meeresorganismen.

Im Zuge des Klimawandels wird ein Anstieg der Niederschlige, erhohter Oberfli-
chenabfluss und vermehrtes Schmelzwasser-Aufkommen vorhergesagt. Dies wird fir
viele Meeresgebiete weltweit zu einer Verringerung des Salzgehalts fithren. Wie stark
sich diese Umweltverinderungen auf Individuen, Populationen und Okosysteme aus-
wirken werden, wird daher bestimmt sein von der Fihigkeit niedrigere Salzgehalte zu
tolerieren. Die prognostizierten Verinderungen des Salzgehalts konnten zum Verlust
von Lebensraum fiir viele Arten fithren, welche derzeit an ihrer Verbreitungsgrenze
leben. Es ist daher von entscheidender Bedeutung zu verstehen, was die Anpassungsfi-
higkeit an niedrige Salzgehalte limitiert. Um einschitzen zu kénnen wie stark die Aus-
wirkungen auf die marine Tierwelt sein werden, ist es enorm wichtig zu untersuchen
wie hoch das Potenzial zur Akklimatisierung und schnellen genetischen Anpassung ist.

Die Ostsee zeichnet sich durch einen ausgeprigten horizontalen Salzgehaltsgradi-
enten aus, der sich auch in der Verbreitung der Fauna widerspiegelt. Der Salzgehalts-
gradient der Ostsee kann daher als realistische Simulation dienen, um die Folgen der
kiinftigen Verringerung des Salzgehalts zu untersuchen. Ostsee-Tiere sind hierbei ideale
Studienobjekte um die lokale Anpassung und physiologische Plastizitit in Bezug auf
die Salzgehaltstoleranz von Arten und deren Okosystem-Interaktionen zu untersuchen.
Die Miesmuschel ist ein geeigneter Modellorganismus fiir solche Experimente. Als Riff-
bildner ist sie eine okologisch bedeutungsvolle Ostsee-Art. Der Mytilus-Artenkomplex
besteht aus einer Hybrid-Population von M. edulis x trossulus-Muscheln. Westliche 2.
edulis-dhnliche Populationen leben unter hohen Salzgehaltsbedingungen, wihrend die
toleranteren M. trossulus-ihnlichen Populationen in der 6stlichen Ostsee vorkommen.

Die meisten Meerestiere sind Invertebraten, von denen wiederum die Mehrzahl Os-
mokonformer sind, deren Osmolalitit dem Salzgehalt des Meerwassers folgt. Osmokon-
former nutzen die zellulire Volumenregulierung, um sich an Salzgehalts-Verinderungen
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des Wassers anzupassen. Bei diesem Prozess werden zellulire gelste osmotische Sub-
stanzen, sogenannte Osmolyte, verwendet, um den intrazelluliren osmotischen Druck
an die Umgebung anzugleichen. Das sogenannte kritische Salinititskonzept seznsu Pod-
bielski et al. [262]) beschreibt die véllige Entleerung des organischen Osmolyt-Pools
zusammen mit einem Verlust der Fitness als Anzeichen fiir das Erreichen des Toleranz-
limits von Osmokonformern. Dennoch ist wenig tiber die Rolle der anorganischen Os-
molyte bekannt. Wihrend phinotypische Indikatoren wie Respiration, Wachstum oder
Uberleben besser beschrieben sind [197, 171, 143], sind kaum Informationen iiber die
Auswirkungen von lang anhaltenden niedrigen Salzgehalten auf die Genexpression vor-
handen.

Ziel dieser Arbeit war es daher, die Kapazitit zur Anpassung an niedrige Salzgehalte
und deren Grenzen auf mehreren Ebenen zu untersuchen: auf organismischer, bioche-
mischer und transkriptomischer Ebene. Dieses Projekt konzentriert sich dabei auf den
Prozess der zelluliren Volumenregulation bei Osmokonformern.

Der erste Teil dieser Arbeit war eine systematische Ubersicht und Meta-Analyse von
Osmolyten (sowohl organische als auch anorganische), die von osmokonformen, mari-
nen Invertebraten nach einer Langzeitakklimatisierung an einen geringeren Salzgehalt
reduziert werden. Dies ist das erste Systematische Review mit Meta-Analyse tiber die
Osmolyt-Konzentrationen bei Osmokonformern. Insgesamt wurden 2389 Studien ge-
sichtet, und die Suchkriterien ergaben eine endgiiltige Referenzbibliothek von 38 Stu-
dien, die Osmolytkonzentrationen in Geweben gemessen haben. Es wurden sechs orga-
nische Substanzen und Natrium ermittelt, deren Konzentration nach Anpassung an ge-
ringe Salzgehalte in allen Fillen reduziert wurden. Dies deutet darauf hin, dass sowohl
anorganische Ionenkonzentrationen, als auch organischen Osmolyte bei langfristigem
hypo-osmotischem Stress reduziert werden. Das Systematische Review ermittelte aufler-
dem einen Mangel an Studien, die i) die intrazelluliren Ionenkonzentrationen quantifi-
zierten, ii) beide Osmolyt-Pools umfassend analysierten und iii) nicht-muschelartige Stu-
dienorganismen untersuchten. Alanin, Betain, Glycin und Taurin wurden als die wich-
tigsten organischen Osmolyte identifiziert. Diese werden universell in allen untersuch-
ten Phyla verwendet (n = 5). Es wurde jedoch ein systematischer methodischer Fehler
festgestellt. In vergangenen Studien wurde oftmals gezielt freie Aminosiuren gemessen.
Dieser methodische Ansatz vernachlissigt jedoch Methylamine und Methylsulfonium-
verbindungen. Diese Substanzen kénnen ebenso wichtig sein wie Aminosiuren. Die
Meta-Analyse deutet darauf hin, dass es Osmolyte gibt, die in allen Phyla verwendet
werden. Allerdings gibt es kein einheitliches Konzept welches fur alle Arten/Phyla an-
wendbar ist. Auf der Grundlage dieser Ergebnisse und der Unzulinglichkeiten der ak-
tuellen Literatur wurden Best-Practice-Richtlinien fiir die kiinftige Osmolyt-Forschung
aufgestellt, um die Versuchs-Designs und Protokolle zu modernisieren.

Die aus den Best-Practice-Richtlinien abgeleiteten Vorschlige wurden in der nich-
sten Studie umgesetzt. Eine umfassende Reihe von Techniken wurde eingesetzt, um



eine Vielzahl anorganischer und organischer Osmolyte zu messen (d. h. Metabolomik,
Photometrie und Chromatographie). Dariiber hinaus wurde ein neuartiges Protokoll
tir die Anionenanalyse in Gewebeextrakten entwickelt. Zusitzlich zu Osmolyten wur-
den phinotypische Parameter gemessen, um die Fitness (hier: Uberleben und Wachs-
tum) und die Kapazitit zur zelluliren Volumenregulation (hier: den Wassergehalt des
Gewebes) zu bewerten. Dariiber hinaus wurde eine groflere Vielfalt von Organismen
ausgewihlt, um der einseitigen Ausrichtung auf Muscheln in fritheren Studien entge-
genzuwirken. Die Salinititstoleranz von sechs Arten (Muscheln, Schnecken, Seesterne,
Seeanemonen, Strandseeigel und Drébachs Seeigel) wurde nach einer vierwdchigen Ak-
klimatisierung an Salzgehalte nahe ihrer Toleranzschwelle untersucht und das kritische
Salinititskonzept getestet.

Unsere Experimente bestitigten die Bedeutung des organischen Osmolyt-Pools. Me-
thylamine machten einen groflen Teil des organischen Osmolyt-Pools von Mollusken
aus, wihrend Echinodermaten ausschliefllich freie Aminosiuren verwenden. Anor-
ganische Osmolyte waren bei allen Arten, aufler bei Seeigeln, an der zelluliren Volu-
menregulation beteiligt. Dies unterstreicht die Bedeutung dieser oft vernachlissigten
Osmolyt-Gruppe. Der Pool der organischen Osmolyte war bei niedrigem Salzgehalt
nicht vollstindig entleert, wodurch das kritische Salinititskonzept hier widerlegt wur-
de. Stattdessen erreichten organische und anorganische Osmolyt-Konzentrationen bei
niedrigem Salzgehalt oft ein konstantes Niveau. Die Reduzierung der Osmolyt-Pools
ging mit einer Verringerung der Fitness und einer Beeintrichtigung der zelluliren Volu-
menregulation einher. Das Zusammenspiel der Parameter ergab jedoch einen kritischen
Salzgehaltsbereich, bevor das eigentliche physiologische Limit erreicht wird. Die Ver-
ringerung des Nettowachstums und der Anstieg des Wassergehaltes deuten darauf hin,
dass die Kosten fiir osmoregulatorische Prozesse ansteigen und andere nicht-essentielle
Prozesse reduziert oder eingestellt werden, bis die Bedingungen nicht mehr nachhaltig
sind und kein Uberleben mehr ermoglichen.

Wihrend die ersten beiden Studien die zellulire Volumenregulation auf organismi-
scher und biochemischer Ebene untersuchten, konzentrierte sich die dritte Studie auf
Verinderungen im Transkriptom. Zwei Muschelpopulationen, die lokal an unterschied-
liche Salinititsregime angepasst sind (Kiel 16 vs. Usedom 7) und sich auch in der Salz-
gehaltstoleranz unterscheiden, wurden langfristig (vier Wochen) an fiinf verschiede-
ne Salzgehalte (4.5, 5, 6, 7 und 16) akklimatisiert. Am Ende wurde die populations-
spezifische und konservierte transkriptomische Antwort auf den niedrigen Salzgehalt
ermittelt. In Kieler Muscheln wurde eine grofSere Anzahl unterschiedlich exprimier-
ter Gene gefunden als in Muscheln aus Usedom. Auflerdem wurden Gene, die in der
anfilligeren Kieler Population hochreguliert waren, in den toleranteren Usedomer Mu-
scheln herunterreguliert. Die gemeinsame transkriptomische Reaktion der Kieler Mu-
scheln auf den niedrigen Salzgehalt war eine Hochregulierung des Stofftransports und
des Aminosiurestoffwechsels. Transkripte, die an der Stressreaktion, der Energiespei-
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cherung und dem Lipidstoffwechsel beteiligt sind, wurden ebenfalls angereichert. Use-
domer Miesmuscheln, die an einen niedrigen Salzgehalt angepasst sind, schneiden bei
hohen Salzgehalten nicht so gut ab wie Kieler Miesmuscheln. Die Ergebnisse deuten
darauf hin, dass Usedomer Miesmuscheln durch die Behandlung mit niedrigem Salz-
gehalt nicht beeintrichtigt werden, wihrend in der Kieler Population bei niedrigem
Salzgehalt eine deutliche Stressreaktion festgestellt wurde, welches ein Indiz fiir eine
gerichtete Selektion auf tolerantere Individuen sein kann.

Trotz der phinotypischen Plastizitit der untersuchten Arten werden kiinftige Ande-
rungen des Salzgehalts wahrscheinlich Populationen beeintrichtigen, die nahe an ihrer
Verbreitungsgrenze leben. Wenn die Salzgehaltsbedingungen reduziert werden, werden
die Kosten der Osmoregulation und der daraus resultierende energetische Trade-Off
nicht mehr tragbar sein. Ein Abnehmen des Salzgehaltes kénnte daher zu einer Ver-
schiebung des geografischen Verbreitungsgebietes mariner Arten fihren, wenn diese
nicht in der Lage sind sich anzupassen. Im Falle des Mytilus-Artenkomplexes wird ei-
ne Verschiebung der Allelhdufigkeiten in Richtung des Genotyps mit geringer Salzge-
haltstoleranz erwartet. Bei den anderen Arten ist eine Selektion auf tolerantere Phino-
typen und/oder Genotypen wahrscheinlich. Eine rasche Anpassung kénnte das Uber-
leben unter niedrigeren Salzgehaltsbedingungen erleichtern, wenn die phinotypische
Plastizitit an ihre Grenzen stofit.

Kinftige Verinderungen des Salzgehalts und ihre potenziellen Folgen unterstreichen,
wie wichtig es ist, die Kapazititen und Grenzen der Salztoleranz zu verstehen. Diese
Arbeit ist ein wichtiger Grundstein fiir die kiinftige Forschung auf dem Gebiet der
Salzgehaltstoleranz, da sie einen integrativen Ansatz zur Messung der phinotypischen
Plastizitit bei einer Vielzahl von Arten von der biochemischen bis zur transkriptomi-
schen Ebene verwendet. Die Untersuchung der Fihigkeit zur Akklimatisierung und
Anpassung an Verinderungen des Salzgehalts bei marinen Arten wird in Zukunft ein
duflerst wichtiges Forschungsgebiet sein, um die Auswirkungen der Verringerung des
Salzgehalts des Meerwassers auf Arten, Populationen und Okosysteme vorherzusagen.
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Introduction

alinity has had an essential influence both on the current distribution of aquatic or-
S ganisms and on the evolution of multicellular marine organisms over soo million years
ago. The Baltic Sea stands out through a pronounced spatial salinity gradient that is mir-
rored by the distribution of its fauna. Here, salinity poses a limiting factor for the distri-
bution of both marine and freshwater species. With ongoing climate change, a decrease
in salinity is predicted for many coastal areas worldwide with likely consequences for the

distribution of species, biodiversity and ecosystem functioning. Whether species have the



potential for acclimation or rapid adaptation to changing salinities remains unclear. The
Baltic Sea, with its natural salinity gradient, can thus serve as a time machine to study con-
sequences of future desalination [283]. Baltic Sea animals thus can serve as ideal case stud-
ies to understand local adaptation and physiological plasticity across a wide salinity gradi-

ent.

1.1 WHAT IS SALINITY?

alinity is a measure of the amount of dissolved salt in a body of water and was first de-
S fined in 1902 [149]. Originally, salinity was expressed as g salt kg ! water. Nowadays,
salinity is used and salinity is measured on the basis of conductivity (alongside temperature
and pressure) and defined in terms of a conductivity ratio compared to a seawater stan-
dard and is thus dimensionless [217]. Standard reference seawater (i.e. IAPSO Standard
Seawater) was used as reference for natural seawater composition and to determine prac-
tical salinity, now this has been replaced by a new artificial seawater standard (TEOS-10)
called absolute salinity, which provides the best estimate of the mass fraction of dissolved
matter (g kg™") [243]. Freshwater has a salinity of o, while the mean salinity of the ocean
is 35. Seawater is a complex, concentrated solution consisting of the major ions chloride,
sodium, magnesium, sulfate, calcium, potassium, bromide, fluoride and bicarbonate (Tab.
1.1). Overall, oceanic salinity varies only little from 30 in high latitude oceans to up to 40
in the open ocean [343]. Compared to oceanic waters, coastal and Arctic waters are char-
acterized by stronger salinity fluctuation due to increased evaporation, precipitation, river
and surface freshwater runoft, groundwater inflow, ice melt or ice formation [385]. The in-
terface of the ocean with freshwater creates brackish-water environments around the world.

Definitions of brackish water salinity ranges vary, but can be located at salinities S — 30



[s1, 15,280, 377]. The dimension of such brackish-water habitats can vary from punctual
sources such as submarine groundwater discharge to local and regional proportions like

estuaries, lagoons, and polar regions or brackish-water seas such as the Baltic Sea.

Table 1.1: Reference Composition of seawater with Practical Salinity (Sp) = 35.000 and Reference Salinity (Sg) =
35.16504 g kg_l. Concentrations in seawater of higher or lower salinities can be found approximately by scaling all
values up or down by the same factor. Units of concentration are per kilogram of seawater. Real seawater contains
additional constituents which are not included in the Reference Composition. Concentrations of these constituents do
not increase or decrease with salinity but are largely controlled by biogeochemical processes. Table from: Pawlowicz
[243].

Reference Composition mmol kg~* mg kg~!
Na™ 468.9675 10781.45
MgzﬁL 52.817 1283.72
Ca’t 10.282 412.08
K+ 10.2077 399.1
St 0.0907 7.94

Cl; 545.8695 19352.71
SO;~ 28.2353 2712.35
Br™ 0.8421 67.29

I3 0.0683 1.3
HCO; 1.7178 104.81
COg_ 0.2389 14.34
B(OH); 0.3143 19.43
B(OH), 0.1008 7.94
CO, 0.0097 0.43
OH™ 0.008 0.14

1.2 SALINITY TOLERANCE DETERMINES GEOGRAPHICAL DISTRIBUTION OF SPECIES

tis estimated that the majority of marine animals (>97%) are invertebrates [204]. The
Imajority thereof are osmoconformers [145]. Thus, osmoconformers represent the vast
majority of marine species. While osmoregulators such as fish or mammals can regulate the
osmotic pressure (the osmolality) of their body fluids (i.e. blood, coelomic fluid, interstitial
fluid, etc.), osmoconformers are characterized by their isoosmotic body fluids.

Salinity is a crucial abiotic factor that influences aquatic organisms. The number of
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Figure 1.1: Distribution of aquatic organisms in the salinity gradient. A) A redrawn version of the Remane diagram from
[377, 280]. Shown are the percentages (y-axis) of freshwater, brackish-water and marine species in relation to the total
number of species and their distribution corresponding to salinity (x-axis) of a stable brackish sea. B) Distribution of
benthic vs. pelagic organisms in the salinity gradient [348].
marine species has been shown to decrease with a decline in salinity until a minimum in
biodiversity is reached at brackish salinities (Fig. 1.1). Salinities of 57 pose a physiolog-
ical limit for both marine and freshwater species [377]. Genuine brackish-water species
(i.e. species that exclusively occur in brackish habitats and are neither marine nor fresh-
water) are rare [281, 405]. However, protists were discovered to have an inversed species
maximum in this brackish-water ecological niche [348] (Fig.1.1). Organisms can differ in
their capacity for salinity tolerance, some can tolerate a wide spectrum of salinities down
to brackish conditions - so called euryhaline species. Others are more restricted and only
tolerate marine conditions - so called stenohaline species (Fig.1.2). Most marine species are
stenohaline and only tolerate small deviations from marine salinity. Salinity thresholds are
species-specific and can also vary between life stages. Other abiotic factors such as temper-
ature, pH, oxygen, nutrients and toxins can affect the salinity tolerance of species (Fig.1.2)
[362, 16, 261, 270].

Salinity is major factor determining species’ distributions in the marine environment. As

a consequence, the salinity tolerance of species shapes marine ecosystems. Depending on



the direction of the salinity gradient, species distribution can be determined horizontally
(e.g. in estuaries, bays, or coastal areas) [377, 35, 128], or vertically due to density-driven
stratification and to incomplete mixing (the so-called Brackwassersubmergenz) [282]. This
happens for example in estuaries, seasonal stratification of coastal areas, or polar regions
where brackish-water from melting water and precipitation is stratified atop more saline
deeper waters [214, 169, 295]. The Baltic Sea stands out through its pronounced horizon-
tal salinity gradient from marine to freshwater conditions from west to east, as well as a

strong vertical gradient [282]. This is mirrored by the distribution of species [31, 405].

1.3 SALINITY CHANGES IN THE COURSE OF CLIMATE CHANGE

recipitation rates are directly influenced by global warming, as increased temperatures
P cause increased evaporation and air water vapor [357]. An increase in precipitation
frequency and intensity follows. Climate change will thus aftect freshwater input and cause
changes in salinity in the marine realm (Fig. 1.3). An increase in freshwater input due to
higher precipitation and thus increased river input and surface run-off, as well as an in-
crease in melt water is predicted for many oceanic and coastal regions in the course of cli-
mate change [1, 357,218, 335, 75].

Prominent examples are higher latitudes, where an increase in melt water has been pre-
dicted and observed [228, 214, 241]. The antarctic region especially is considered to be a
more stable ecosystems with respect to salinity [6]. The Antarctic fauna is relatively isolated
in geographical terms and has adapted to local environmental conditions for thousands of
years. Thus, slight deviations from average salinity can impact locally adapted, stenohaline
zoobenthic species [57, 221].

On the opposite range, in lower latitudes, increases in extreme weather events such as
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Figure 1.3: This map shows simulations of global future desalination for two freshwater input hypotheses. Depicted is
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conditions to show the difference in surface salinity. Blue shading indicates desalination (negative values). Vectors
indicate surface flow in perturbation integration. Source: [335].
floods and cyclones will likely cause large freshwater inflow events towards shallow coastal
coral reefs (such as the great barrier reef) [369, 70]. Prolonged decreases in salinity have
been shown to negatively affect coral fitness and promote bleaching [113, 144, 310].

Climate change scenarios for the Baltic Sea predict a basin-wide desalination of 1.5-2 by
the year 2100 (Fig.1.4) [209, 107]. This will likely affect physiological performance and fit-
ness of benthic key species, predator-prey interactions and distribution ranges of benthic
key species and associated species over hundreds of kilometers [156, 367, 262]. Specifically,
the Mytilus species complex is highlighted (Fig. 1.4). The blue mussel M. edulis x trossu-
lus is a foundation species that constructs elaborate reefs and has its distribution limit at a
salinity of ca. 4.5-5 [366]. Thus, the predicted desalination could cause severe geographical

range shifts over hundreds of kilometers (Fig. 1.4). This in turn would cause severe changes

in community structure of coastal Baltic ecosystems.
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1.4 How DO ANIMALS TOLERATE SALINITY CHANGES?

hen animals experience unfavorable salinity conditions the first response is usually
; ; migration into more saline waters. Less mobile species endure abrupt or transient
salinity changes through shell closure, ecystment or burrowing. If these avoidance strate-
gies are not feasible, acclimation mechanisms are initiated or differential mortality leads to
selection of more salinity tolerant genotypes that can persist in the given habitat [74].
Osmolytes are defined as compounds that change in concentration when salinity changes

(sensu [332]). They can be either of inorganic or organic nature. Osmolality is used when
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referring to the number of osmoles of solute per kilogram water. Osmolality only considers
solutes that contribute to a solution’s osmotic pressure and varies between extra- and intra-
cellular compartments. In extracellular fluids (i.e. blood, interstitial fluid, coelomic fluid,
coelenteron fluid, etc.) of osmoconforming animals, inorganic ions are employed and their
concentrations are similar to those of the surrounding seawater. The entire volume of ex-
tracellular fluids is referred to as the extracellular space (ECS). Instead of regulating extracel-
lular fluid osmolality, osmoconformers utilize the mechanism of cellular volume regulation
(CVR). Osmoconformers adjust to salinity changes by altering their intracellular osmotic
pressure to that of the external medium. They thus avoid cellular swelling or shrinking due
to water movement to counterbalance osmotic pressure differences. This process of CVR
is facilitated by accumulation or release/catabolism of intracellular osmolytes. In intracel-
lular fluids, inorganic ions are partly substituted by organic osmolytes. This is because high
concentrations of inorganic ions are known to perturb cellular processes or structures [34].
Organic osmolytes have been attributed the major role in CVR in the past, due to their
compatibility with protein function and stability (i.e. compatible osmolytes) [332].

As an immediate response to hypo-osmotic stress, cells undergo regulatory volume de-
crease by releasing inorganic ions from cells to prevent mechanical damage from water in-
crease. This short-term response (minutes - hours) is followed by the reduction of organic
osmolyte release or degradation (hours - days) [317]. To investigate an organism’s tolerance
to persistent salinity reductions they need to be fully acclimated. Appropriate acclimation
times to achieve stable osmolyte pools last >14 to 28 days [260, 145].

Organic osmolytes are derived from different substance classes, namely amino acids,
sugars, polyols, urea, and methylamines. Generally, osmolyte systems have been postulated
to be very similar in all cells and species, only diftering in relative contribution [250, 39].

Amino acids and methylamines are the prevalent osmolytes in invertebrates, but are also
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used widely across phyla from bacteria, algae to mammals. However, it is not clear whether
there are inter-taxonomic differences in the utilization of osmolytes within invertebrates.
Difterences in osmolyte composition can potentially originate from differences in diet or
biosynthetic pathways. Generally, uptake from seawater, ingestion as well as biosynthesis
have been shown to occur [233, 60, 62].

Organic osmolytes have not only compatible character, but often additional beneficial
functions. These can be cryoprotectant effects during freezing stress, scavenging of reactive
oxygen species, an increase in protein structure stabilization or cytoprotecting effects dur-
ing hydrostatic stress [34, 400, 334, 323, 397]. Other compounds counteract perturbing
solute effects of urea [401].

Osmolytes drive cellular volume regulation in osmoconformers. To determine an os-
moconformers’ low salinity threshold the critical salinity concept (S,,:;) was developed. It
hypothesizes, that a critical salinity is reached when the organic osmolyte pool is fully de-
pleted and fitness (i.e. reproduction, growth and survival as proxies) becomes zero [262].
So far, this concept has been successfully applied to an cnidarian and an echinoderm species

[262, 308].

1.5 SALINITY STRESS EFFECTS ON THE ORGANISMAL, CELLULAR AND GENETIC LEVEL

S alinity stress affects osmoconformers on multiple levels, from the organismal to the
cellular to the genetic. Duration and magnitude of salinity stress affect the extent of the

physiological stress response [108].
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I.§5.1 ORGANISMAL LEVEL

On an organismal level, increasing salinity stress will first affect performance. When or-
ganisms are exposed to lower salinity conditions that deviate only moderately from the
optimum, animals experience an increased energy demand for maintenance due to the tran-
siently higher costs for osmoregulatory processes [290]. This means that less energy can be
allocated towards storage, reproduction, growth and activity if energy input cannot com-
pensate increased energy expenses. The increased costs for osmoregulation can cause an in-
crease in feeding or respiration rates. In mussel neuronal tissue a strong increase in ATPase
activity has been shown in response to low salinity acclimation [381]. A dynamic energy
budget demonstrated a decrease in scope for growth of mussels under low salinities due to
the substantial metabolic costs of osmoregulation (74-87% of total cost) [197]. Yet, a recent
study showed that also biomineralization costs need to be considered and likely comprise a
large portion of the overall energy consumption [297]. During extreme salinity stress, many
marine invertebrates switch to metabolic depression. This can be a moderate metabolic
depression that is indicated by the reduction of maintenance processes such as systemic ac-
tivities (e.g. respiration and circulation) as well as energy uptake indicated by feeding rate
[36, 262]. Under more severe stress metabolic depression becomes fully anaerobic [326].
This indicates a critical physiological threshold at which species try to conserve energy and
overcome unfavorable periods until conditions improve. Such a state can usually not be

maintained for long and is ultimately lethal (Fig. 1.2).

1.5.2 CELLULAR LEVEL

Generally, the identification of differentially expressed genes as a cellular response to salin-

ity changes point towards proteins and processes that might be differentially regulated in
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CVR. Biological transcriptomics are a powerful tool to better understand mechanisms in
stress response. Transcriptomic analysis have proven useful in determining the impact of
anthropogenic stressors on organisms as well as to detect the limiting factors of physiologi-
cal processes such as biomineralization [403, 351, 190].

On a cellular level, acclimation to low salinity is achieved by an upregulation of osmoreg-
ulatory pathways. Acute salinity stress (4 hours - 8 days of exposure to novel salinity regimes)
has been associated with an upregulation of key enzymes in osmolyte metabolism, ion
channel activities, regulation of membrane potential and signaling pathways of osmotic
stress, as well as a downregulation of amino acid and ion transporter genes [191, 409, 410,
212]). In situ studies that examined organisms that regularly experience mild to medium
salinity changes paint a similar picture [78, 391]. Some of these genes have previously been
associated with thermal or acid-base stress response [138, 2]. Generally, the response seems
to be species-specific and can be tissue-specific as well [2, 184, 222]. Changes in salinity
turther affect protein function, protein stability, protein synthesis and translational activ-
ity [373, 34, 390, 400]. Also membrane stability, fluidity and permeability are affected by
salinity stress, however studies assessing animals are rare [48, 230, 167]. Other changes can
be structural adaptations, hemidesmosome-like support structures or increase of thickness
of the connective tissue sheath were found on neuronal cells to reduce membrane tension
[382,321].

A further aspect of salinity stress, next to the cellular osmoregulation processes and
changes in cell structure, is the cellular consequences of metabolic depression. This in-
cludes the downregulation of non-essential processes and increase in anaerobic metabolism.
Hypo-osmotic stress has been shown to influence cellular metabolic pathways resulting
in mobilization of sugars and lipids as energy reserves such as fatty acid beta-oxidation, or

gluconeogenesis [292]. Another cellular consequence of salinity stress can be an increased
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cellular immune response (involving immune genes and immuno-regulatory genes) and
stress response [392, 292]. Lethal effects under severe conditions can be attributed to the
permanent disruption of nervous function and cellular homeostasis [355]. Consequently,
extreme salinity conditions lead to reactive oxygen species generation and activation of pro-
grammed cell death [340].

However, the majority of these studies just represent short-time response of the organ-
isms to salinity stress. It is important to consider the time-dependent response as certain
pathways can be upregulated as an immediate reaction, which will not be differentially ex-
pressed under persistent salinity reduction [199]. Up to now, there is only a small number
of studies available on the effect of salinity changes on gene expression in marine animals;

a fraction of those examine osmoconformers and even less use long-term acclimation (>14
days) [187, 123, 138, 292, 229]. The results of long-term studies partly match results ob-
tained in short-term salinity studies. However, expression of genes for specific processes,
such as metabolic pathways responsible for energy storage seems to differ [138, 292]. More-

over, specific osmoregulatory transporter pathways are differentially regulated [138, 292].

1.6 SALINITY STRESS DRIVES EVOLUTION

n a genetic level, it is still widely unknown how animals adapt to changing salinity
O [410]. Phenotypic plasticity as well as genetic variation are responsible for resistance
to environmental stress. Yet, it is often unclear which traits are fixed and what are acclima-
tion effects. While transcriptomic responses occur within minutes of osmoregulatory stress
[365], evolution usually takes place over non-anthropological time-scales. However, selec-
tion on standing genetic variation can facilitate rapid adaptation. This has been shown for

corals in response to ocean warming and acidification [30, 21]. Rapid adaptation to low
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Figure 1.5: Levels of biological organization in relation to stress. This graph shows different biological levels of organiza-
tion from genes (i.e. here gene expression) to community in relation to the time of response after exposure to environ-
mental stress, such as desalination, and ecological relevance. The highlighted structures are levels covered in this study.
The figure shows that there are many biological levels which are affected by salinity stress, albeit on different time
scales. It further visualizes that small changes at a lower level of organization such as osmolytes and transcriptomes

are interconnected to organismal responses to salinity stress and moreover that the salinity tolerance of organisms can
affect entire populations and communities and ultimately lead to ecosystem changes. It is thus necessary to conduct
comprehensive research on multiple levels to understand the effects of future desalination on marine organisms and
ecosystems. Figure adapted from[182].
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salinity has been detected in osmoregulating copepods [179, 333]. Here, an evolutionary
shift at the population level was observed, that increased enzyme activity and expression

of a crucial ion transport enzyme (V-type H ATPase) in low salinity adapted populations
[179]. Adaptation occurs through the selection of favorable phenotypes [74]. Phenotypic
and molecular traits of favorable phenotypes can be heritable [73]. Tolerant phenotypes
can also manifest in the population via genetic assimilation [170]. Further many environ-
mental traits are polygenic and a cumulative result of multiple variants across many cellular
pathways [20].

Today, species living at transition zones can be a good example to study natural selection.
The colonization of brackish and freshwater environments by marine organisms is one of
the most dramatic evolutionary transitions in the history of life [216]. Yet, it is not well
documented how animals overcame this barrier. Freshwater habitats were very slowly colo-
nized over hundreds of millions of years, a process that might have been slowed by the need
to develop more complex osmoregulatory systems [216]. Documentation of genetic and
physiological changes occurring in more recent invasions of neozoa or coping mechanisms
in response to future desalination scenarios may help understand the processes that were
involved in past colonization events [7, 99, 180].

In the Baltic Sea we find a hybrid-zone of Mytilus mussels in which species-specific
allele-frequencies correlate with the salinity gradient. The western Baltic Sea populations
have a higher fraction of M. edulis-like allele frequencies, whereas eastern populations are
characterized by higher M. trossulus-like allele frequencies. M. trossulus are more toler-
ant to low salinity than M. edulis 311, 273]. A previous study ruled out neutral processes
(such as genetic drift or neutral introgression) as a cause for this genetic difference [338].
Restricted larval dispersal was also disproven as the cause for the observed genetic differen-

tiation [337]. Instead, it is very likely natural selection that sorts genotypes towards a 1.
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trossulus-like hybrid genome in low salinity environments [152]. Hybridization increases
genetic diversity and thus may promote adaptive radiation and colonization of new habitats
[312]. Understanding these processes of salinity adaption is most interesting in light of the
long-term salinity changes around the world. Baltic populations present an ideal test case

as to how adaptive evolution may play in the light of climate change [283]. Many of them
are already locally adapted and show considerable tolerance toward environmental stressor
[368].

At this point there is no study available that analysed the effect of long-term low salinity
stress on Mytilus hybrid population gene expression of the Baltic Sea. Studying the effect
of low salinity on species with different tolerance ranges may be useful to detect differences
in the acclimation processes. In this respect, it is highly interesting to study two closely
related populations of the same species complex, which differ in salinity tolerance capacity
and where additionally salinity and species’ physiological capacity has been shown to drive

natural selection [152].

1.7 RESEARCH GAPs

omparative studies and integrative studies of osmolyte systems in osmoconform-
C ing species are lacking. Literature on the role of organic and inorganic osmolytes
is inconsistent and is mainly a compilation of many individual studies measuring a sin-
gle substance class in a specific organism or tissue. Additionally, there is no consensus on
units in osmolyte research, which renders a direct comparison of results extremely difficult
as conversion is often not possible with the reported data. To date, there is no systematic
literature review or meta-analysis available on effects of salinity on cellular osmolyte con-

centrations.
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Despite the appreciation of the importance of osmolytes in CVR it remains unclear
what determines successful salinity acclimation in marine invertebrate species and what
differentiates euryhaline from stenohaline species. Researchers have suggested that organic
osmolyte pool size, utilization of specific organic compounds, or water regulation capacity
may define CVR capacity [260, 175, 258].

Even though the importance of organic osmolytes in CVR has been established, inor-
ganic jons also can play a major part in the total osmolyte pool during long-term acclima-
tion to low salinity [382, 187, 250]. However, quantification of the role of inorganic ions
in osmoregulation has been heavily neglected in most studies. Inorganic ions are estimated
to comprise >50% of intracellular total osmolality [317]. Intracellular chloride or sodium
concentrations have occasionally been assessed after long-term acclimation to low salinity
and were found to significantly change with salinity, hereby disproving studies that sug-
gest a replenishment of inorganic osmolyte pool after the initial osmotic stress response
[371, 250, 5]. Itis unclear how modulation of intracellular ion concentration has evolved
when considering the known perturbing effects of inorganic ions on protein function com-
pared to the higher compatibility of organic osmolytes. However, not all enzymes are neg-
atively affected by low salinity, especially those of osmoconforming species[302]. Yet, en-
zyme activity is very specific [11]. Some enzymes are unaffected in their activity by ionic
strength of the medium [302, 11]. Other enzymes function at higher rates at low salinity in
osmoconformers compared to osmoregulators [301]. Contrary to this, a reduction of en-
zyme activity in response to low salinity, observed in oysters, was suggested to be necessary
to maintain normal metabolic function [11].

Concerning organic osmolytes, there is a methodological bias. In the past, targeted
methods such as amino acid analyzers have often been employed to measure organic os-

molytes, yet these methods ignore methylamines and methylated sulfonium compounds
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which can comprise the majority of the organic osmolyte pool in some species [254].

In the past, inorganic anions have been titrated separately [267]. Measuring inorganic
anion is thus relatively time-consuming compared to organic osmolytes. Other methods
utilized ion-chromatography. However, these protocols are not sustainable, because only a
small number of samples can be processed until tissue extracts clog the column and it needs
replacing [274].

There is, furthermore, a general lack of long-term osmolyte studies utilizing appropri-
ate acclimation intervals. This deficit can be due to the fact that long-term studies require
time-intensive experiments. However, with respect to the projected long-term changes in
salinity in many regions world-wide it is necessary to not only understand how organisms
cope under fluctuating salinity conditions, but also acclimate to persisting changes in salin-
ity. Itis thus necessary to investigate the low salinity threshold of key species to discover
what determines the capacity for salinity tolerance. Providing such baselines is crucial to
enable prediction of how species distribution and performance might change with ongoing

climate change.

1.8 OUTLINE OF THE THESIS

his thesis constitutes a comprehensive approach to assess the limits of tolerance to
Treduced salinities and its determinants on multiple levels. It focuses on benthic os-
moconforming invertebrates such as mussels, snails, sea stars and sea urchins. Benthic
species are especially affected by salinity change due to their low mobility. Hence, they are
restricted to certain environmental conditions which they have to cope with 7 situ. Os-
moconforming species are exposed more substantially to environmental salinity changes

as their isoosmotic body fluids adjust to environmental salinity and thus tissues and cells
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experience a wider range in osmolality as well.

The focus of this thesis was to better understand how CVR mechanisms adjust to per-
manent or prolonged salinity reductions.

To do this, I first performed a comprehensive literature research to conduct a meta-
analysis of osmolyte composition across taxa in response to low salinity acclimation. Sec-
ondly, in order to investigate effects of low salinity on organisms and their capacity for
salinity tolerance, I conducted a series of long-term (30 days) acclimation experiments to
low salinity across taxa. Here, I combined biomarkers from multiple biological organiza-
tional levels and examined salinity tolerance on the biochemical, tissue and organismic level
(Fig. 1.5). I assessed physiological fitness in combination with elaborate osmolyte profiles.
Lastly, I conducted a focus study using two locally adapted mussel populations to assess
conserved and population-specific salinity acclimation mechanisms using differential gene
expression (Fig. 1.5).

The first part of this thesis established a baseline for future osmolyte research. A system-
atic overview of osmolyte profiles across taxa was overdue as there is a large, sometimes con-
troversial, amount of literature on marine animal osmolytes with heterogeneous units of
measurement. I conducted a systematic review on the effect of low salinity on the osmolyte
concentrations across marine benthic osmoconformers. The reported results were then
subjected to a meta-analysis that considers effect-size as well as experimental design. An im-
portant characteristic of this study was to include inorganic as well as organic osmolytes.
The aim was to identify compounds that significantly change with salinity to distinguish
true osmolytes from the vast amount of reported intracellular chemical compounds. By
differentiating further between taxa, tissues and physiotypes, I aimed to identify universal
and specific mechanisms of cellular volume regulation and potential research gaps. The

intention was further to establish best-practice guidelines for future osmolyte research.
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I investigated the following questions:

i Which inorganic and organic solutes function as osmolytes in osmoconforming

species?
ii Are both, inorganic and organic osmolytes involved in salinity acclimation?
iii Are there taxonomic differences in osmolyte utilization?
iv Are there differences in utilization of osmolytes between tissue types?

v Are there differences in osmolyte use in euryhaline vs. stenohaline species?

Based on the results of the systematic literature review and the meta-analysis, the next
chapter of this thesis was designed to address research gaps that were revealed previously
and to expand the current knowledge on osmolytes systems. Therefore, the following ex-
periments used an integrative approach of measuring organismal and biochemical biomark-
ers in response to salinity stress. In this study, I chose six species from three different taxa
and five phyla (Cnidaria: Anthozoa, Echinodermata: Asteriodea Echinoidea, Mollusca:
Bivalvia & Gastropoda). All of these species have an important ecological role, be it as foun-
dation species / ecosystem engineers, keystone predators, grazers or potentially invasive
species. Most of the study species are considered euryhaline, nevertheless they differ in their
salinity tolerance ranges.

Using a sufficiently long acclimation time of four weeks with prior climate chamber ac-
climation and gradual salinity decrease, I carefully conducted six independent experiments.
Species were submitted to seven different salinity treatment that clustered around the low
salinity threshold. I assessed the effects of low salinity on fitness parameters, volume regula-
tion capacity as well as a comprehensive osmolyte profile of body fluids and tissue extracts.

I measured a large variety of inorganic ions and organic osmolytes with a combination of
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multiple, untargeted techniques. I developed a novel protocol for the inorganic ion anal-
ysis in tissues, which is described in this chapter for the first time. Concerning organic os-
molytes, I employed non-targeted metabolomics to cover all potential osmolyte classes. The
chosen combination of physiological and biochemical biomarkers allowed me to test the
S.rir cOncept across taxa.

The hypotheses were:

i Organic osmolyte concentrations in tissues decrease during acclimation to low salin-
ity.
ii Organic osmolyte composition differs between taxa.

iii The inorganic osmolyte pool decreases during acclimation to low salinity. More
specifically, the concentrations of the main inorganic osmolytes (i.e. sodium and

chloride) decrease in tissues, while potassium and calcium remain constant.

iv A critical salinity can be determined for species across taxa and is accompanied by a

reduction in survival and growth and an increase in tissue water content.

In the third part of this thesis, I continued this integrative approach to understand salin-
ity stress acclimation responses using transcriptomics. Two locally adapted blue mussel
populations from different salinity regimes were compared for differences in gene expres-
sion after acclimation to s salinity levels. Due to the differences in salinity tolerance, A1.
trossulus-like and M. edulis-like populations from the hybrid zone of the Baltic provide an
ideal model system to study how bivalves adapt to hypo-osmotic conditions and difter in
salinity acclimation mechanisms. A companion study has shown that these mussel popula-
tions show differences in the size of the intracellular inorganic and organic osmolyte pools,

as well as differences in survival under hypo-osmotic stress [296]. Thus, the next step to un-
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derstand how acclimation to low salinity works was to look at the transcriptomic responses
to determine which salinity responses are universal and which are population-specific. I as-
sumed that, in accordance with their phenotypic differences in salinity tolerance, the two
Mytilus populations will exhibit divergent transcriptomic responses following acclimation
to low salinity.

The hypotheses were:

i Atlow salinity mussels will upregulate processes involved in cellular volume decrease

(i.e. reduction of osmolyte concentrations via release or degradation).
ii Stress response genes in the Kiel population will be upregulated at low salinities.

iii Usedom mussels (low salinity adapted) will have a lower number of differentially

expressed genes than Kiel mussels (high salinity adapted) at low salinities.

iv Severely stressed organisms will be characterized by an enrichment in gene expression
of stress response genes (i.e. heat-shock proteins) and pathways involved in apopto-

sis.

The results of the three chapters build on one another and will be synthesized in the
discussion to highlight the different aspects of salinity tolerance in osmoconformers. The
main goal of my thesis was to answer which mechanisms determine low salinity thresholds
across taxa. Another objective was to assess which biomarkers are most useful in determin-
ing these physiological limits. It was further a goal to reveal on which levels these key reg-
ulators operate. This thesis, thus, poses an important cornerstone for future research in
salinity tolerance as it employs an integrative approach to measure phenotypic plasticity to-
wards low salinity across a wide range of species. This was done on an organismic level as

well as, cellularly, on a biochemical and transcriptomical level.
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ABSTRACT

ALINITY IS A MAJOR ENVIRONMENTAL FACTOR shaping the distribution and abun-
S dance of marine organisms. Climate change is predicted to alter salinity in many coastal
regions, due to sea level rise, evaporation and changes in freshwater input. This exerts
significant physiological stress on coastal invertebrates whose body fluid osmolality fol-
lows that of seawater (osmoconformers). In this study we conducted a systematic review
and meta-analysis of osmolytes (both organic and inorganic) utilised by osmoconform-
ing marine invertebrates during >14 days acclimation to reduced salinity. Of 2389 stud-
ies screened, a total of 56 studies fulfilled the search criteria. 38 studies reported tissue os-
molyte. Following acclimation to reduced salinity, tissue concentrations of six organic com-
pounds and sodium were consistently reduced across phyla. This suggests that intracellular
inorganic ions are not only utilized as a rapid response system during acute exposure to

low salinity stress, but also, in concert with reductions in organic osmolyte concentrations,
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during longer-term acclimation. Our systematic review demonstrates that only few stud-
ies (» = 13) have quantified salinity induced long-term changes in intracellular ion con-
centrations. In addition, no study has compiled a complete intracellular osmolyte budget.
Alanine, betaine, glycine and taurine were the major organic osmolytes that are universally
employed across five phyla. Characterisation of organic osmolytes was heavily weighted
towards free amino acids (FAAs) and derivatives - neglecting methylamines and methylsul-
fonium compounds, which can be as important as FAAs in modulating intracellular os-
molality. As a consequence, we suggest best-practice guidelines to streamline experimental
designs and protocols in osmoregulation research in order to better understand conserved
mechanisms that define limits of salinity acclimation in marine invertebrates. This is the
first systematic review & meta-analysis on osmolyte concentrations in osmoconformers ac-
climated to low salinity. It creates a valuable baseline for future research and reveals large
research gaps. Our meta-analysis suggests that there are common osmolyte actors employed
across phyla, but no uniform concept. In light of future salinity changes and its potential
consequences, it becomes more important to understand salinity tolerance capacities and

limits.

KeEywoRrDSs

Osmotic stress | Osmoconformer | Cellular volume regulation | Osmoregulation | Os-

molytes | Ions | Salinity tolerance | Metabolomics | Free amino acids | Marine Invertebrates

2.1 INTRODUCTION

SALINITY IS A MAJOR ABIOTIC FACTOR in the aquatic environment with short-term

fluctuations causing severe physiological stress in organisms [36]. An increasing num-
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ber of studies predict long-term changes in salinity caused by ongoing climate change in
coastal regions of the world, with potentially severe effects on ecosystems [1, 357]. This
includes increasing as well as decreasing trends. Generally, higher latitudes are predicted
to receive an increased freshwater input via precipitation, riverine discharge, surface run-
off or meltwater [27, 221, 367]. On the other hand, subtropical regions or some estuarine
regions (such as the Chesapeake Bay area) are estimated to experience an increase in salin-
ity due to lower precipitation rates, or sea level rise and a consecutive sea water influx into
previously brackish areas [75, 128]. Desalination can be as harmful to organisms as ocean
warming or acidification, but has received little research attention up to now. In the Baltic
Sea, widespread desalination by 1.5 is predicted by the year 2100. This would potentially
render an area of > 100.000 k7 inhabitable for many marine species and would shift
biomes westward [107, 262]. Shallow, coastal reefs in Australia are more likely to experi-
ence prolonged low salinity events in the future [113, 310] and Antarctic shelf systems are
predicted to receive an increased input of melt-water and atmospheric precipitation causing
salinity reductions by up to 0.5 — 2 [214, 228]. Therefore, the ability of resident species
to acclimate or adapt to long-term decreases in salinity is crucial for their perseverance and
proliferation in the impacted areas.

Aquatic organisms employ different strategies to cope with changing salinity. Some
species can avoid low salinity habitats by vertical or horizontal migration to higher saline
regions. However, most benthic invertebrates in particular have a lower degree of mobility
and are thus more susceptible to local salinity changes. Some species then temporarily iso-
late themselves from the environment during hyposaline episodes through shell closure or
encystment, a state that cannot be maintained permanently. Hence, only through physio-
logical acclimation and or adaptation to changing salinities can fitness be maintained at a

high level.
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There are two physiological strategies adopted by aquatic invertebrates to adjust to salin-
ity changes in their environment. Osmoregulators are species that can maintain the osmo-
lality of their extracellular fluids at relatively stable levels when exposed to salinity stress,
primarily by means of active ion transport (e.g. the crustacean Carcinus maenas or the an-
nelid Marphysa gravelyi) (59, 158, 291]. The extracellular fluids of osmoconformers, on
the other hand, remain isosmotic with respect to ambient salinity (Tab. 2.1). This does not,
however, imply that acclimation to changing salinities is a passive process: osmoconformers
achieve salinity acclimation through active cellular volume regulation (CVR). When cells
are acutely exposed to dilute seawater, they tend to gain water and lose solutes (they swell),
the opposite happens when external osmolality increases [300, 354, 360]. Cells then re-
spond by active CVR, thus regulatory volume decrease in the case of cell swelling, or regula-
tory volume increase in the case of shrinking to fully or partially restore the original cell vol-
ume. This is accomplished via adjustment of intracellular osmotically active compounds,
so called osmolytes (Fig. 2.1) [132, 126, 300, 375]. Depending on the abruptness of the
change in osmolality, CVR can keep pace with passive osmosis, whereas acute osmotic
stress will cause volumetric changes [132]. Osmolytes, used for CVR, are inorganic or or-
ganic solutes whose concentrations are regulated during periods of osmotic stress (sezsu
Somero and Yancey 2011) (Tab. 2.1). The change of cell volume can be an additional or
alternative mechanism employed to adjust to osmotic stress. An increase in cell volume
can also be observed when the capability for CVR is reached or CVR is incomplete [175].
While the osmolality of extracellular fluids is exclusively driven by inorganic osmolytes, cells
partially substitute inorganic with organic osmolytes during intracellular osmolality ad-
justment (Fig. 2.1). This is due to the fact that changing concentrations of inorganic salts
strongly influence protein functioning [124, 332]. Organic osmolytes are termed compat-

ible osmolytes, as their high intracellular concentrations do not impair protein structure
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or function [124] (Tab. 2.1). Time-dependent changes in intracellular osmolyte compo-
sition usually involve an immediate reduction or rise in inorganic ions such as potassium
under hypo- or hyperosmotic stress, respectively [324]. Organic osmolyte concentrations
are modified minutes later [324, 365]. Rapid release or uptake of ions through ion chan-
nels can rescue cells from mechanical damage (and death) that would otherwise be caused
by excessive volume change [315]. With ongoing salinity stress, inorganic ion concentra-
tions have been suggested to be partially restored and instead organic osmolyte are reduced
as osmotic replacements [324]. Upon longer time of exposure or acclimation to hyperos-
motic stress, species have been shown to gradually modify the concentration of compatible
organic osmolytes and the composition of organic osmolyte budgets. Subsequently, these
organic osmolytes are metabolized to organic osmolytes with higher osmoprotecting abil-
ities or replaced by osmolytes accumulated via de novo synthesis [279, 332]. This is a more
time intensive process that can last from hours to two to four weeks depending on the mag-

nitude of hypo- or hyperosmotic stress experienced [9].

Table 2.1: List of definitions

Term Definition

Solute Any dissolved compound

Osmolyte Any inorganic or organic solute whose concentration is regulated during
acclimation to an altered salinity regime

Organic osmolyte Organic solute, usually a low molecular mass organic molecule that con-
tributes to osmotic pressure and is regulated with changes in salinity

Compatible osmolyte Osmolyte that contributes to osmolality yet perturbs protein function to

a lesser degree than other organic solutes. Instead, compatible osmolytes
often exhibit protein stabilizing attributes

Extracellular space (ECS) ECS refers to the vascular system that contains blood, coelomic fluid or
hemolymph, as well as the interstitial space filled with interstitial fluid. The
latter is the extracellular space between cells. ECS contains predominantly
inorganic jons as osmolytes. Extracellular fluids in most osmoconformers
are very similar in composition to seawater

Cellular volume regulation The process of regulating solutes that contribute to osmolality, thereby

(CVR) influencing whether a cell has a tendency to swell (water uptake) or shrink
(water loss)
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Table 2.1: List of definitions

Term Definition

Osmolality Osmotic pressure of a solution. 1 osmole is defined as the osmotic pressure
of a 1 molal solution of an ideal solute

Isoosmotic Two fluids that are characterized by the same osmolality

Osmoconformers Metazoans that are isoosmotic with respect to the surrounding seawater

Acclimation Reversible process of physiological adjustment of an individual organism

to changes in an environmental factor (here salinity) to enable higher fit-
ness than in the un-acclimated state. This typically involves modifications
of cellular biochemistry, membrane composition and tissue ultrastructure

Free amino acids (FAAs) Cytosolic amino acids
Quaternary Ammonium Quaternary amines with the structure R;N*, where R can be an alkyl or
Compounds (QACs) an aryl group. QAC:s are cationic and are considered very good electrolytes.

In order to achieve long-term acclimation to reduced salinities, organic osmolyte con-
centrations must be reduced by discharging or catabolizing surplus osmolytes. While the
immediate responses of inorganic ions to osmotic stress have been examined in a variety
of studies in marine invertebrates, it is largely unexplored to what degree changes in intra-
cellular inorganic osmolytes play a role in long-term acclimation to reduced salinity. The
traditional view is that most species favour to maintain relatively constant ion concentra-
tions while concentrations of organic osmolytes are linearly reduced, ultimately to non-
detectable levels [262]. Characterisation of intracellular inorganic vs. organic osmolyte
concentration adjustments in relation to salinity changes is difficult, as there is a large
and variable fraction of fluids in the extracellular space (ECS, interstitial fluid and blood,
coelomic fluid or hemolymph) in tissue samples (Fig. 2.1, Tab. 2.1). As a result, despite our
knowledge of the general process of cellular volume regulation it remains unclear which
factors determine the capacity and limits for long-term salinity tolerance in osmoconform-
ers.

Approximately > 95% of all metazoan species are invertebrates [407]. The majority

of invertebrates (Cnidaria, Porifera, Ctenophora, Echinodermata, Tunicata, most Mol-
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Figure 2.1: This conceptual figure shows the main components of cellular volume regulation in tissues and how intra-
cellular solute concentrations can be estimated. It illustrates osmolyte concentrations in the extracellular space (ECS;
consisting of interstitial space and blood, coelomic fluid or hemolymph space) and within cells of a generic tissue. Ex-
tracellular fluid osmolality is modulated exclusively through inorganic osmolytes, whereas cells also utilize organic
osmolytes. Only the major inorganic ions are depicted, namely chloride, potassium and sodium. The abbreviation Org
represents a variety of organic osmolytes, such as alanine, betaine, glycine, or taurine. The size of the circles represents
the concentration of a specific osmolyte. A total tissue sample can contain a large proportion of the ECS that is on aver-
age 40%, with a range from 10 — 80% of tissue mass. Since ion concentration in the ECS roughly represents that of the
surrounding seawater and intracellular osmolality is partially accounted for by organic osmolytes, intracellular inorganic
ion concentrations are lower than those in the ECS. Measurements using tissue homogenates thus overestimate cellu-
lar inorganic osmolyte concentrations and underestimate organic concentrations, if they are not corrected for the ECS
contribution. Extracellular ion concentration can be measured from blood, coelomic fluid, or hemolymph samples. The
ECS can be estimated via the dilution of a known volume of a radioactive, or fluorescent tracer (such as *C-inulin, or
FITC-inulin) that is injected into extracellular fluid. Cell volume is estimated from the difference between tissue volume
and ECS volume. Intracellular osmolyte concentration can then be calculated with the given formula.
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lusca, some Annelida and Arthropoda) and few vertebrates (Myxinidae, Euchselachii and
Coelacanthiformes) are osmoconformers [101, 145, 235, 399]. Despite this vast amount of
osmoconforming species, it remains unclear how most osmoconformers acclimate to low
salinity and whether similar osmolyte selection strategies are employed across taxa. While it
has previously been shown that there are differences in organic solute utilization between
plants, bacteria, invertebrates and vertebrates [146], it is unclear whether taxonomic dif-
ferences in osmolyte utilization exist within osmoconforming marine animals. It has been
shown that different tissues can differ in their osmolyte utilization, yet it is unclear whether
these differences are systematic [9, 97, 122]. A key question that has not been addressed is
whether organic osmolytes are preferentially depleted during low salinity acclimation in all
invertebrate taxa or whether inorganic ion depletion occurs simultaneously.

In this review, we focus on a systematic comparison of inorganic and organic osmolytes
in tissues of benthic osmoconformers. We filtered the literature for studies that have accli-
mated marine osmoconformers to reduced salinities for a time period of at least 14 days.
Tissue organic osmolytes typically reach new steady state concentrations within such a
time interval [22, 61, 193]. This screening procedure allows us to test, whether decreased
inorganic ion concentrations complement reductions in organic osmolyte concentrations
during long-term acclimation to reduced salinity, or whether inorganic ions are exclusively
used for CVR during rapid salinity changes.

Currently, there is no systematic analysis available that has screened the available liter-
ature for factors that could define the capacity for salinity tolerance in osmoconforming
organisms. In our study, we assess impacts of low salinity acclimation on osmolyte concen-
tration of osmoconformers to obtain information on osmolyte pool size and composition.

We ask the following questions:
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(i) Which inorganic and organic solutes function as osmolytes in osmoconforming

species?
(ii) Are both, inorganic and organic osmolytes involved in salinity acclimation?
(iif) Are there taxonomic differences in osmolyte utilization?
(iv) Are there differences in utilization of osmolytes between tissue types?
(v) Are there differences in osmolyte use in euryhaline vs. stenohaline species?

To answer these questions, we conducted an extensive systematic review of the available
literature. The systematic approach follows a strict literature search and selection protocol
guaranteeing an objective selection of suitable studies. With the compiled data we pro-
ceeded with a meta-analysis. The benefit of a meta-analysis over an ordinary literature re-
view is the ability to statistically evaluate individual effect sizes by computing a summary
effect for multiple studies to estimate the mean of the distribution of true effect sizes. This
way, emphasis is placed on an overall perspective allowing for outliers and diverging ef-
fects. To account for the expected biological variability, we conducted categorical subgroup

meta-analyses for factors such as taxonomy, tissue type and physiotype.

2.2 METHODS

2.2.1 LITERATURE SEARCH & DATA EXTRACTION

The literature was scanned for studies reporting inorganic and organic osmolyte con-
centrations of osmoconforming species in response to long-term salinity changes.
To cover a wide literature base, we searched three scientific databases: ISI Web of Science,

Google Scholar and Scopus. We used pre-determined, relevant keywords, their possible
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variations and Boolean operators for the search strings (Appendix A.1). Additionally,
hand-picked studies were added which were either already known or revealed following
relevant literature trails during full-text analysis. The literature search was performed on
studies collected until 30.01.2019. Marine benthic osmoconformers (free-living, non-
parasitic metazoans > 1mm) were defined as our population of interest. Long-term low
salinity stress (minimum 14-day exposure) was chosen as exposure variable in conjunction
with marine salinity (or habitat conditions) as comparator [260]. The acclimation time
here refers to the time at the final salinity treatment, excluding time for salinity adjustment.
Information on the type of salinity adjustment (gradual vs. acute) was added to SIo3. To
explore the effect of low salinity stress on osmotically active cellular substances, we selected
studies which reported inorganic ion and/or organic osmolyte concentrations in tissues
and extracellular space as outcome variables. Following the initial literature search, three
successional filtering steps followed: title scan, abstract scan and full-text scan (Fig. 2.2).
During each step, the search results were assessed for relevance and obviously irrelevant
studies were excluded, while possibly relevant studies were included in the next assessment
step. If the topic of the study was unclear in anyway during the title scan an abstract was
conducted to validate a potential exclusion. During full-exam we further searched the lit-
erature cited by all potentially relevant studies. Exclusion criteria were pre-defined and
consistent throughout the entire filtering process. Included were studies with osmocon-
forming metazoan species from marine and brackish water habitats as study organisms.
Partial osmoconformers were included in the study when they were reported to be isos-
motic across > 50% of their habitat salinity range, but were found to regulate osmolality
under severely hypoosmotic stress. Hypo- and hyperconforming species, whose osmolal-
ity is always slightly higher or lower (by <10 mOsm x kg™ in either direction) than that

of the ambient medium, but changes proportionally with salinity, were also included into
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our analysis. Studies were excluded when treatment salinity was unknown, when salinity
was fluctuating by more than s, or when only a single salinity treatment was reported (ab-
sence of control treatment). To guarantee complete acclimation, we restricted our analyses
to experiments with a salinity acclimation duration of at least 14 days. When acclimation
time was unknown, studies were excluded. For multifactorial studies, only the response to
altered salinity at the control condition of the co-variable was used for our analysis. Mul-
tifactorial studies where the salinity treatment could not be differentiated from the effect
of other stressors were not included. When the classification of control conditions was not
clear, the ambient or mid-range level of the additional factor was used. In cases with sev-
eral independent experiments within a study (i.e. different species, different populations,
independent experiments using the same species), all experiments were treated as indepen-
dent data if they met the overall criteria. When a large number of experiments per study
would have been added using this approach, experiments were averaged if possible to avoid
bias (1 study). Although incorporating multiple effect sizes from the same study decreases
the independence of data points, this enabled us to explore a wider range of species and to
increase our sample size. When dependent effect sizes were reported from the same exper-
imental population and the values fell into a priors defined subgroups (i.c. tissue, sample
type) dependent data was used, otherwise only one data point was chosen. These depen-
dent data points were accounted for in the statistical analysis. When salinity response was
recorded over a period of time with multiple sampling time points, the final time point was
selected. For before and after study designs, the initial time point (75) was used as control if
no control treatment was available. When an experiment reported multiple outcome vari-
ables, all responses were used in separate analyses. When an experiment reported more than
one parameter for a single response variable, the most generalizing response variable was

included (e.g. Total Free Amino Acids < Ninhydrin-positive Substances < Total organic
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osmolytes). If response variables had an insufficient sample size (¢ < 3) for meta-analysis,
they were excluded (Tab. A.1). All articles reviewed at the full-text stage are listed in Sup-
porting Information (Tab. A.2) with reasons for exclusion. We assembled results from 68
separate experiments from a total of 56 studies (= published sources). Of these, 41 studies
were revealed during the initial search, and 13 studies were identified as they were cited by
studies collected via the data base searches (list of included studies and study details: Tab.
A.3 & Tab. A.4). Of the 56 studies that comprised the final reference library, 38 reported
osmolyte concentrations for tissues (and sometimes additionally body fluids), and 18 re-
ported only body fluid concentrations. We extracted mean results, variance estimates and
sample size for low salinity and high salinity treatments from the selected studies. Regres-
sion results reporting values for R* and sample size were included and converted. When a
regression study lacked statistical information, but reported raw data, that was used instead.
When multiple treatment levels were reported we used the lowest salinity treatment the
species survived at. For the high salinity group, we used the designated control treatment,
or the salinity level representing marine or habitat conditions. The high salinity treatment
was chosen to never exceed normal marine conditions in order to exclude hyperosmotic
stress effects. Graphical data was transferred from the primary literature using GetData

Graph Digitizer (v 2.26.0.20; S. Fedorov).

2.2.2 DATA ANALYSIS

The effect of low salinity stress was measured for each outcome variable for each experi-
ment computing Hedge’s g (g) as effect size (see SI o4 for all relevant formulas). The stan-
dardized mean difference is a wide-spread index used in meta-analysis. It has the advantage
of being comparable even if studies use different scales [118]. There is a large variety of

units to express osmolyte concentration in tissues. Although it would have been ideal to
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Figure 2.2: Flow chart for the systematic review process of literature retrieval and selection. Numbers indicate the
number of papers per step.

convert all measurements to the same scale before comparison, many authors have not re-
ported the data necessary to enable these conversions. Thus, we used standardized means
to include as many studies as possible. Hedge’s g corrects for a bias overestimating stan-
dardized mean difference for small sample sizes [117]. A Hedge’s g of o is interpreted as the
experimental treatment having no effect on the response variable, while a positive value in-
dicates a positive effect and a negative value indicates a negative effect. Meta-analyses weigh
the individual eftect sizes by the inverse of the effect size variance to account for the preci-
sion of each study, hereby penalizing studies with high variance and low sample size [32]. A
random effects model was used to calculate the overall mean effect for each response vari-
able, hereby computing a weighed mean effect that accounts for sample size, within and
between study variance (see Appendix A.2 for all relevant formulas). The effect size is con-
sidered significant (# = 0.05), when the 95% confidence interval does not include zero.
The Qs value indicates how much heterogeneity is explained by the moderator and is used
to test whether this proportion is significant. To compare inorganic and organic pool sizes
an unweighted fixed effects meta-analysis was conducted, since most studies did not re-
port variances. We accounted for dependent data clusters and potential underestimated

variance, using robust variance estimates [119]. A robust test was used on the random
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or mixed-effects model which estimates a variance-co-variance matrix of the model coefhi-
cients. This test has the advantage of adjusting for small sample sizes that improves the per-
formance of the method when the number of clusters is small [364]. This test yields more
conservative results for confidence intervals and measures of significance. It does not report
on heterogeneity measures and thus results from the original model were used as indicators
for residual underlying heterogeneity. For comparability between response variables the

robust test was applied in all cases, even when dependent data clusters were absent.

2.2.3 SUBGROUP ANALYSIS

To examine the variation of effect sizes between studies we calculated the Q-statistic. A sig-
nificant Q statistic indicates that there is significant underlying heterogeneity within the
mean effect size and that other factors contribute to effect size variation. Consequently,
studies were tested for differences in effect sizes in a subgroup analysis with previously
defined categories. We assumed that heterogeneity in effect sizes could be due to biologi-
cal differences and compared different taxonomic groups at the phylum level (Annelida,
Arthropoda, Chordata, Cnidaria, Echinodermata, Mollusca, Platyhelminthes, Porifera)
and down to class level where possible (Bivalvia and Gastropoda). In addition, we com-
pared the mean effect size amongst the various sample types (i.e. whole body, gill tissue, in-
testinal tissue, muscle tissue, mantle tissue, heart tissue, coelomocytes). We further wanted
to distinguish between different physiotypes (stenohaline, oligohaline and euryhaline).
However, it was not possible to conduct a categorical mixed-effect meta-analysis assessing
influence of physiotype on effect sizes due to the lack of representation of stenohaline and
oligohaline organisms in literature. For the other subgroup analyses, only subgroups con-
taining sufficient data points (£ > 3) were considered. To test for differences amongst sub-

groups, we performed separate mixed-effect models assuming random effects within-study
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variance and fixed-effects between-study variance for each category and response variable.
A subgroup meta-analysis calculates a new summary mean effect size for all experiments
included in the analysis as well as a mean effect size for each subgroup. Significance of the
moderator variable is estimated by Qzs. The robust test was used on mixed-eftects mod-
els. To avoid repeated testing of the same data which results in an increased probability
of type 1 error, the analysis was limited to the & prior7 defined categories. The number of
studies included in the categorical analysis might differ in the number of data points from
the initial overall mean effect size analysis. Thus, the new summary effect computed by
subgroup analysis might differ from the overall meta-analysis result. Lastly, the relation-
ship between effect sizes and methodological factors was tested. Methodological factors
can affect effect size and should be considered when designing experiments or evaluating
literature. The magnitude of salinity stress can have an impact on effect size value. The
larger the salinity stress, the more osmotic constituents are depleted. Thus, in stenohaline
organisms with a smaller salinity range this will have a smaller impact than in euryhaline
organisms subjected to very low salinity conditions. We quantified the differences in ef-
fect size between studies for experimental duration and magnitude of salinity stress using
a continuous meta-regression approach. Additionally, acute osmotic shock can overstrain
an organisms’ salinity tolerance, whereas a gradual acclimation would allow the species

to acclimate successfully [140, 258]. We recorded the mode of salinity adjustment where
possible (instantaneous vs. gradual; Tab. A.4), however it was not defined 4 priori as a cat-
egorical moderator. Moreover, not all studies of the final data set described the time course
of salinity transfer, thereby impairing statistical analysis. Despite this, an acclimation time
of 14 days after salinity transfer should be sufficient for osmolyte concentrations to reach a

new steady state [248].
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2.2.4 SENSITIVITY ANALYSIS

When conducting a meta-analysis, diversity in study design across the literature can intro-
duce potential biases. In this case, a rigorous sensitivity analysis was used to trim metadata,
make study diversity transparent and assess the quality of meta-analysis results and possible
publication biases (Tab.A.s& Tab.A.7). First, the data was tested for its robustness and ex-
amined for statistical outliers and influential studies. This was done using multiple visual
tools such as baujat and influence plots, as well as the influence function summarizing mul-
tiple statistics. When statistical outliers were detected and there was no suspected underly-
ing heterogeneity, these data points were omitted from the analysis (Tab. A.s). To test for
publication bias we applied a series of indirect tests. To test for potential bias as a result of
the lack of small studies with non-significant effects we examined symmetry of funnel plots,
supported by Egger’s test and completed by the Trim and fill procedure to adapt the model
for potential asymmetry and check whether a significant effect remains valid after inclu-
sion of imputed studies [76, 77]. However, recent research has shown that the assumptions
of the small-effect study methods may be inaccurate in many cases [154, 245, 319]. Thus,
Rosenberg’s Fail-Safe number was applied in addition since it does not rely on funnel plot
asymmetry, giving an estimate on how many studies, of the same weight (i.e. taxa, sample
size) as the average of those already used studies are needed to reduce the significance of the
effect size [293]. P-curve analysis has been proposed as an alternative way to assess publica-
tion bias and estimate the true effect behind the collected data [319]. Yet, p-value analysis

is not robust against high heterogeneity. All results were considered with regard to publica-
tion bias, but when high heterogeneity and small effects were present more weight was put

on fail-safe number results.



2.2.5 STATISTICS

All analyses were computed using R. Effect size calculation was done using the esc package
[196]. Meta-analyses were performed using the metafor package [364]. Quality assessment
was done using the latter as well as the meta and dmetar package [10, 115]. Test and model
results were considered significant with a p-value < 0.05. Visualizations were conducted
using R. Graphs show mean effect sizes. Error bars depict 95% confidence intervals from
robust tests. An effect can be considered statistically significant if the error bar does not
overlap with null. Statistical significance is indicated by an asterisk above the effect size, a
cross signifies a significant result that did not pass sensitivity analysis. In subgroup analysis
an asterisk above the overall effect symbolizes significance of the moderator variable. For the
overall effect size Q denotes significant underlying heterogeneity from the original model

results.

2.3 REsULTs

2.3.1 STUDY AND DATA CHARACTERISTICS

he database search yielded 2389 results. From the initial unfiltered reference library,
TI 122 studies passed the title scan. The following abstract scan reduced the number
of studies to 593. This also included additional studies that emerged during full-text scan
of literature. After the full-text exam, the total number of accepted studies was 56, 38 of
which assessed osmolyte concentrations in tissues, whereas the other studies sampled ex-
tracellular fluids (Fig. 2.2). The resulting dataset covered s phyla including 43 species. The
majority of those were Mollusca (z = 27), whereas less than 4 reports were obtained for
Annelida (» = 4), Cnidaria (» = 4), Echinodermata (z = 1) and Porifera (z = 1) using

our research criteria (Fig. 2.3). Reported ionic outcome variables in decreasing abundance
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were: sodium, potassium, chloride and magnesium. Organic solutes exist in a wide vari-
ety. In total, 6o different substances were identified. The minimum sample size for analysis
(k > 3)was given for 24 of those substances. These substances mainly belonged to the
category of free amino acids (FAAs) and derivatives, methylamines and methylsulfonium
compounds. All organic solutes and inorganic ions whose concentration was significantly

affected by salinity in the following meta-analysis were regarded as osmolytes (sezsu [332]).

2.3.2 EFFECT OF LOW SALINITY STRESS ON OSMOLYTE CONCENTRATIONS

We analysed the overall effect of low salinity stress on a variety of solutes across studies and
phyla to identify osmolytes (Fig. 2.4). Significant effect sizes indicate that the osmolyte
concentration changes significantly at low salinity compared to high salinity conditions
and is thus actively or passively modulated under salinity stress (see Tab. A.6 for statistical
outcomes of the meta-analysis). Out of a total of 29 measured organic and inorganic sub-
stances, we identified six organic and one inorganic osmolytes. We observed a significant
overall effect in 14 outcome variables, however only eight of these passed sensitivity analysis
(Tab. A.s). A significant salinity effect was observed for: the total organic osmolyte pool,
alanine, betaine, glycine, proline, serine, sodium and taurine. Significant heterogeneity of
true effect sizes between studies was observed for all of these compounds.

Few studies measured intracellular (z = 11) or tissue (z = 5) inorganic ion responses to
long-term salinity change. The intracellular potassium concentration was not significantly
affected by salinity stress, but residual heterogeneity was observed. Concentrations of chlo-
ride and magnesium were not significantly affected by salinity. It has to be noted that mag-
nesium concentrations do not represent intracellular values, but tissue values. Thus, these
values include an unquantified extracellular ion component. Intracellular sodium was the

only inorganic ion to significantly decrease with decreasing salinity. The meta-analysis re-
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Figure 2.3: Spider plots highlighting the distribution of studies that measured osmolyte concentrations in osmoconform-
ers following long-term acclimation to low salinity regimes. The number of studies increases from center (z = 0) to
margin (z = 20). A) Spread and geographic bias of osmolyte studies. B) Spread and publication bias of osmolyte stud-
ies by biogeographic realms. C) Spread and bias of osmolyte studies in different tissues. D) Phylogenetic distribution

of study organisms according to taxa. E) Phylogenetic distribution of study organisms according to common name of
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Figure 2.4: Overall meta-analysis of the salinity effect on A) organic and B) inorganic compounds. This figure depicts

the overall effect of low salinity on solute concentration of organic compounds (yellow) and inorganic compounds (blue)
from the random-effects meta-analysis. Individual outcome variables (compounds) are depicted on the x-axis and the ef-
fect sizes expressed as Hedge's g are depicted on the y-axis. The mean effect size for each outcome variable is depicted
as a circle with the error bars indicating robust confidence intervals (95%). If the confidence intervals do not overlap
with zero (marked in red) an effect size is considered significant. If error bars are not visible, they are smaller than the
data point. An asterisk indicates a significant robust difference in effect size that passed sensitivity analysis. Results that
were significant, but were flagged during sensitivity analysis were marked with a plus. Q indicates significant residual
heterogeneity as tested with the random effects model. Numbers below circles indicate k - the number of studies. All

outcome variables can be considered intracellular, except for magnesium. Magnesium concentrations were reported for
tissues only.
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sults demonstrated a larger variability for inorganic ion concentrations when compared to
that of organic solute concentrations. The mean effect sizes for sodium were similar to the
effect size of total organics. The effect sizes of individual organic osmolytes were smaller
and usually less variable. The random-effects model calculated an initial significant effect
for ammonia, glutamate, glutamine, methionine, tyrosine and valine, which we did not
consider as robust after sensitivity analysis due to low fail-safe numbers, the effect not being
significant after trim and fill procedure, or due to a significant p-curve test (see Tab. A.s for
Sensitivity Analysis). No significant effect, but residual heterogeneity was observed for argi-
nine, aspartate, isoleucine, leucine, ornithine, phenylalanine, threonine. We could not find
an effect of salinity on the concentration of asparagine, histidine, lysine, o-phosphocholine,
and phosphoserine. Hence, we did not consider them to function as osmolytes. Addition-
ally, there was no significant heterogeneity which would indicate other involved moderator
variables. Significant heterogeneity of effect sizes (Qf) was observed for the majority of so-
lutes analysed (z = 19). All substances with underlying heterogeneity were investigated
turther using the 2 priori defined categories for subgroup analysis if the sample size allowed

it.

Payra

The categorical mixed-effect model analysing the low salinity effect on tissue osmolyte con-
centrations in different phyla was conducted for 12 organic compounds that exhibited sig-
nificant residual heterogeneity in the overall effect and provided a large enough sample

size in multiple subgroups as well (Fig. 2.5). There was not enough data to include any in-
organic osmolyte in this analysis. Supported phyla were: Annelida, Echinodermata and
Mollusca. We detected a significant phylogenetic difference for 1o organic compounds. In

general, phylum was a significant moderator affecting total organic solute concentrations
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Figure 2.5: Subgroup analysis of salinity effect on organic osmolyte concentrations in tissue by taxa. The panel includes
a separate plot for each measured solute. In each plot the overall effect and the subgroups are depicted on the x-axis
and the effect sizes as Hedge's g on the y-axis. A positive value indicates a positive salinity effect (i.e. an increase of
concentration at decreasing salinities), whereas a negative value indicates a negative salinity effect on solute concentra-
tion. The overall mean effect size might differ from Fig. 2.4 due to changed sample size, when subgroups could not be
included due to small sample size. Mean effect size for each taxon is depicted as a circle with the error bars indicating
robust confidence intervals (95%). An asterisk above the overall effect size indicates taxon affiliation as a significant
moderator, asterisks above the individual taxa indicate a significant salinity effect for that specific subgroup. Numbers

below circles indicate k - the number of studies. Q indicates significant residual heterogeneity as tested with the mixed
effects model.
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with respect to salinity stress. Specifically, alanine, aspartate, betaine, glutamate, glycine,
leucine, proline, serine and threonine effects sizes were significantly affected by phylum
affiliation. Yet, all of these significant effects were accompanied by significant residual het-
erogeneity, except for leucine. Alanine, betaine, glycine and proline were characterized by
the largest effect sizes amongst the organic osmolytes. Alanine and glycine were identified
as osmolytes in all taxonomic groups. Betaine and glutamate were identified as osmolytes
in Mollusca, but not in Echinodermata. Proline concentration was significantly affected
by salinity in Annelida, but not in Mollusca. Concentrations of aspartate, leucine, serine
and threonine were only significantly altered by salinity in Echinodermata despite similar
effect sizes in Mollusca, because of a high variance in mollusc effect sizes. However, effect
sizes of aspartate, leucine, serine and threonine were smaller than those of other osmolytes.
To summarize, in Annelida, alanine, glycine and proline were the main osmolytes with an
overall smaller effect size for alanine and glycine than in other taxonomic groups. In Echin-
odermata, glycine was the main organic osmolyte, accompanied by several minor organic
osmolytes i.e. alanine, aspartate, leucine, serine and threonine. In Mollusca, the organic os-
molyte pool was mostly composed of alanine, betaine and glycine to a similar degree and

accompanied by glutamate as minor osmolyte.

CLASS

For more taxonomic differentiation, we differentiated salinity effects by class for Bivalvia
and Gastropoda (see Fig. A.1 Subgroup Analysis Class). Small sample size of phylogenetic
groups other than Mollusca and specifically Bivalvia prevented meta-analysis for other
phyla and many outcome variables. The effect of class affiliation on effect sizes was tested
for total organics and was significantly different between Bivalvia and Gastropoda. Effect

sizes were similar, but variance was much larger in Gastropoda. Samples sizes between the
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two groups were very different.

SAMPLE TYPE

We analysed further whether there are differences in osmolyte utilization between tissue
types. In total, 14 outcome variables fulfilled the prerequisites for subgroup analysis. For
those variables, meta-analysis outcomes had a significant residual heterogeneity in their
salinity effect in the prior meta-analysis and sufficiently large sample sizes within subgroups.
We observed significant differences in effect sizes between sample types in 1o compounds
(Fig. 2.6).

There were only two inorganic compounds included in this subgroup analysis. Intra-
cellular sodium concentration was significantly more impacted by salinity stress in muscle
tissues than in gills, and variance was sufficiently explained by this moderator. The sum-
mary effect of sodium was 1.3-fold higher than the effect of total organic osmolytes and
1.4 — 2.5-fold larger than the major organic osmolytes. Intracellular potassium concentra-
tion was not affected by salinity in gills, whereas a significant salinity effect was observed
in muscle tissue. In the case of sodium and potassium the data for muscle tissue originated
from one study, which is why no additional robust test was conducted. Total organic os-
molyte concentration was significantly impacted by salinity across all sample types. The
effect was most pronounced in intestinal and muscle tissue. Glycine and alanine concen-
trations were significantly affected in all sample types except in mantle tissue and with the
largest effect in muscle tissue. Betaine concentration was significantly affected in gill tissue,
but not in intestinal tissue. The main osmolytes in gill tissue were: betaine, glycine and tau-
rine. In intestinal tissues the primary osmolyte we observed was glycine. Muscle tissue had
a larger number of significantly affected osmolytes than the other tissue types and was the

only tissue where sodium concentration was significantly affected by salinity. No osmolytes
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Figure 2.6: Meta-analysis results of the effect of low salinity stress on osmotic compounds by the categorical moderator
variable sample type. The panel includes a separate plot for each measured solute. In each plot the overall effect and
the subgroups are depicted on the x-axis and the effect sizes as Hedge’s g on the y-axis. A positive value indicates a
positive salinity effect (i.e. an increase of concentration at decreasing salinities), whereas a negative value indicates a
negative salinity effect on solute concentration. The overall mean effect size might differ from Fig. 2.4 due to changed
sample size, when subgroups could not be included due to small sample size. Mean effect size for each sample type is
depicted as a circle with the error bars indicating robust confidence intervals (95%). An asterisk above the overall effect
size indicates sample type as a significant moderator, asterisks above the individual sample types indicate a significant
salinity effect for that specific subgroup. Numbers below circles indicate k - the number of studies. Q indicates signifi-
cant residual heterogeneity as tested with the mixed effects model.
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were identified in mantle tissue. We identified sample type as a significant moderator for
the following minor osmolytes: aspartate, glutamine, serine and threonine. Among these,
the mean effect size of aspartate had a significant residual heterogeneity. Aspartate concen-
tration was only affected by salinity in intestinal tissues. Glutamine concentration was only
affected by salinity in muscle tissue. Serine and threonine concentration were significantly
impacted by salinity in muscle tissues and less in intestinal tissues. Sample type was a non-
significant moderator for arginine, glutamate and proline concentrations and significant

residual heterogeneity remained.

2.3.3 METHODOLOGICAL VARIATION IN RESPONSE TO LOW SALINITY STRESS

To test for an effect of methodological moderators on the meta-analyses’ outcomes, mag-
nitude of salinity stress and experiment duration were tested in separate meta-regression
models (see A.7 for statistical output of meta-regression testing of methodological mod-
erators). A significant effect for magnitude of stress (range of salinity reduction 3 — 33)
on mean effect size was observed in s of the 29 studied outcome variables, namely alanine,
leucine, potassium, proline and valine. Alanine and proline had significant underlying het-
erogeneity. Experimental duration (range of duration: 1470 days, and 7z situ studies) was
significant for 5 of 29 outcome variables, namely ammonia, glutamate, potassium, taurine
and valine. When excluding 7% situ studies, there was no significant effect of acclimation

duration except for ammonia and potassium.

2.3.4 IMPACT OF SALINITY STRESS ON OSMOLYTE BUDGETS

Very few studies examined total inorganic ion as well as total organic osmolyte concentra-
tion budgets. In total, we identified only three studies that reported the necessary param-

eters (Fig. 2.7). Two out of the three studies reported tissue and intracellular values, but
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for comparative reasons the meta-analysis of budgets was calculated for the tissue data (i.c.
non-ECS-corrected) for all studies. Additionally, even though total osmolality was available
for one study, we used the sum of the measured total organic and inorganic osmolytes to
enable comparable normalization across studies. The unweighted fixed effects meta-analysis
revealed no significant effect of salinity on the inorganic-organic osmolyte ratio, for either
intracellular or tissue data. The inorganic portion of the total osmolyte pool in tissues and
intracellular fluids changes significantly with salinity, however these outcomes were not
robust. The same is true for the organic portion of the total pool (see Appendix A.3 for

meta-analysis results of budgets).

2.3.5 SENSITIVITY ANALYSIS

Within our data sets, there were some influential studies that were removed (see A.5 for
complete list of removed studies). Often the same studies were outliers across multiple
outcome variables such as: [140, 277, 308, 316]. The funnel plots together with Egger’s
test demonstrated significant asymmetry for all major osmolytes (alanine, betaine, glycine,
proline, sodium, taurine) and glutamate. The minor osmolytes appeared to have no pub-
lication bias. When asymmetry was detected the trim and fill procedure was used to test
for robustness of the effect size. The trim and fill procedure revealed that the adjusted ef-
fect sizes of alanine, betaine, glycine, proline, taurine and total organics were robust, this
was not true for sodium and glutamate. However, p-curve analysis indicates that there was
a true effect behind all of those data sets, except for glutamate and glutamine. Outcome
variables with significant salinity effect had Rosenberg fail-safe numbers from 5 — 1974.
The majority of effect sizes were robust. A few minor organic osmolytes had low fail-safe
numbers, namely valine, methionine, tyrosine, and ammonia. Here, low fail-safe numbers

might be due to low sample size in combination with small effect size. In conclusion, there
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Figure 2.7: This graph shows the composition of the osmolyte pool at low and high salinity for three different bivalve
and gastropod mollusc species: Mytilus californianus gills [316], Mytilus edulis adductor muscle and byssus retractor [267]
and Urosalpinx cinerea whole body samples from two different populations [358]. The percentage of the total osmolyte
pool is shown on the y-axis and salinity on the x-axis. Overall pool size was calculated as sum of measured inorganic
and organic pools and also total osmolality for Turgeon [358]. Potts [267] & Silva [316] did not measure total osmolality.
Potts [267] & Silva [316] did account for extracellular space and thus have results for whole tissue and intracellular
space. Potts [267] and Turgeon [358] did not account for methylamines. Silva [316] did account for betaine, but no
other methylamines.
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seems to be moderate publication bias for all major osmolytes. Nevertheless, there was a
true salinity effect for all major osmolytes and fail-safe numbers were robust. The minor
osmolytes ammonia, glutamate, glutamine, methionine, tyrosine and valine results did not
pass sensitivity analysis. Further publication bias arises from the unbalanced distribution of
studies across continents and biogeographic regions with most studies being conducted in
Europe and North America in the North Atlantic temperate region (Fig. 2.3). Also, there
is large bias in sampled tissues towards whole-body and muscle tissues (Fig. 2.3). Consid-

ering study organisms, mostly molluscs were studied with a specific focus on bivalves (Fig.

2.3).

2.4 DISCUSSION

p to now, osmolyte data in osmoconformers has never been systematically and statis-
Utically analysed using meta-analysis. This holistic approach revealed general patterns
of cellular osmolyte composition and concentration changes in osmoconformers. Our re-
view revealed large gaps in knowledge, especially with respect to the role of inorganic ions
in osmoregulation. The analysis indicates that to date, not a single study has been able to
construct a complete osmolyte budget for intra- and extracellular compartments in any ma-

rine invertebrate species.

2.4.1 INORGANIC OSMOLYTE POOL

Whilst the role of inorganic ions during short-term (minutes-hours) exposure to salin-
ity change has been well documented [317], their utility in long-term salinity acclima-
tion has been disregarded, since significantly altered intracellular concentrations can have

strong perturbing effects on cellular protein function [34]. Perturbing effects of mono-
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valent ions under low salinity conditions are more likely due to ligand-enzyme interac-
tion rather than due to perturbing effects on protein structures [34, 400]. The perturb-
ing effects of monovalent ions led to the commonly held assumption that all inorganic so-
lutes are strongly conserved or replenished over time following acute osmotic disturbances
[309, 324, 330, 398]. Other studies found, however, no eftect of low salinity on enzyme
activity [12, 302]. Ballantyne Berges [11] suggested that the response to low salinity may
involve a reduction of enzyme activity to achieve a homeostasis of metabolic function. It
was also found that enzymes from osmoconformers are not inhibited by salt, whereas en-
zymes from osmoregulators are inhibited [301]. According to Somero & Bowlus [330] a
solute must be compatible with protein function as well as protein structure to be consid-
ered as overall compatible with macromolecular activity. However, there are differences

in the compatibility of inorganic ions with protein functions. Potassium seems to be pre-
ferred over sodium as an intracellular cation due its weaker ion-water interaction and thus
facilitates a higher solvent capacity of the cell water [331]. Potassium, as a weak protein
stabilizer, has a more favourable effect on enzyme activity than sodium, which is a weak
protein destabilizer [331]. For example, the enzyme pyruvate kinase is activated by potas-
sium, whereas it is inhibited by sodium [34]. Intracellular chloride concentrations are
much lower than potassium concentrations, likely due to the fact that high concentrations
of the anion inhibit protein synthesis [331, 373]. There is conflicting evidence regarding
the relative importance of inorganic osmolytes in cellular osmolyte acclimation processes
[227, 371]. Deaton & Greenberg [66] pointed out already 30 years ago that insights into
the role of intracellular ions in cell osmoregulation regulation is precluded by a lack of data.
Unfortunately, few studies have added data on intracellular ion concentrations to the sci-
entific record since then. Some authors have postulated that inorganic ions play a similar

or even major role during acclimation to altered salinity when compared with the role of
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organic osmolytes [61, 227, 250]. This meta-analysis indicates that inorganic ions, specif-
ically sodium, are not exclusively utilized during short-term responses to changed salinity,
but play a potentially important role during long-term salinity acclimation. The random
effects model computed a significant salinity effect for intracellular sodium concentrations,
but no effect was detected for chloride, potassium and magnesium. Lack of a significant
decrease in concentration for chloride and magnesium are likely due to the low number

of available studies and high variability. Out of the four available chloride studies, three
found a significant salinity effect [80, 267, 316]. Intracellular potassium concentration

has previously been reported to significantly and non-transiently change with salinity in
molluscs [336, 382]. For example, Willmer [382] observed a net loss of both intracellular
sodium and potassium ions during acclimation to low salinity that accounted for approxi-
mately 40% of the total required reduction in intracellular osmolality. Other studies report
an increased contribution of inorganic ions to osmolyte pools during low salinity stress,

as concentrations of certain cations (potassium and magnesium) did not decrease perma-
nently, while organic osmolyte concentrations decreased [24]. In general, salinity had a
larger effect on sodium than on individual organic osmolytes. This leads us to the hypoth-
esis that intracellular inorganic ions, especially sodium and potentially chloride, are more
than a first response strategy to avoid cell damage under acute osmotic stress. Instead, they
seem to be as important as organic osmolytes in salinity tolerance of osmoconformers dur-
ing long-term low salinity acclimation, even though the enzyme activity may be affected by
changes in intracellular ion concentration. While it has been shown that inorganic ion con-
centrations can destabilize protein structure and inhibit protein function, most research
focused on hyper-osmotic stress. Protein function and stability at sub-optimal ion concen-
trations, still allow > 60% enzyme activity within a normal osmolality range [11, 373].

Other studies showed no changes in enzyme activity with reduced salinity [12, 301]. At
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the lower salinities experienced and tolerated by euryhaline marine invertebrates, mono-
valent ion concentrations could still be within the range that allows for sufficient enzyme
activity. While there might be species-specific and enzyme-specific variations with regard to
the effects of osmolality on protein stability and function, the reduction of inorganic ion
concentrations such as chloride and sodium in CVR to adapt to low salinities seems less
problematic than acclimation to high osmolalities. Inorganic ions could thus be a crucial
component of long-term CVR during low salinity stress.

The categorical meta-analysis revealed that there are significant differences in osmolyte
content between tissue types. We considered only studies reporting intracellular ion con-
centrations, however this reduced the number of available data greatly. For muscle tissues
all sodium and potassium concentration data originated from one study, therefore the ro-
bust test for random-effects models could not be used. Nevertheless, intracellular sodium
concentration differed significantly between gill and muscle tissue (p < 0.001). Sodium
concentration changed significantly with after long-term acclimation to low salinity in
muscle tissue and gills, but the effect size was significantly larger in muscle tissue. Potas-
sium concentration was not significantly impacted by salinity in gills, whereas a significant
salinity effect was observed in muscle tissue. This finding is contradictory to the presump-
tion that potassium concentration in tissues is maintained at relatively constant levels due
to its important regulatory cell function [238, 404]. Due to the lack of data, a nested design
or a more complex meta-regression model was not feasible. Our meta-analysis highlights
the lack of intracellular inorganic ion content data in relation to salinity in marine osmo-

conformers and a strong research bias towards molluscs.
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2.4.2 ORGANIC OSMOLYTE POOL

Organic osmolytes are key actors during cellular osmolyte regulation. There are many dif-
ferent substances reported as organic osmolytes in the literature, yet reports differ on the
role of specific substances or compound classes. Our analysis excluded isolated reports of
osmolytes or listings of solutes whose concentrations do not change with salinity thereby
generating a more robust candidate list of intracellular osmolytes that are commonly used
across taxa. Data of organic osmolyte concentrations discussed in this chapter originated
from tissue samples only. However, only 20% of studies corrected tissue concentrations
for extracellular volume. This resulted in an under-estimation of intracellular organic os-
molyte concentrations, as extracellular volume, which does not contain organic osmolytes,
constitutes 10 — 80% of tissues in marine invertebrates (Fig. 2.1) [24, 200]. Over 80% of
the identified organic osmolytes were FAAs, which is only one of many compound classes
involved in CVR. Our analysis revealed that 85% of the studies did not aim to or detect
methylamines or methylsulfonium compounds, which, in the sole case of betaine, were
identified as major osmolytes by this meta-analysis. Hence, many of these studies neglected
a large part of the organic osmolyte pool. Further, only a few of the studies that included
analysis of methylamines met the requirements for meta-analysis. This methodological
bias is an issue that has already been raised by other authors who experienced difficulties in
estimating the contribution of methylamines due to lack of studies [61, 330]. The contri-
bution of methylamines to the organic osmolyte pool ranged from 3 — 76%. Quaternary
ammonium compounds (QAC:s) such as proline-betaine have been identified to constitute
the vast majority of the organic osmolyte pool in studies that have measured both FAAs
and QAC:s [254]. Known important methylamines and methylated sulfonium compounds

include: glycine-betaine, proline-betaine, DMSP, homarine, sarcosine, or TMAO. Thus,

58



it is necessary to include the measurement of methylamines when analysing the organic
osmolyte pool. Nevertheless, FAAs can be considered a major component of the organic
osmolyte pool, and some species (the echinoderm Asterias rubens) completely rely on FAAs
as their organic osmolytes [308].

When examining the proportions of the organic osmolyte pool in detail it becomes ap-
parent that organic osmolyte pools of osmoconformers consist of a universally distributed
set of a few organic compounds which differ in partitioning. Usually major osmolytes ac-
count for the large majority of the organic osmolyte pool. Over 70% of the study organ-
isms only employed one or two major substances, which constituted 35 — 70% of the
osmolyte pool (Fig. 2.8). The use of more than one primary osmolyte has been suggested
as a strategy to guarantee osmoregulatory flexibility through substitution should synthesis
of one osmolyte be interrupted or limited [1o5]. The main osmolyte is often accompanied
by 1 — 3 other minor osmolytes, whose contribution to the total pool is usually < 20%
(Fig. 2.8). Minor osmotic compounds are often intermediate substances to the final major
osmolytes 105, 157]. A constraint of our analysis is the large FAA bias in the reviewed lit-
erature. Organic osmolyte pool proportions displayed as a heat map (Fig. 2.8) are merely
observational. Statistical analysis was not possible due to incomplete datasets or imprecise
description thereof.

With our meta-analysis we identified six organic osmolytes across taxa: alanine, betaine,
glycine, proline, serine and taurine (Fig. 2.5). Of these alanine, betaine, glycine and tau-
rine were shown to be the main organic osmolytes in benthic marine osmoconformers
(Fig. 2.5), which is in agreement with other comparative studies [330]. When all sub-
stance classes are considered, betaine is often the main osmolyte accompanied by taurine
[232, 316]. The high variation in effect sizes for betaine was likely due to the strong vari-

ability of betaine concentration between species (Fig. 2.5). Individual studies reported glu-
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Phylum Class Organism Source
Annelida Polychaeta Glycera dibranchiata Costa et al. 1980"

Marenzelleria cf. Viridis
Cnidaria Anthozoa Diadumene leucolena
Diadumene lineata

Schiedek et al. 1997
Pierce & Minasian 1974
Podbielski et al. 2016
Shick 1976

Deaton & Hoffmann 1988
Schmittmann 2017

Metridium senile
Echinodermata Echinoidea Asterias rubens

Mollusca Bivalvia Crassostrea virginica Paynter et al. 1995

Pierce et al. 1992"2

Geukensia demissa Baginski & Pierce 1975

Baginski & Pierce 1977*

Neufeld & Wright 1996 b*
Neufeld & Wright 1998
Pierce & Greenberg 1972
Pierce 1971

Glycymeris glycymeris Gilles 1972

Meretrix lusoria Lin et al. 2016"

Modiolus squamosus Pierce 1971

Mytilopsis leucophaeata Deaton et al. 1989

Mytilus californianus Silva 1992

Mytilus edulis Gilles 1972
Hoyaux et al. 1976
Livingstone et al. 1979
Potts 1958
Sanders 2018*

Mytilus gallpprovincialis De Vooys 1991*

Noetia ponderosa Amende & Pierce 1980

Polymesoda expansa Hiong et al. 2004*

Scrobicularia plana Hoyaux et al. 1976

Sinonovacula constricta Ran et al. 2017

Sunetta scripta George & Damodaran 1999
Gastropoda Elysia chlorotica Pierce et al. 1983

Littorina littorea Hoyaux et al. 1976

Nucella lapillus
Stickle et al. 1985

Hoyaux et al. 1976
Kapper et al. 1985
Turgeon 19732

Patella vulgata
Stramonita haemastoma

Urosalpinx cinerea
Gilles 1972

Hoyaux et al. 1976
Knight et al. 1992

Polyplacophora  Acanthochitona discrepan:

Porifera Demospongiae  Microciona prolifera

Arginine
Aspartate
Asparagine
Glycine
Threonine

Glutamate
Glutamine

Phenylalanine

0 20 40 60 80
Percent of total organic osmolyte pool

Figure 2.8: Composition of the organic osmolyte pool (% total organic osmolyte pool) at habitat salinity (11 — 42). The
heatmap indicates percentages of single osmolytes in relation to the total organic pool, where red is a high percentage,
blue a low percentage, and grey marks NAs. Only compounds that accounted for > 5% of the total organic osmolyte
pool in a study and were reported in more than 1 study were listed. Compounds < 5% of the total organic osmolyte
pool or with one entry were summed up under Other. Multiple entries per study are either different tissue types, sepa-
rate populations, or independend experiments and are marked with superscripts 1 — 3, respectively. Studies that passed
the full-exam were included. Additionally, studies were included that had to be excluded from meta-analysis due to
missing information for calculation of effect sizes, but that contained information that was sufficient to calculate the
organic osmolyte pool composition. 60



tamate or proline to play more important roles than suggested by the compiled dataset in
this study [320, 330]. The random effect model revealed significant heterogeneity of vari-
ances for most organic osmolytes, indicating further underlying differences in effect sizes

possibly due to taxonomic or tissue specific differences.

While this systematic review and meta-analysis focuses on low salinity acclimation of
marine osmoconformers, such species can also often tolerate a high level of hyper-osmotic
stress. In these cases, CVR is achieved with an initial rapid increase of inorganic ions, which
is replaced in a second phase by increases in organic osmolytes [331]. In anthozoa, steep in-
creases in total organic osmolyte concentration were observed under prolonged acclimation
to hyper-osmotic conditions [22]. In Elysia chlorotica exposed to salinities of 6o, initially
alanine and subsequently proline-betaine concentrations increased [257], demonstrating

the change from a simply structured to a more complex osmolyte.

2.4.3 TAXONOMIC DIFFERENCES IN ORGANIC OSMOLYTE CONCENTRATIONS

The categorical subgroup analysis determined significant taxonomic differences in the
salinity effects on osmolyte concentration after long-term acclimation to low salinity (Fig.
2.5). All taxa significantly depleted the total organic osmolyte pool during acclimation to
low salinity. The main osmolytes alanine, betaine and glycine are used to different extents
in different taxa. Glycine is utilized more by Echinodermata and Mollusca than it is by An-
nelida. Alanine is used most by Mollusca and least by Echinodermata. Minor osmolytes
such as aspartate, leucine, serine or threonine, are significantly reduced with decreasing
salinity in Echinodermata, but not Mollusca. Some minor osmolytes seem to be phylum-
specific: i.e. glutamate in Mollusca, or proline in Annelida. Molluscan organic osmolyte
effect sizes have a large variance, which could indicate further underlying heterogeneity

within this taxon. Annelida do not utilize a single primary osmolyte and instead the pool

61



is evenly made up between major and minor, uncommon osmolytes, i.e. asparagine, serine,
or proline (Fig. 2.8) [56]. These findings are however contradictory to short-term exper-
iments, where Annelida are reported to use glycine as primary osmolyte accompanied by
proline and alanine [134]. Considering alanine, our results are consistent with the litera-
ture assessing short-term salinity stress in Annelida [134]. Mollusca were the most repre-
sented taxon (30 studies) with Echinodermata the least represented (1 study, 1 species) (Fig.
2.3). In molluscs, taurine has been reported to be ubiquitous [8]. This is in accordance
with our findings (Fig. 2.8), but could not be further explored due to lack of data in other
groups.

Unfortunately, we did not have a sufficient sample size available for analysis in other
taxonomic groups to consider methylamines other than betaine. We did not find a single
study on organic osmolyte concentration in tissues of osmoconforming Arthropoda un-
der long-term salinity stress. Cnidaria, Chordata and Porifera could not be included in
our subgroup analysis due to low sample size, however, single studies on Cnidaria, Chor-
data and Porifera reveal that the main osmolytes are the same as in molluscs and annelids
[67, 150, 262, 393].

So far, no other study has analysed taxonomic differences in organic osmolyte pools sta-
tistically. Some reviews have examined large scale differences in CVR between domains
and phyla, or on a small scale between species [24, 332]. But not much information is avail-
able for other phylogenetic contrasts. This study demonstrates that phylogeny is a signif-
icant underlying factor affecting organic osmolyte adjustments under salinity stress (Fig.
2.5, 2.8). We observed that: 1) Glycine is widely used across taxa, 2) Echinodermata and
Porifera rely heavily on glycine and do not utilize taurine. 3) Taurine is mainly used by Mol-
lusca (also present in Cnidaria). Next to taurine, betaine and glycine are major osmolytes

in Mollusca. 4) Annelida do not use a single main osmolyte in a large quantity, but use a

62



variety of osmolytes in smaller amounts. 5) Echinodermata only employ FAAs, whereas
methylamines have been reported to play major roles in molluscan and cnidarian CVR.
Minor osmolytes are often taxon-specific compounds and could further indicate difter-

ent taxonomic strategies. There are a few prominent organic osmolytes that are present in
many taxa (i.e. alanine, betaine, glycine and taurine). The differences in concentration of
such universally employed osmolytes raises the question as to whether different genetically
determined physiological strategies are employed, or if the observed differences stem from
environmental or nutritional factors. Next to taxonomic differences we find also a large
diversity of tissue types that have been sampled for organic osmolytes. Considering the spe-
cific physiological roles of different tissues, the question arises whether organic osmolyte

pools differ between tissue types.

2.4.4 CELLULAR STRATEGIES OF VOLUME REGULATION DIFFER BETWEEN TISSUE TYPES

Salinity had a significantly different effect on inorganic and organic osmolyte concentra-
tion between tissues (for discussion of inorganic ions see above chapter). Total organic
compounds were significantly affected by salinity in all tissues. Yet, the organic osmolyte
pool was less impacted in gill tissues. Also, we observed a more specific composition of os-
molytes in gills, whereas muscle tissues employed a wider range of osmolytes. Muscle tissue
used more alanine and glycine, whereas taurine was more heavily used in gill tissue. Some
minor compounds were more prevalent in certain tissues (such as aspartate in gills, and
serine, threonine and aspartate in intestinal tissues and glutamine, serine and threonine in
muscle tissue). Differences in osmolyte concentration or their transporters between tissues
potentially reflect differences in metabolic pathways between tissues or functional roles of
specific osmolytes in different tissues [129, 133]. Overall, the examined tissue types were

very diverse, which made generalization for meta-analysis necessary, thereby excluding very
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specific measures. Our findings are in accordance with other comparative studies that pre-
viously stated differences in osmolyte composition between tissues [90, 157]. Glutamate
was unaffected by salinity across individual tissues except for whole-body tissue, which is
in contrast to studies that listed glutamate as a major organic osmolyte [34]. Mollusc man-
tle tissue was seldom examined for organic osmolytes, thus there were only few outcome
variables with sufficient data. CVR capacity has been reported to differ between tissues in
bivalves. It is reported to be nearly perfect in gills and byssus retractor muscles and incom-
plete in nervous tissues and adductor muscles [95, 174, 267, 382]. Only few papers com-
pare osmolyte concentrations between tissue types directly and neither discusses possible

causes for differences in osmolyte pool composition [56, 61, 122].

2.4.5 CHARACTERISTICS OF MAJOR OSMOLYTES

Having determined a pool of prominent osmolytes, despite taxonomic and tissue specific
differences in pool composition, the question arises what differentiates the main osmolytes
from minor osmolytes or related solutes whose concentration is not modulated during
salinity acclimation. Osmolyte utilization is likely governed by compatibility and cytopro-
tective functions of compounds [332]. According to the preferential hydrations hypothesis
certain structure-stabilizing ions and organic osmolytes are preferentially excluded from
the immediate space around a protein to facilitate hydration [352]. The preferential exclu-
sion can be directly linked to physiochemical stabilizing effects of these solutes based on
the Hofmeister series; osmolytes that have physiochemical similarities with stabilizing ions
from the Hofmeister series are regarded as more compatible or fit as an osmolyte [50, 390].
According to the Hofmeister series, destabilizing ions are for example chloride, sodium,
calcium and urea, whereas potassium, carboxylate, sulphate, phosphate and methylam-

monium ions have stabilizing effects (ranked from weak to strong effects, respectively).
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Hence, organic osmolytes can be considered to be more compatible compared to inor-
ganic ions. However, not all inorganic ions are protein destabilizers and while they may

be less preferred, weak protein destabilizers - such as chloride or sodium - can be tolerated
in certain amounts. All primary organic osmolytes identified in this study (alanine, glycine,
glutamate and methylamines such as betaine) possess stabilizing effects on protein struc-
tures and presumably also membrane systems [332, 394]. The major FAA-osmolytes are
mainly non-essential amino acids. Amino acids of the aspartate family (such as threonine
and methionine) and the glutamate family (i.e. glutamate, glutamine, proline) were identi-
fied amongst the minor osmolytes, which is consistent with the earlier literature (Fig. 2.4,
2.8) [189, 255]. Generally, the predominant organic osmolytes are either uncharged po-
lar molecules or zwitter ions without net charge [332]. Concentrations of essential amino
acids such as aromatic amino acids and branched chain amino acids do not appear to be
regulated during salinity acclimation. This is due to the differences in protein compatibility
of amino acids. Negatively charged osmolytes such as glutamate are only found occasion-
ally (i.e. in bacteria) and in combination with elevated potassium to achieve electroneu-
trality [72]. Positively charged amino acids such as lysine or arginine can have strong per-
turbing effects on PEP binding of pyruvate kinase [398]. In contrast, amino acids such as
glycine, alanine or taurine did not affect PEP binding at normal cellular concentrations
(up to 1 mM). Glycine proved least inhibitory to enzyme reaction compared to other FAAs
[34]. Taurine is known for its inert nature [29] and along with betaine, is known to coun-
teract negative impacts of salts on protein structure and function [38, 400], whereas other
organic osmolytes seem inferior in structure and function. High proline concentrations,
for example, have not been associated with any beneficial effects. Some compounds are
preferential to others, as glutamate concentrations for example, are reduced when other

osmolytes are available and accumulated [58]. Other osmolytes identified in this meta-
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analysis (i.e. arginine, lysine) seem inferior in abilities or even harmful, which might explain
their lower concentrations. Additionally, organic osmolytes with a decreased hydrophobic
moment (i.e. alanine and glycine) seem to be preferred over solutes with a large hydropho-
bic moment such as valine and isoleucine that are disruptive of protein structures [332].
Another criterion for osmolyte selection is metabolic availability and energetic cost. The
utilization of end products of nitrogen metabolism is a cost-effective way to mobilize or-
ganic osmolytes [29]. Alanine is omnipresent in osmolyte pools, likely due to the fact that
it is derived from components of key metabolic pathways such as glycolysis and the citric
acid cycle. Itis thus fast and easy to produce via transamination in all cells. Alanine has
also been reported as a first responder in CVR, which is later substituted by structurally
more complex organic osmolytes such as taurine [9, 28]. Taurine is also a metabolic end
product, produced via degradation of methionine and cysteine [3, 408]. Betaine is derived
from catabolism of the common metabolic products, choline and glycine [258]. Glycine
has been shown to be universally employed across taxa and tissues. It is the simplest stable
amino acid and is characterized by its small size and molecular weight. Despite its ubiquity,
the metabolism of glycine and its derivatives (such as betaine) is generally poorly studied
in invertebrates [8, 61]. Glycine appears to be generated via active transmethylation from
serine [79]. Multiple pathways have been suggested as the main sources for organic os-
molytes, such as the uptake via nutrition or directly from seawater and de novo synthesis
[87, 246, 253, 339, 389]. In corals it has been observed that de zovo biosynthesis as well as

exogenous uptake mechanisms for glycine-betaine are active [233].

2.4.6 WHAT LIMITS THE CAPACITY FOR SALINITY TOLERANCE?

Up to now, it remains unclear what defines the capacity for salinity tolerance in osmocon-

forming animals. Species-specific and population-specific difterences in osmolyte pool
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composition have been suggested as one important mechanism that distinguishes more
euryhaline from stenohaline osmoconformers [24, 162]. It has been further hypothesized
that the organic osmolyte pool size might be a key factor in CVR capacity [260]. In fact,
recent work has shown that organic osmolyte concentrations decrease linearly with de-
creasing salinity in cnidarians (sea anemones, Fig. 2.9) and echinoderms (sea stars, Fig. 2.9)
acclimated for several weeks to different salinities [262, 308]. Podbielski et al. [262] pos-
tulated that a critical salinity (S,,,;) exists that is characterized by a depletion of the organic
osmolyte pool and correlated loss of fitness. Using an anemone species as a model, the latter
authors could demonstrate that growth and reproduction decreased to zero once low salin-
ities were reached that led to full depletion of organic osmolytes. Similarly, Schmittmann
[308] demonstrated that the total organic osmolyte pool in tissues of sea stars decreases to
nearly zero with decreasing salinity. Further, the authors speculated that increased costs

for ion regulation at and below S,,; could cause steep reductions in fitness. However, little
is known about the role of intracellular inorganic ions during long-term salinity acclima-
tion. There are studies that report a permanent decrease in intracellular inorganic osmolyte
concentrations, as well as studies that report no changes [309, 316, 382, 398]. Thus, the
involvement of inorganic osmolytes in salinity acclimation may differ between species and
multiple scenarios are conceivable how salinity could affect the intracellular inorganic os-
molyte pool: inorganic and organic osmolytes could be equally employed (Fig. 2.9), the
inorganic ion pool concentration could remain constant (or be replenished after the ini-
tial osmotic shock) while organic osmolyte concentrations are reduced with decreasing
salinity (Fig. 2.9), or both osmolyte pools could be utilized to different degrees (Fig. 2.9).
Results from our meta-analysis indicate an involvement of both pools in salinity acclima-
tion. However, owing to lack of data, it remains to be established as to how important the

relative roles of inorganic vs. organic osmolytes are during long-term acclimation to altered
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salinity regimes. It has not yet been sufficiently examined whether the interplay between
inorganic and organic osmolyte pools influences the capacity for cellular osmotic regula-
tion and salinity tolerance ranges. Lange [175] defined the difference between eury- and
stenohaline organisms via ”the range of salinities over which the capacity for cellular vol-
ume regulation meets the demands”. According to this definition, a critical limit is reached
when an organism expresses inability for cellular volume regulation under reduced salin-
ities causing an increase in cell hydration. Oligo- and stenohaline species have been rarely
studied in comparison to euryhaline species and thus, we could not retrieve enough data
to statistically compare different physiotypes with respect to osmolyte composition and
pool size. Deaton [64] studied differences in extracellular fluid ion concentrations between
different physiotypes and observed that the most euryhaline species were able to slightly
(hyper)regulate ion concentrations in the extracellular fluid at very low salinities. Gainey
[95] discovered euryhaline species to maintain a constant ECS volume when exposed to
hypoosmotic stress, whereas ECS volume was reduced in stenohaline species. Other hy-
potheses aiming to explain the ability of euryhaline species to tolerate a broad range of
salinities relate to (i) different solute permeability control mechanisms of cells [250, 324]
and (ii) an osmolyte pool that consists of QACs and inorganic osmolytes rather than FAAs
[250]. Willmer [381] found strongly increased sodium pump (Nat /K" -ATPase) activ-
ity in nervous tissue of low salinity (salinity of 10) acclimated mussels Mytilus edulis. The
sodium pump maintains high intracellular potassium and low sodium concentrations and
drives many other secondarily active transporters involved in ion- and osmoregulation
[102]. Thus, an enhanced activity reflects an enhanced ion regulatory effort to support
neuronal functions [349]. In addition, 14-day acclimation to low salinity led to a thicken-
ing of the neural lamella, which was hypothesized to counteract the increases in hydrostatic

pressure characteristic for low salinity acclimated axons [382]. This points towards inor-
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ganic ions as crucial osmolytes as well as the need for additional anatomical modifications
to protect cell structure from mechanical damage at very low salinities. A certain degree
of hyperosmotic cellular regulation to maintain transmembrane ion gradients under ex-
tremely low salinities, at least in neuronal tissue, seems to be key to achieving a very high
degree of euryhalinity (e.g. Mytilus salinity range: ca. 5 — 35, [376]. The work by Willmer
[381, 382, 380] also illustrates an increase in energetic expenditure for cellular osmoregu-
lation at low salinities to maintain homeostasis and vital cell functions. During embryoge-
nesis in the freshwater bivalve Dreissena rostiformis an upregulation of aquaporin (water
channel) and v-type H" ATPase (proton pump) coding genes have been observed, as well
as an expansion of the aquaporin gene family [41]. In an euryhaline osmoregulator, the
barnacle Balanus improvisus, the expression of aquaporin-coding genes was found to be
reduced after long-term low salinity acclimation [188]. Thus, modulation of water per-
meability of cellular membranes via changed aquaporin density and isoform composition
might be a potential mechanism during acclimation to very low salinities. However, the
role, structure and function of aquaporins in invertebrates remains greatly understudied
[42, 53, 155], especially with respect to their role during hypoosmotic stress in osmocon-
formers [198]. There are a variety of other abiotic and biotic factors that may influence
salinity tolerance 7 situ such as temperature, desiccation, anoxia, pollution, nutrition, par-
asitism or reproduction [135, 141, 244, 313, 372]. In addition to this, there are also other
cellular responses of marine invertebrates to hypo-osmotic stress. Some observed physio-
logical responses to low salinity stress are: lower respiration and feeding rates, drop in hear
rates, increase in immune response, upregulation of cellular stress response gene and genes
involved in catabolism of osmolytes, osmolyte transport and membrane permeability and

potentially stability [2, 36, 110, 138, 203, 234, 262, 356].
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Figure 2.9: Three hypothetical models of how total intracellular inorganic and organic osmolyte concentrations (y-
axis) might change in relation to long-term salinity changes (x-axis). A: Inorganic and organic osmolytes are employed
equally for cellular volume regulation. B: Only the organic pool is adjusted, the inorganic portion remains constant. C:
Inorganic osmolytes change with salinity, organic osmolytes are less affected by salinity stress. D: Example of changes
in the organic osmolyte pool of whole-body tissue of the cnidarian Diadumene lineata with salinity [262]. E: Example of
changes in total organic osmolyte pool of pyloric caecae of the echinoderm Asterias rubens with salinity [308].
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2.4.7 ESTIMATION OF COMPLETE INTRACELLULAR OSMOLYTE BUDGETS

In order to estimate the degree of involvement of inorganic and organic osmolytes in cel-
lular volume regulation (CVR), we examined the osmolyte pool sizes of tissues. There are
a number of requirements to estimate a complete tissue osmolyte budget and reliable con-
centration estimates for intracellular osmolytes. 1) Itis necessary to measure both the in-
organic and the organic compounds. 2) The estimates of organic and inorganic pool sizes
should comprise all relevant compounds including the main inorganic anions and cations,
and a variety of organic osmolytes, namely methylamines, FAAs, QACs, methyl-sulfonium
compounds, sugars, polyols and urea [124]. 3) The contribution of ECS to tissue solute
and water content needs to be accounted for. 4) In addition, intracellular osmolality should
be measured in order to determine, whether important osmolytes (and solutes) have not
been identified.

Our systematic review revealed that no study fulfilled all of these criteria. Only three
studies quantified inorganic (anions and cations) as well as organic osmolytes in tissues fol-
lowing long-term acclimation to different salinity regimes (Fig. 2.7). However, none of
these studies constructed a complete budget. Either total osmolality was not measured,
ECS was not considered or organic osmolyte analyses were restricted to FAAs. Finally,
none of these three studies measured salinity effects on less abundant inorganic ions (such
as magnesium, calcium, sulphate, etc.). Both inorganic and organic pools changed simi-
larly during salinity acclimation, thus the ratio of inorganic to organic substances was not
altered. This highlights the need to consider contributions of both intracellular inorganic
and organic osmolytes during acclimation to different salinity regimes. However, these
conclusions have to be considered with caution, because they are based on very low sam-

ple sizes of exclusively mollusc species and were not normalized to total osmolality, but to
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the sum of the measured inorganic and organic compounds. Only one of the three studies
reporting a complete osmolyte budget measured total osmolality. Figure 2.7 shows that a
large portion of the total solute pool can remain undetected if total osmolality is not used
as control. Since Turgeon [358] only determined FAAs, the unknown portion of the os-
molyte pool likely consisted of methylamines or methylsulfonium compounds. ECS was
also not considered in the latter study. The reported tissue osmolyte concentrations thus
represent a mix of those extracted from intracellular and extracellular compartments. The
research of Potts [267] and Silva [316] highlights the importance of considering the ECS in
estimation of intracellular osmolyte concentrations. Both studies compared inorganic and
organic compounds in the intracellular space and entire tissues in Mytzlus sp.. Inorganic
ion concentrations are higher in tissue samples compared to the corresponding intracellular
values, which is due to the high contribution of ECS ions (Fig. 2.7). Yet, despite reporting
true intracellular concentrations, these two studies have other drawbacks. Potts [267] dis-
regarded all organic osmolytes other than FAAs whilst Silva [316] determined the concen-
tration of inorganic osmolytes and FAAs plus betaine, but not that of other methylamines
or methylsulfonium compounds. It should further be noted that these studies measured
the total FAA pool, which also includes solutes that contribute to intracellular osmolality,
but do not change in concentration with salinity. The intracellular organic osmolyte pool
in these three mollusc studies accounted for ca. 30% of the overall osmolyte pool in tissue
and 45% in the intracellular space, previous studies estimated its proportion to account for
~ S0% [61, 90, 131]. Yet, most of the latter estimates are based on data obtained from os-
moregulators - often Arthropoda. A short-term experiment on annelid Arenicola marina
tissues revealed that inorganic ions constitute 60% and organic substances 40% of total
osmolality [374]. In conclusion, the overall share of organic osmolytes in CVR has likely

been overestimated, while the role of inorganic ions has been underrated. CVR is a prod-
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uct of inorganic and organic osmolyte regulation and more studies are needed to quantify
the relative importance of organic vs. inorganic osmolytes in long-term salinity acclimation

Processes across taxa.

2.4.8 BEST-PRACTICE GUIDELINES

We suggest standard guidelines to study CVR in tissues of marine osmoconforming inver-
tebrates. In the course of this systematic review, we encountered a number of methodolog-
ical problems in published salinity tolerance research which leads us to make recommenda-

tions for best-practices in future research:

(i) MEASURE INTRACELLULAR INORGANIC OSMOLYTE COMPOSITION

Inorganic osmolytes are estimated to account for half of the intracellular total os-
molyte pool, but are often disregarded. We strongly advocate the need to measure
both components of the osmolyte pool in tissue samples. To derive intracellular

ion concentrations, tissue ion concentrations, extracellular ion concentrations and
ECS volume need to be measured (Fig. 2.1). Tissue cation concentrations have been
measured in the past via flame photometry [231, 296] and anions via a multitude

of specific methods for each individual anion. Chloride was measured via titration
methods [316, 358] or a microdiffusion method [267]. Sulphate can be estimated
gravimetrically and phosphate colorimetrically [267]. Our group has recently devel-
oped a novel protocol using ion chromatography to determine anion concentrations

in invertebrate tissues [263].

(ii) ANALYSE INTRACELLULAR ORGANIC OSMOLYTES USING UNTARGETED METH-
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(iii)

ODS

Our literature analysis revealed that publication bias towards measuring FAAs likely
resulted from the targeted metabolomic HPLC approaches common at the time
these studies were published (1958-1992). This is a drawback since methylamines
and methylsulfonium compounds remained undetected, despite the fact that these
substances account for a large portion (35 — 75%) of the organic osmolyte pool
[254, 262, 397]. Recent developments in untargeted metabolomics are able to de-
tect unexpected organic osmolytes. We advocate the need to use such techniques (i.c.
HPLC, GC-MS, LC-MS or ' H-NMR). These techniques are able to capture a large
spectrum of solutes and to quantify their concentration. Untargeted methods also
provide a solid basis for exploratory analysis of poorly studied species. Another key
shortcoming of past osmolyte work is that many studies did not distinguish whether
substances were non-existent or not detectable with the chosen methodological
approach. Thus, studies should report on the capabilities and constraints of their
methods. Finally, compounds not detected (or detected at very low concentrations)

should also be reported, even when not significantly impacted by treatments.

MEASURE TOTAL OSMOLALITY OF TISSUES & EXTRACELLULAR FLUIDS

Intracellular osmolality in combination with total inorganic and organic pool size
can help to determine whether crucial portions of the osmolyte pool have remained
undetected (Fig. 2.7). Such a strategic approach may lead to the identification of
other important osmolytes and determine the composition of the entire osmolyte
pool [259, 254]. Total osmolality of tissue homogenates is easily measured with an

osmometer [358]. To distinguish between extracellular and intracellular osmolality,
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osmolality of extracellular fluid samples (blood, coelomic fluid, hemolymph) will
have to be measured and the volume of the extracellular space in the tissue in ques-

tion will have to be determined as well (Fig. 2.1).

ACCOUNT FOR EXTRACELLULAR SPACE

Osmolyte composition between cells and extracellular fluids is very different, but

in organic osmolyte studies the ECS is often disregarded to facilitate analysis. The
ECS can make up a large portion of tissues (10 — 80% of tissue mass). In the ECS,
inorganic ions are more highly concentrated, whereas organic osmolytes are negli-
gible. Subsequently, ignoring the contribution of the ECS overestimates intracel-
lular inorganic osmolytes when aiming to investigate cellular osmolyte budgets and
underestimates intracellular organic osmolyte content (Fig. 2.1). Thus, determina-
tion of the ECS is crucial for estimation of reliable organic and inorganic osmolyte
data. Determining ECS is a time-consuming process and requires expertise in la-
belling techniques. Traditionally, the determination of the extracellular volume has
been achieved by measuring the dilution of a known volume of radioactively labelled
tracers such as >H-/"C-inulin, >*H-/"C-dextran, *C-sucrose, *'I-albumin, or *C-
polyethylene glycol injected into the ECS [161, 215, 225, 318, 350, 382]. This re-
quires availability of adequate labs and equipment and also poses an unnecessary
safety risk for the investigator. With the advancement in labelling techniques we
propose the use of fluorescent tracers such as FITC-inulin instead. There are a few
recent studies available that successfully used FITC inulin for ECS determination in

mammals [26, 160, 363].
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(V) REPORT MAJOR STATISTICAL PARAMETERS AND OUTCOMES AND DEPOSIT DATA

TO PUBLIC DATABASES

Gaps in documentation of experimental results led to exclusion of many studies in
this meta-analysis. This applied largely to older studies, but also recent publications.
Absolute osmolyte concentrations and statistical parameters such as sample size,
mean and variance, or appropriate terms for other data types should be reported (see
[32] for a comprehensive introduction to different data types). A complete record of
statistical analysis results is necessary as well for comparative analysis of data sets (i.c.
test-statistic, degrees of freedom, p-value). Of course, all data and metadata should
ideally be deposited to publicly available databases (e.g. Pangaea) to facilitate future

use.

(vi) USE STANDARD UNITS

Units utilized in marine animal CVR research are very diverse. To enable direct
comparison between studies, researchers should consent to the same units or pro-
vide all necessary information for conversion of units. We recommend the use of
mmol x L for extracellular fluids and intracellular water and mmol x kg dry

wengt_l for tissues and whole animal tissue samples.

2.4.9 FUTURE RESEARCH

This meta-analysis revealed that there are large gaps of knowledge and fragmented data in
extracellular and cellular osmolyte dynamics. Our meta-analysis determined that taxonomy
is an important factor influencing CVR and osmolyte adjustment in relation to salinity.

But there is a large taxonomic bias towards Mollusca and more specifically Bivalvia in the
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literature (Fig. 2.3). When choosing study species, a wider taxonomic coverage should be
considered. While it is impossible to study a wide range of species, we propose the use of
model organisms as representatives for certain taxa. Here it makes sense to focus efforts on
models already utilized in other biological sub-disciplines, especially those with broad dis-
tribution (e.g. Placozoa: Trichoplax sp., Porifera: Amphimedon queenslandica, Cnidaria:
Nematostella vectensis, Ctenophora: Mnemiopsis leidyi, Echinodermata: Strongylocen-
trotus purpuratus, Annelida: Platynereis dumerilii , Platyhelminthes: Macrostomum lig-
nano, Xenacoelomorpha: Symsagittifera roscoffensis, Tunicata: Ciona intestinalis, Bivalvia:
Mytilus edulis, Gastropoda: Aplysia sp., Cephalopoda: Loligo pealer, Chordata: Branchios-
toma floridae, etc.). Overall, this study only considered adult stages of osmoconforming
species, because data on larvae or juveniles is rudimentary. Nevertheless, future research
should consider larval and juvenile ontogenetic stages. The limiting factor for successful
acclimation to low salinity might also depend on the physiological capacities of larval or ju-
venile stages [46]. This study focused on cellular actors in CVR. The metabolic pathways
for osmolytes are not fully established and the metabolic cost for cellular osmoregulation
remains unclear. The processes involved in CVR, such as compound synthesis, membrane
transport, membrane permeability regulation and osmotic sensing are poorly studied and

are a promising field for future research [129, 131, 187, 324].

2.5 CONCLUSION

n conclusion this systematic review and meta-analysis has revealed that:

(i) Osmolyte classes employed by marine osmoconforming invertebrates are: mono-
valent inorganic ions, methylamines and methylated sulfonium compounds, free

amino acids and derivatives.
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(if) Main osmolytes are employed across taxa (i.e. alanine, betaine, glycine and taurine)
but in different magnitudes, whereas accompanying minor osmolytes differ between
taxa and tissue type. The categorical subgroup analysis and heatmap of the organic
osmolyte pool illustrates a diverse osmolyte composition in Annelida. Echinoder-
mata and Mollusca differ in their main osmolyte, but are otherwise characterized by

a similar osmolyte composition.

(iii) We hypothesize that methylamines play a similarly important role or even a more
important role than FAAs in the organic osmolyte pool, but data is insufficient for

meta-analysis.

(iv) The tissue sodium ion pool is modulated during long-term salinity acclimation, but
changes in concentration of other inorganic ions are poorly studied due to method-

ological limitations.

(v) There are significant differences in osmolyte budget composition between tissues.
Intestinal tissues and muscles utilize a wider range of osmotic compounds, whereas

gill tissue utilizes specific combinations of osmolytes.

Overall, this systematic review reveals large gaps in osmolyte research in osmoconform-

ing marine invertebrates, especially with respect to inorganic ions, methylamines and
study organisms. This impairs the explanatory power of meta-analysis, but gives us well-
founded indications where more research is needed. We propose a best-practice guideline to
improve future research efforts. More work is needed to broaden the scope of osmolyte re-
search and establish a deeper understanding of CVR processes to understand mechanisms

that drive changes in coastal biodiversity with ongoing salinity changes.
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Supplementaries Chapter 2

SEARCH STRINGS FOR SYSTEMATIC LITERATURE SEARCH

1. ISI Web of Science:
Date of search: 13.04.2018
Search String:
(marine OR brackish OR estuar® OR coastal OR sea OR lagoon* OR benth* OR
demersal OR shore* OR intertidal OR subtidal OR ocean* OR bay* OR cove* OR
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harbo* OR lake* OR pond* OR bog* OR stream* OR river* OR freshwater* OR
creek® OR lotic OR lentic OR headwater* OR reservoir* OR brook* OR wetland*
OR *pool* OR marsh* OR watershed” OR catchment* OR limnol* OR glacial* OR
”inland waters”) AND (invertebrate OR macrofauna NOT plankton OR sponge
OR porifera OR anthozo* OR anemone OR coral OR cnidaria® OR mollus* OR
bivalv* OR gastropod* OR clam OR mussel OR snail OR slug OR polyplacophora
OR cephalopod* OR polychaete OR worm OR annelid* OR chaetognat*OR en-
trproct® OR gastrotrich* OR hairyback OR hemichordat* OR kinorynch* OR
”mud dragon” OR arthropod* OR nematod* OR nematomorph* OR nemert* OR
phoronid* OR plathelminth* OR flatworm OR priapulid* OR sipuncul* OR xena-
coelomorph* OR brachiopod* OR lampshells OR bryozo* OR ”moss animal” OR
”sea mat” OR ectoproct OR chordat* OR tunicat®* OR urochordat* OR caphalo-
chordat* OR lancelet* NOT teleost NOT mammal* NOT amphib* NOT reptile
NOT vertebrat* OR insect* OR echinoderm* OR 7sea star” OR ”sea urchin” OR
”sea cucumber” OR “feather star” OR crinoid* OR comatulid* OR ”sand dollar”
OR ”sealil*” OR ”brittle star” OR crustac*) AND (salin* OR ”salt stress” OR os-
molality OR osmotic OR osmolarity OR isoosmo* OR hypoosmo* OR osmoreg-
ulat* OR osmoconform*) AND ( "Free amino acid” OR ”amino acid” OR Methy-
lamin* OR ”methylated ammonium” OR Calcium OR Magnesium OR Bicarbon-
ate OR Sodium Or Chloride OR betaine OR taurine OR alanine OR glycine OR
Ion* OR Osmolyte* OR Electrolyte® OR “volume regulation” OR “cell volume”)
AND (extracell* OR blood OR hemolymph* OR haemolymph* OR “coelomic
fluid” OR intracell* OR cell* OR tissue OR whole-body OR muscle OR gill OR
mantle OR heart OR nerv*)
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2. Google Scholar
Date of search: 24.04.2018
Search String:
( osmoconformer OR ”volume regulation”OR “cell volume”)AND( salinity OR
osmolality OR osmotic) AND ("amino acid” OR Methylamine* OR Ion* OR Os-
molyte*) AND (invertebrate OR macrofauna -fish)AND( marine OR brackish OR
estuary* OR benthic OR freshwater)

Further settings:

* Without Citations and Patents

* From 1945 — 2018

3. Scopus
Date of search 30.01.2019
Search String:
( marine OR brackish OR estuar* OR coastal OR sea OR lagoon* OR benth* OR
demersal OR shore* OR intertidal OR subtidal OR ocean* OR bay* OR cove* OR
harbo* OR lake* OR pond* OR bog* OR stream* OR river* OR freshwater* OR
creek* OR lotic OR lentic OR headwater* OR reservoir* OR brook* OR wetland*
OR *pool* OR marsh* OR watershed* OR catchment* OR limnol* OR glacial*
OR ”inland waters” ) AND ( "Free amino acid” OR “amino acid” OR methylamin*
OR ”methylated ammonium” OR ion* OR osmolyte* OR electrolyte* OR ”vol-
ume regulation” OR cell volume” ) AND ( salin* OR ”salt stress” OR osmolality
OR osmotic OR osmolarity OR isoosmo* OR hypoosmo* OR osmoregulat® OR
osmoconform* ) AND ( invertebrate OR macrofauna OR sponge OR porifera OR
anthozo* OR anemone OR coral OR cnidaria® OR mollus* OR bivalv* OR gastro-
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pod* OR clam OR mussel OR snail OR slug OR polyplacophora OR cephalopod*
OR polychaete OR worm OR annelid* OR chaetognat*or AND entrproct® OR
gastrotrich® OR hairyback OR hemichordat® OR kinorynch* OR “mud dragon”
OR arthropod* OR nematod* OR nematomorph* OR nemert* OR phoronid* OR
plathelminth* OR flatworm OR priapulid* OR sipuncul® OR xenacoelomorph*
OR brachiopod* OR lampshells OR bryozo* OR “moss animal” OR ”sea mat”

OR ectoproct OR chordat* OR tunicat* OR urochordat* OR caphalochordat*

OR lancelet* OR echinoderm* OR ”sea star” OR sea urchin” OR ”sea cucum-
ber” OR ”feather star” OR crinoid* OR comatulid* OR ”sand dollar” OR “sea lil*”
OR 7brittle star” OR crustac® AND NOT plankton AND NOT copepod AND
NOT human* AND NOT diatom AND NOT teleost AND NOT mammal* AND
NOT amphib* AND NOT reptile AND NOT vertebrat* AND NOT insect* AND
NOT algae AND NOT bacteria AND NOT archea AND NOT fish AND NOT
plant AND NOT foraminifer* ) AND ( LIMIT-TO ( SUBJAREA , "AGRI” ) OR
LIMIT-TO ( SUBJAREA , "ENVI” ) OR LIMIT-TO ( SUBJAREA , "BIOC”)
OR LIMIT-TO ( SUBJAREA , "MEDI” ) )

Further Settings:

* Search limited to biological research fields: Agricultural and Biological Sci-
ences, Biochemistry, Genetics and Molecular Biology, Environmental Science,
Medicine

* All years (oldest 1960)

* advanced search mode used
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Table A.1: List of excluded outcome variables. The table lists all potential outcome variables that were reported in the

literature. The list shows whether requirements for meta-analysis were met and if not the reason for exclusion. When

sample size was n < 3, or data was derived from < 3 studies, these outcome variables were not analysed further.

ID Outcome Experiments Studies Requirements for Meta- Comment
Analysis met?

1 2-Phosphoglycerate 3 1 no n<s

2 Alanine 34 22 yes

3 a-Aminoadipic acid 1 1 no n<3s

4 a-Aminoisobuytric acid 1 1 no n<j3

5 a-Methylhistidine 1 1 no n<3s

6 Ammonia 8 4 yes

7 Ammonium 1 1 no n<s

8 AMP 3 1 no n=3

9 Anserine I I no n<s

10 Arginine 12 10 yes

11 Asparagine 3 2 yes

12 Aspartate 20 14 yes

13 ATP 4 2 no substance not relevant

14 (B-Alanine 2 2 no n<s

15 B-Aminoisobuytric acid 1 1 no n<s

16 Betaine 9 6 yes

17 Bicarbonate 3 1 no n=3

18 Calcium 19 9 yes

19 Carnitine 2 2 no n<j

20 Chloride 29 17 yes

21 Citrulline 1 1 no n<js

22 Cystathionine 1 1 no n<s

23 Cysteic acid I I no n<js

24 Cysteine 1 1 no n<s

25 Cystine I I no n<s

26 Dimethylsulfone 1 1 no n<js

27 y-Aminoisobuytric acid 2 2 no n<s

28 y-Methylhistidine 1 1 no n<js

29 Glutamate 27 18 yes

30 Glutamine 14 8 yes

31 Glycine 33 22 yes

32 Guanidinosuccinaate I no n<s

33 Histidine 7 5 yes

34 Homarine I I no n<s

35 Homocysteine 1 1 no n<s

36 Homolysine-A 1 1 no n<s

37 Hydroxyacetone 3 1 no n=

38 Hydroxyproline 1 1 no n<s

39 Isoleucine 7 5 yes

40 Leucine 7 S yes

41 Lysine 10 7 yes

42 Magnesium 16 10 yes

43 Methionine 6 4 yes

44 Methylamine 3 1 no n=3

45 O-Phosphocholine S 2 yes

46 O-Phosphoserine 6 3 yes

47 Ornithine 6 S yes

48 Phenylalanine 7 S yes

49 Phosphatidylserine 1 1 no n<s

50 Phosphoserine 2 2 no n<j3

ST Potassium 36 25 yes

52 Proline 13 12 yes

53 Proline-Betaine I I no n<js

54 Sarcosine 1 1 no n<j3

55 Serine 19 Is yes



Table A.1: List of excluded outcome variables. The table lists all potential outcome variables that were reported in the
literature. The list shows whether requirements for meta-analysis were met and if not the reason for exclusion. When
sample size was n < 3, or data was derived from < 3 studies, these outcome variables were not analysed further.

ID Outcome Experiments Studies Requirements for Meta- Comment
Analysis met?

56 Sodium 35 17 yes
57 Succinate 2 2 no n<s
58 Taurine 31 18 yes
59 Threonine 14 7 yes
(&) TMAO 3 1 no n=3
61 Total Organics 35 19 yes
62 Total Osmolality 38 21 yes
63 Tyrosine 6 4 yes
64 Urea 2 I no n<s
65 Uric Acid 1 1 no n<s
66 Valine 7 5 yes
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Table A.4: Study details on salinity acclimation

Title Adjustment to experimental Experimental Slow S high Taxa Species

salinity Duration (days)
Allen & Garret 1972 unknown 27 12 34 Mollusca Mya arenaria
Amende & Pierce 1980 acute 56 11.9 35.9 Mollusca Noetia ponderosa
Austin 2007 acute 21 16.5 33 Cnidaria Metridium senile
Baginski & Pierce 1975 unknown 21 12 36 Mollusca Geukensia demissa
Benson-Rodenbough & Ellington 1982 acute 21 Cnidaria Bunodosoma cavernata
Bergeretal. 1978 unknown 14 16 26.8 Mollusca Littorina littorea
Bishop etal. 1994a gradual 32 20 30 Echinodermata Lytechinus variegatus
Bishop etal. 1994a gradual (sppt/day) 32 20 30 Echinodermata Lytechinus variegatus
Bryan 1963 unknown 28 24 26.9 Cnidaria Actinia equina
Costa & Pierce 1983 acute 14 16 32 Annelida Glycera dibranchiata
Costaetal. 1980 gradual (2.6-9.6/48hrs) 14 15 32 Annelida Glycera dibranchiata
Costaetal. 1980 gradual (2.6-9.6/48hrs) 14 12 32 Annelida Glycera dibranchiata
De Vooys 1991 acute 14 19.0 38.0 Mollusca Mytilus gallpprovincialis
Deaton & Hoffmann 1988 acute 14 17 31 Cnidaria Metridium senile
Deaton 1981 unknown 28 2.20 23.2 Mollusca Ostrea palmula
Deaton 1981 unknown 28 0.0 35.0 Mollusca Polymesoda caroliniana
Deaton 1981 unknown 28 2.2 28.8 Mollusca Polymesoda maritima
Deaton 1992 unknown 35 0.3 28.8 Mollusca Geukensia demissa
Deaton 1992 unknown 35 1.4 28.8 Mollusca Mya arenaria
Deaton etal. 1989 acute 21 0.2 17.2 Mollusca Mytilopsis leucophaeta
Deaton et al. 1989 acute 22 o 19 Mollusca Mytilopsis leucophaeata
Emerson 1969 acute 16 17.5 35.0 Mollusca Macoma inconspicua
Gainey & Greenberg 1977 acute 14 0.0 39.0 Mollusca Polymesoda caroliniana
Gainey & Greenberg 1977 acute 14 2.0 45.0 Mollusca Pseudocyrena floridana
Gainey 1978b acute 14 o 10 Mollusca Polymesoda caroliniana
Henry etal. 1990 gradual (2ppt/day) 21 20.0 35.0 Arthropoda Chaceon fenneri
Henry etal. 1990 gradual (2ppt/day) 21 20.0 35.0 Arthropoda Chaceon quinquedens
Henry etal. 1990 gradual (2ppt/day) 21 15.0 35.0 Arthropoda Chaceon quinquedens
Hildreth & Stickle 1980 gradual (2psu/day) 35 7.5 30.0 Mollusca Stramonita haemastoma
Hiong et al. 2004 acute 17 10 30 Mollusca Polymesoda expansa
Kapper etal. 1985 gradual (2ppt/day) 14 5 30 Mollusca Stramonita haemastoma
Knight etal. 1992 gradual (sppt/3days) 14 10 30 Porifera Microciona prolifera
Kube et al. 2007 NA in situ 3.7 33.6 Mollusca Macoma balthica
Kube et al. 2007 NA in situ 6.1 38 Mollusca Mytilus edulis
Lee & Chen 2003 gradual (2-3 ppt/day) 28 18 34 Arthropoda Marsupenaeus japonicus
Linetal. 2016 unknown 28 10.0 20.0 Mollusca Meretrix lusoria
Livingstone etal. 1979 acute 14 15.0 30.0 Mollusca Mytilus edulis
Livingstone etal. 1979 acute 21 15.0 30.0 Mollusca Mytilus edulis
Lucu & Devescovi 1999 acute 15 20.0 38.0 Arthropoda Homarus gammarus
Lucu etal. 2000 gradual (2ppt/2days) 16 20.0 38.0 Arthropoda Palinurus elephas
Lynch & Wood 1966 NA in situ 3.4 26.7 Mollusca Crassostrea virginica
Nartochin etal. 1978 acute 14 10.0 26.8 Mollusca Mytilus edulis
Neufeld & Wright 1996a unknown 28 20 33 Mollusca Mytilus californianus
Neufeld & Wright 1996b unknown 21 20 33 Mollusca Geukensia demissa
Neufeld & Wright 1998 unknown 21 20 33 Mollusca Geukensia demissa
Oglesby 1968 unkown 17 13.1 34.6 Sipuncula Themiste dycritum
Paynter etal. 1995 NA 70 Mollusca Crassostrea virginica
Pierce 1970 acute 14 8.0 40.0 Mollusca Geukensia demissus demissus
Pierce 1970 acute 14 3.0 44.0 Mollusca Geukensia demissus granosissimus
Pierce 1971 unknown 21 3.0 48.0 Mollusca Geukensia demissus granosissimus
Pierce 1971 unknown 21 22.0 41.0 Mollusca Modiolus squamosus
Pierceetal. 1983 gradual (0.2-20 psu/2 weeks) 14 3.1 37.4 Mollusca Elysia chlorotica
Pierce etal. 1984 unknown 14 3 30 Mollusca Elysia chlorotica
Pierce,t,/.1992 acute 14 11.0 30.0 Mollusca Crassostrea,irginica
Podbielski et al. 2016 gradual (2 psu/day) 28 7 34 Cnidaria Diadumene lineata
Potts 1958 unknown 14 15.0 30.0 Mollusca Mytilus edulis
Ranetal. 2017 gradual (3-4 psu/8hrs) 25 13 23 Mollusca Sinonovacula constricta
Rolaetal. 2017 gradual (3 psu/4smin) 14 20.0 35.0 Mollusca Perna perna
Rowland & Pierce 1985 unknown 14 5 30 Mollusca Elysia chlorotica
Sanders 2018 gradual (2.2psu/day) 28 4.5 16.0 Mollusca Mytilus sp.
Sanders 2018 gradual (2.2psu/day) 28 4.5 16.0 Mollusca Mytilus edulis
Schiedek et al. 1997 NA in situ 1 8 Annelida Marenzelleria cf. Viridis
Schiedek et al. 1997 gradual (8psu/week) 14 1 24 Annelida Marenzelleria cf. Viridis
Schiedek et al. 1998 NA in situ 6 20 Annelida Marenzelleria cf. Wireni
Schiedek et al. 1998 gradual (8psu/week) in situ 1 22 Annelida Marenzelleria cf. Wireni
Schmittmann 2017 gradual (1psu/2-3 days) 31 16 32 Echinodermata Asterias rubens
Schmittmann 2017 gradual (1psu/2-3 days) 41 16 32 Echinodermata Asterias rubens
Shumway 1977a unknown 28 6.4 32.0 Mollusca Mya arenaria
Silva 1992 gradual (3psu/2days) 14 19 32 Mollusca Mytilus californianus
Stickle et al. 1985 gradual (2psu/day) 14 15 35 Mollusca Nucella lapillus
Stucchi-Zucchi & Salomao 1998 unknown 15 15 35 Mollusca Perna perna
Willmer 1978a unknown 14 7.0 37.7 Mollusca Mytilus edulis
Witteveen et al. 1987 acute 21 5.1 40.9 Arthropoda Anurida maritima
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A

FORMULAS FOR CALCULATING EFFECT SIZES IN META-ANALYSIS

Standardized mean difference (d) (Eq. 1):

I.

3.

__ X1—X
d - Swz'tbz‘n
Where ¥; and X; are the sample means of the two groups, the high salinity and the
low salinity, respectively and the denominator (S,,:,) is the within groups standard

deviation, pooled across groups (Eq. 2). Hedge’s g corrects for a bias overestimat-

ing standardized mean difference for small sample sizes using the correction factor |

(Lxz7D).

(n1—1)><52+(n2—1)><52
. Swz‘tbin = \/ " 2

n1+ny—2

Sy and S, are the Standard Deviation of the two groups and 7, and 7, the sample
size. Variation parameters were converted to standard deviation if necessary and the
standardize mean difference (d) and its variance (7;) computed.

The variance of d (Eq. 3) for each study was calculated as:

_ mtn a
Vd T omXn 2% (n1+n2)

and converted to variance of g (V) as follows (Eq. 4 & 5):

4 V=P %V,

_ 3
s- J=1- 4xdf—1

Meta-analyses weigh the individual effect sizes by the inverse of the effect size vari-

ance to account for the precision of each study (Eq. 6).

1

Calculation of effect size and variance (Eq. 7 - 9) from correlation coefficient (r) was

only necessary for a couple of datapoints:
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FiG. A1 SUBGROUP ANALYSIS — Crass: ToraL ORGANICS

Total_Organics

0.07

on
=]

1
o~

7.5

Crwrerall
Bivaliia
Gastropoda

Class

Figure A.1: Subgroup analysis - Effect of low salinity on total organic osmolyte concentration between molluscan classes
Bivalvia and Gastropoda. Mean effect size is depicted as a circle with the error bars indicating robust confidence in-
tervals (95%). If the confidence intervals do not overlap with zero an effect size is considered significant. An asterisk

indicates a significant robust difference in effect size. Q indicates significant residual heterogeneity as tested with the
random effects model. Numbers below circles indicate the number of studies.
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Table A.7: Outcome of the meta-regression results for the moderator variables. Moderator variables were magnitude of
salinity stress and expermental duration (including and excluding in situ studies). The p-value denotes whether an effect
significantly influenced effect size (*), or whether it was non significant (ns). Q denotes whether the methodological
moderator explained all variance in effect sizes (ns) or whether residual heterogeneity remains (Q). Methodological
moderators were only tested if an overall significant effect size was found (overall effect is shown with results from

Fig. 2.4 and Tab. A.6), or for non-significant effect sizes if significant residual heterogeneity of effect sizes was found.
Analysis was not conducted if no significant effect and no significant residual heterogeneity of effect sizes was found.
This is symbolized by NA.

Overall Magnitude Duration (with i% situ) ~ Duration (without % situ)
ID Outcome P Q P Q P Q Y Q
1 Alanine * Q * Q ns Q ns Q
2 Arginine ns Q ns Q ns Q ns Q
3 Ammonia * ns ns ns ns ns * ns
4 Asparagine ns ns NA NA NA NA NA NA
5 Aspartate ns Q ns Q ns Q ns Q
6 Betaine * Q ns Q NA NA ns Q
7 Chloride ns Q ns Q NA NA ns Q
8 Glutamate * Q ns Q * Q ns Q
9 Glutamine * ns ns ns NA NA ns ns
10 Glycine * Q ns Q ns Q ns Q
11 Histidine ns ns NA NA NA NA NA NA
12 Isoleucine ns Q ns Q ns Q ns Q
13 Leucine ns Q * ns ns Q ns Q
14 Lysine ns ns ns ns ns ns ns ns
15 Magnesium ns Q ns Q NA NA ns Q
16 Methionine * ns ns ns ns ns ns ns
17 O-Phosphocholine ns ns ns ns NA NA ns ns
18 Ornithine ns Q ns Q ns Q ns Q
19 Phenylalanine ns Q ns Q ns Q ns Q
20 (O-)Phosphoserine ns ns ns ns NA NA ns ns
21 Potassium ns Q * ns NA NA * ns
22 Proline * Q * Q ns Q ns Q
23 Serine * Q ns Q ns Q ns Q
24 Sodium * Q ns Q NA NA ns Q
25 Taurine * Q ns Q * Q ns Q
26 Threonine ns Q ns Q ns Q ns Q
27 Total Organics * Q ns Q ns Q ns Q
28 Tyrosine * ns ns ns ns ns ns ns
29 Valine * ns * ns * ns ns ns




A.3 META-ANALYSIS OUTCOME FOR INORGANIC AND ORGANIC OSMOLYTE RATIOS 1

Meta-analysis

The raw data from the systematic review was used to calculate the overall effect size, after
filtering out influential studies. Standardized mean differences were used to calculate effect
size. No variance data was available and could not be re-calculated, hence an unweighted
fixed-effects meta-analysis was be conducted.

This document shows the output from the meta-analysis for the total inorganic pool vs.

total organic pool. Three ratios were analysed:

* inorganic vs. organic pool
* inorganic vs. total osmolyte pool

* organic vs. total osmolyte pool

Analysis, where possible, was run for intracelluar data (which accounted for extracellular

space (ECS)) and whole tissue data (including ECS).

Meta-analysis outcome inorganic vs. organic osmolyte pool

Intracellular values: We found no significant salinity effect on the inorganic/organic os-
molyte pool ratio for intracellular values (g = —0.2542 £ 0.6867, df = 2, p-value = 0.4682).

Whole tissue data: We found no significant salinity effect on the inorganic/organic os-

molyte pool ratio for tissues (g = 0.2014 £ 0.2940, df = 2, p-value = 0.1795).

Meta-analysis outcome inorganic osmolyte pool vs. total osmolyte pool
Intracellular values: We found an initial significant salinity effect on the inorganic/total

osmolyte pool ratio for intracellular space, which was however not robust. To account for
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dependent data clusters and adjust for small sample size a robust test was used on the fixed-
effects model (g = —0.1064 + 1.0948, df = 2, p-value = 0.4333).

Whole tissue data: We found an initial significant salinity effect on the inorganic/total
osmolyte pool ratio for tissues, which was however not robust. To account for depen-
dent data clusters and adjust for small sample size a robust test was used on the fixed-effects

model (g =0.0799 & 0.4010, df = 2, p-value = 0.5712).

Meta-analysis outcome organic vs. total osmolyte pool

Intracellular values: We found an initial significant salinity effect on the organic/total
osmolyte pool ratio for intracellular space, which was however not robust. To account for
dependent data clusters and adjust for small sample size a robust test was used on the fixed-
effects model (g = 0.1166 £ 1.2022, df = 2, p-value = 0.4340).

Whole tissue data: We found an initial significant salinity effect on the organic/total os-
molyte pool ratio for tissues, which was however not robust. To account for dependent
data clusters and adjust for small sample size a robust test was used on the fixed-eftects

model (g = —0.1216 £ 0.7426, df = 2, p-value = 0.6383).

Subgroup Analyses
No subgroup analyses were conducted since the number data points per subgroup (from

independent clusters) was insufficient.

Testing for influential studies and outliers

1. Inorganic vs. organic osmolyte pool
Intracellular: The analysis identified no outliers.
Whole tissue: The analysis identified 4 of the 5 results as influential studies. Since

this would exclude almost all studies, no studies were removed.
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2. Inorganic vs. total osmolyte pool
Intracellular: The analysis identified 3 of the 3 results as influential studies. Since this
would exclude all studies, no studies were removed.
Whole tissue: The analysis identified 5 of the 5 results as influential studies. Since

this would exclude all studies, no studies were removed.

3. Organic vs. total osmolyte pool
Intracellular: The analysis identified 3 of the 3 results as influential studies. Since this
would exclude all all studies, no studies were removed.
Whole tissue: The analysis identified 5 of the s results as influential studies. Since

this would exclude all studies, no studies were removed.

Sensitivity Analysis Funnel plots showed no publication bias for the 1) inorganic/organic
osmolyte pool ratio. High asymmetry was found for the 2) inorganic/total osmolyte pool

ratio and the 3) organic/total osmolyte pool ratio for both tissue and intracellular data.
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SIGNIFICANCE STATEMENT

limate change models predict a salinity decrease ('desalination’) for many coastal re-
C gions, likely leading to range shifts of marine species. This makes it urgent to under-
stand the cellular basis for marine animal salinity tolerance. We quantified cellular osmolyte
systems and related them to growth and mortality of six invertebrate model species accli-
mated to low salinity. Our results confirm an important role of organic osmolytes, but also

stress a previously largely neglected role of inorganic ions in facilitating acclimation to per-
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sistent low salinity. However, we also demonstrate that osmolyte pool size cannot predict
low salinity thresholds that lead to severe growth reduction and mortality. Thus, we sug-
gest to determine a comprehensive set of parameters to predict animal responses to future

desalination.

ABSTRACT

ow salinity can severely affect the fitness of marine organisms. As desalination has
Lbeen predicted for many coastal areas with ongoing climate change, it is crucial to gain
more insight in mechanisms that constrain salinity acclimation ability. Low-salinity in-
duced depletion of the organic osmolyte pool has been suggested to set a critical boundary
in osmoconforming marine invertebrates. Whether inorganic ions also play a persistent role
during low-salinity acclimation processes is currently inconclusive.

We investigated the salinity tolerance of six marine invertebrate species following a four-
week acclimation period around their low-salinity tolerance threshold. To obtain complete
osmolyte budgets, we quantified organic and inorganic osmolytes and determined fitness
proxies.

Our experiments corroborated the importance of the organic osmolyte pool during low-
salinity acclimation. Methylamines constituted a large portion of the organic osmolyte
pool in molluscs, whereas echinoderms exclusively utilized free amino acids. Inorganic os-
molytes were involved in long-term cellular osmoregulation in most species, thus are not
just modulated with acute salinity stress. The organic osmolyte pool was not depleted
at low salinities, whilst fitness was severely impacted. Instead, organic and inorganic os-
molytes often stabilized at low salinity.

These findings suggest that low salinity acclimation capacity cannot be simply predicted
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from organic osmolyte pool size. Rather, multiple parameters (i.e. osmolyte pools, net
growth, water content and survival) are necessary to establish critical salinity ranges. How-
ever, a quantitative knowledge of cellular osmolyte systems is key to understand the evo-
lution of euryhalinity and to characterize targets of selection during rapid adaptation to

ongoing desalination.

KeEywoRrDSs

Salinity stress | Invertebrates | Osmolytes | Cellular osmoregulation | Climate Change

3.1 INTRODUCTION

alinity is one of the most important abiotic factors shaping species composition in
S marine environments. Low salinity (hypoosmotic) stress as experienced in many es-
tuaries and coastal regions can put severe physiological stress on marine animals, thereby
affecting survival, immune responses, metabolism, protein function and various cellular
processes [34, 36, 175]. Under moderate hypoosmotic stress, increased costs for osmoregu-
lation are met by an increased routine metabolic rate, or by re-allocation of energy towards
osmoregulatory processes. This, however, reduces the scope for growth and reproduction
and, ultimately, fitness [240, 262]. Under extreme salinity stress, many marine metazoans
are restricted to maintaining basic functions to conserve energetic reserves until environ-
mental conditions improve. Such a state is not sustainable. Avoidance is the only option, if
a species’ capacity for salinity tolerance via acclimation or rapid adaptation is not sufficient.
Persistent salinity changes can lead to geographic range shifts, vertical distribution shifts
and, if relocation is not possible, (local) extinction [353]. Benthic marine invertebrates are

especially affected by environmental salinity changes as they often have limited mobility
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and larval stages with reduced tolerance to low salinity [46, 226].

With ongoing climate change, salinity is projected to decrease in many coastal areas due
to an increase in freshwater inflow caused by increased precipitation and glacier melting
[1]. The Antarctic shelf, shallow coral reefs in Australia, or the Baltic Sea are prominent
regions where expected desalination or prolonged low salinity periods could fundamentally
change benthic invertebrate communities [113, 221, 367]. To predict desalination effects
on distribution and species fitness, it is crucial to understand the physiological mechanisms,
capacity and limits that determine salinity tolerance.

Aquatic organisms can generally be divided into osmoregulators and osmoconformers.
While osmoregulators regulate the osmotic pressure of their body fluids independently
to that of ambient seawater, osmoconformers are characterized by extracellular fluids (i.c.
haemolymph, coelomic fluid, interstitial fluid) that are isosmotic with respect to seawater.
Osmoconformers, consisting chiefly of invertebrates, use cellular volume regulation (CVR)
to react to osmotic changes. In CVR, small molecules are used to adjust cellular osmotic
pressure (i.e. osmolality). To acclimate to reduced seawater salinity, cells release or catabo-
lize some of these osmotic compounds to avoid water inflow and harmful swelling. Only
when the capacity for CVR reaches its limit, cellular water content will increase, ultimately
leading to cellular damage and cell death [175].

Osmolytes can be of inorganic and organic nature and are defined as compounds whose
concentration is regulated in relation to salinity (sezs% [332]). Organic osmolytes are also
termed compatible osmolytes, because they are generally considered non-perturbing with
protein function and structure [332]. Many of the major organic osmolytes have even ben-
eficial attributes such as protein and membrane stabilizing abilities. Often, the organic os-
molyte pool is composed of one or two major osmolytes accompanied by minor osmolytes

[264]. Invertebrates are known to mainly employ free amino acids (FAAs) and methy-
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lamines [332]. However, there is a strong methodological bias towards FAAs in the os-
molyte literature, disregarding methylamines and methylsulfonium compounds [264]. Yet,
these substances can make up the majority of the organic osmolyte pool [163, 254, 262].
The use of non-targeted analysis methods, such as HPLC, GC-mass spectrometry, or
NMR spectroscopy is, hence, crucial.

The importance of organic osmolytes for long-term salinity acclimation has been demon-
strated for many species and taxa [262, 308]. Nevertheless, approximately half of the intra-
cellular osmolyte pool consists of inorganic ions and this part of the osmolyte pool is poorly
characterized [61, 264]. A better understanding of how inorganic osmolyte concentrations
are modulated during low salinity acclimation is important, as inorganic ion concentra-
tions also influence many intracellular processes. Inorganic osmolytes were often consid-
ered to be utilized exclusively during short-term responses to salinity stress [275]. However,
several studies suggested that inorganic osmolytes play an important, yet understudied, role
in long-term acclimation as well [267, 296, 382]. Overall, both, the inorganic and organic
shares of the total osmolyte pool have to be quantified.

While some mechanisms of CVR are relatively well established, it is unclear, whether
unifying mechanisms of salinity tolerance exist in marine invertebrates. Osmolyte pool size,
as well as pool composition have been suggested to be key factors in determining species
salinity acclimation limits, but have not been formally tested across a broader taxonomic
range [24, 162, 249]. Podbielski et al. [262] introduced the concept of critical salinity (S,.),
suggesting that fitness (reproductive ability, long-term survival) becomes zero when the
organic osmolyte pool is fully depleted, with the implicit assumption that the cellular inor-
ganic osmolyte pool is not modulated strongly. This concept has been successfully applied
to a cnidarian and an echinoderm species [262, 308]. However, tissue inorganic ions have

not been determined in these studies.



Here we tested, whether the S,,,; concept is applicable for species from a broad taxo-
nomic range and whether inorganic osmolytes play a substantial role during acclimation
to similar experimental salinity regimes. We focused on long-term low salinity acclimation
of benthic osmoconformers of the Baltic Sea. We chose six study species from three phyla
that fulfill important ecological roles, exhibit a wide geographic distribution and differ in
their tolerance of low salinity. These species were: a bivalve and a gastropod (Molluscs:
Mytilus edulis-like, Littorina littorea), a sea anemone (Cnidaria: Diadumene lineata) as
well as a sea star and two sea urchin species (Echinoderms: Asterias rubens, Psammechinus
milliaris, Strongylocentrotus droebachiensis) to determine differences in salinity tolerance
mechanisms. They will hereafter be referred to as mussels, snails, sea anemones, sea stars,
shore sea urchins and green sea urchins, respectively. We investigated eftects of low salinity

acclimation on fitness proxies and tissue osmolytes. Specifically, we hypothesized that:
i Tissue organic osmolyte concentrations decrease during acclimation to low salinity.

ii Tissue inorganic osmolyte concentrations decrease during acclimation to low salin-
ity. More specifically, the concentrations of the main monovalent inorganic os-
molytes (i.e. sodium and chloride) decrease in tissues, while potassium and calcium

concentrations remain constant.
iii Organic osmolyte composition differs between taxa.
iv. The critical salinity concept is applicable for all investigated species.

This is the first study to investigate the complete osmolyte pool in a variety of marine inver-

tebrates following long-term acclimation to low salinity using comparable approaches.

147



3.2 RESULTS

3.2.1 SURVIVAL

ollowing a four-week acclimation interval to seven different salinity treatments, we
F observed a significant decrease of survival of sea stars, snails, mussels and green sea
urchins (Tab. B.1). In mussels, the decrease in survival occurred gradually between salin-
ities 10 to 5. Sea star survival fell abruptly from 100% to 0% between salinities 12 and ro.
Animals at salinity 11 had a low body turgor and appeared moribund. The survival of
snails steeply declined from salinity 8 to 6. Green sea urchin survival decreased to 67% at
salinity 17, whereas no shore sea urchins died during the experimental time period. Survival
of sea anemones was not impacted by low salinity, either. However, asexual reproduction

rate decreased to zero at salinities of 1o (Fig. 3.1, 3.2).

3.2.2 GROWTH

Despite being fed ad libitum in all treatments, growth decreased significantly with a reduc-
tion in salinity (Tab. B.3). Thresholds of zero weight gain and consecutive loss of biomass
were located at salinities of 5.6, 9.3, 12.7, 14.6, 14.7 and 20.9 for mussels, sea anemones,
sea stars, snails, shore sea urchins and green sea urchins, respectively (Fig. 3.1, 3.2). A sig-
nificant increase of total wet weight (WW) was observed for all species at higher salinity
treatments with an attenuation of growth observed for mussels, sea anemones, sea stars and

shore sea urchins.

3.2.3 WATER CONTENT

Reduction of salinity significantly increased tissue water content of all species, except for

sea stars (Tab. B.2). In molluscs, water content was constant at high and medium salini-
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Figure 3.1: Effect of long-term low salinity acclimation on survival, growth, water content, distribution and osmolyte
pool size on mussels, snails and sea anemones. Salinity is depicted on the x-axis. On the y-axis survival is presented in

%, change in total wet weight in g, water content in % wet weight and osmolyte pools in mmol kg*1

wet weight. Os-
molyte pools were corrected for relative weight change due to increase in water content with decreasing salinity. The
inorganic pool is depicted by triangles and the organic pool by circles. No organic osmolytes were measured for sea
anemones, instead osmolyte data from a previous study is shown [262]. Colored bars represent the species’ known
salinity range in the Baltic Sea. Models were fitted to raw data points for seven treatment levels. If no model is shown,
there was no significant model. Models were chosen according to best fit. Model outcomes are listed in Tab. B.1 -

B.4. Shaded areas represent a 95% confidence interval. Four treatment levels were clustered around the lower salinity
threshold of each species, two levels represented intermediate salinity and the highest one was close to control con-
ditions. Species are marked by color code and symbol: blue - mussels (Mytilus sp.), turquoise - snails (Littorina littorea),
orange - sea anemones (Diadumene lineata). Grey vertical bars represent the critical salinity range derived from the
salinity thresholds of the complementing measurements of physiological and biochemical biomarkers.
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ties, but increased at a salinity threshold of 8 for mussels and 11 for snails. Water content
increase was continuous for both sea urchin species and sea anemones. In sea stars, water

content was constant above salinity 11 but decreased abruptly below that threshold.

3.2.4 TOTAL OSMOLALITY AND TOTAL OSMOLYTE POOL SIZES

Tissue osmolality significantly declined in tissues of mussels, snails, sea anemones and sea
stars with decreasing salinity (Fig. B.1). Total osmolality in mussels and snails declined lin-
early, whereas in sea stars it stabilized at very low salinity. Sea anemone tissue osmolality
was constant across a wide salinity range but dropped at a salinity threshold of 10. No sig-
nificant change in osmolality was detectable in the two sea urchin species.

Overall, the concentration of inorganic osmolytes was higher than that of the organic
osmolyte pool in all investigated species, besides shore sea urchins. Total inorganic os-
molyte concentration decreased linearly with salinity in the tissues of sea stars, whereas a
stabilization occurred for mussels and snails at lower salinity (Fig. 3.1, 3.2, Tab. B.4). The
concentration of organic osmolytes declined significantly with decreasing salinity in mus-
sels, snails, sea anemones, sea stars and green sea urchins (Tab. B.4). The S,,;; of mussels,
sea stars and green sea urchins was <o, 10 and 14, respectively, as could be derived from ex-
trapolating the linear model until the organic osmolyte concentration reached zero. The
S of sea anemones from a previous study was located at salinity 6.5 (Fig. 3.1) [262]. S,
could not be estimated in of the other species as the relation was not linear (i.e. snails), not

significant (i.e. shore sea urchins), or extrapolation results were negative (i.e. mussels).

3.2.5 ORGANIC OSMOLYTES: POOL COMPOSITION AND MAJOR OSMOLYTES

In total, 60 compounds were identified (Fig. B.2, Tab. B.6, Tab.B.7, Tab.B.8) by metabolic

profiling. The concentration of 39 solutes declined significantly with decreasing salinity

150



120
100
S
< 80
©
2
S 60
3
D 40
20
0
D
4
T s
=
2 2
S
z 1
S
z 0
8
e
<
-2
-3
Gy 5
S 850
2
R 825
800
2
c
S 775
(5]
750
2
S 725
=
70.0
67.5
c
il
2
=2J
@
a
=M 500
=
T
o 400
X
g
300
£
8 200
o
2
>
= 100
€
[72
o
s
he]

B C
120 120
100 100
80 80
60 60
40 40
20 20
0 0
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 5 10 15 20 25 30 35
E F
1.0
0.2
0.5 o
0.1
0.0
0.0 s
-0.5
-1.0 o1
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 5 10 15 20 25 30 35
H87.5 | 875
85.0 85.0
82.5 82.5
80.0 80.0
77.5 775
75.0 75.0
725 725
70.0 70.0 N
67.5 67.5
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 5 10 15 20 25 30 35
K
{ { L
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 5 10 15 20 25 30 35
N 500 Q 500
A
400 400
7A 300 300
F § 3 4
2 Lak ry
1 200 - 200 p
A A A
LA A
A 100 100 A
0 0
0 5 10 15 20 25 30 35 0 5 10 15 .20 25 30 35 5 10 15 20 25 30 35
Salinity Salinity Salinity

Figure 3.2: Effect of long-term low salinity acclimation on survival, growth, water content, distribution and osmolyte
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thresholds of the measurements of physiological and biochemical markers.

I51



A Organic Pool

Alanine

Aspartate

Betaine

Dimethyl sulfone

Glycine

Homarine

L-Arginine

Lysine

Minor compounds Composition (%)
50
40
30
20

10

Serine
Taurine

Unassigned1

B Inorganic Pool

Chloride
Other
Potassium

Sodium

Mussels
Snails
Sea anemones
Sea stars

122} (%2}
c c
c =
e °
=) =)
g ©
3 3
s @
o 2
(G

Figure 3.3: Composition of the total organic and inorganic compound pool in tissues. Depicted are the major com-
pounds (>5%) in tissue extracts of the study organisms at the high salinity treatment: snails (L. littorea), mussels (Mytilus

sp.), sea anemones (D. lineata), shore sea urchins (P. milliaris), green sea urchins (S. droebachiensis) and sea stars (A.
rubens). Organic osmolyte data was retrieved from a previous study [262]. Color of field represent the percentage of
the compound in the total pool of measured compounds. If no data is shown for certain species that means that the
percentage of this substance is <5%.
and were thus considered osmolytes (sezs# [332]). The major osmolytes that had a substan-
tial contribution to the total organic osmolyte pool were glycine (echinoderms), betaine
(sea anemones and mussels) and betaine and taurine (snails) (Fig. 3.3). The concentration
of most of the identified osmolytes was minor (<5% of the total organic pool; Fig. B.2).
Salinity effects on individual osmolytes were not always consistent between species (Fig.
3.4, Tab. B.9). Glycine was one of the few osmolytes to be detected in all species and was

the major osmolyte in echinoderms. We found methylamines such as betaine or homa-

rine to be mollusc-specific osmolytes and to reach a constant level at low salinity. Taurine



was a major osmolyte in sea stars and molluscs. Intermediate osmolytes were often species-
specific, such as glutamate in green sea urchins, aspartate in mussels, or lysine in sea stars.
Serine was specific to echinoderms. Alanine was an intermediate organic osmolyte in echin-
oderms and snails. Overall, the organic osmolyte pool consisted of 25%, 43% and >60%
methylamines in snails, mussels and sea anemones, respectively [262]. On the contrary,
methylamines were negligible and FAAs constituted the main portion of the organic os-

molytes in echinoderms (78-90%).

3.2..6 INORGANIC OSMOLYTES: POOL COMPOSITION AND MAJOR OSMOLYTES

The main inorganic osmolytes we identified were chloride, potassium and sodium (Fig.
3.3, Fig. B.3, Tab. B.s5). The total inorganic ion pool in tissues was chiefly accounted for by
sodium and chloride (60-80%) in all species. We observed a significant effect of salinity on
tissue chloride concentration in all species except in shore sea urchins (Fig. 3.4). The rela-
tionship was linear in sea stars and values were constant at low salinities in mussels, snails
and green sea urchins. Similar patterns could be observed for sodium and potassium. Tis-
sue sodium and potassium concentrations changed significantly with salinity in snails, sea
stars and mussels - but not in sea urchins. Sodium concentrations were constant at low
salinity in mussels, snails and sea stars. Tissue potassium concentration was less strongly
impacted by salinity in mussels, snails and sea stars when compared to chloride or sodium.
In sea anemones, chloride, sodium and potassium concentrations decreased initially with
decreasing salinity until an inflection point at salinity of 10 was reached after which con-
centrations increased. Concentrations were corrected for relative weight changes resulting

from tissue hydration (Fig. 3.1).
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3.3 Discussion

3.3.1 FITNESS PROXIES AND VOLUME REGULATION CAPACITY

he applied salinity stress impacted the tested invertebrate species on different levels.
TThe first physiological sign of low salinity stress was a reduction of net growth rates,
with negative values at very low salinities. Cessation of growth at low salinities indicates
severe salinity stress and an unsustainable energetic state where costs for osmoregulation
are too high to allow for allocation of surplus energy into anabolic processes [171]. Below
such growth-abolishing salinity levels, energy reserves and tissue have to be catabolized to
meet energetic demands. This threshold towards negative growth was located close to salin-
ities (within 0 — 1.5) that caused mortality and a change in tissue water content in all
species examined here. Changes in cellular water content have previously been hypothe-
sized to indicate that an organism has reached its volume regulation capacity limit [175]. At
this point, species cannot further acclimate to low salinity by continued depletion of the
osmolyte pool and cellular water content increases. Tissue water content increased in all
tested species at low salinities, indicating an impaired volume regulatory ability.

Growth rates were similar or higher compared to literature data in all investigated species
[171, 210, 220, 237, 262, 308].

Water content was similar to previously reported values in mussels, snails, sea anemones,
green sea urchins and shore sea urchins [37, 130, 173, 313, 382]. We did not observe an
increase in water content with decreasing salinity in sea stars, similar to the other species.
Instead, the tissue water contents for sea stars were observed to decrease at a salinity of 11
in this experiment, which coincided with a loss of body turgor. Yet, unpublished results
showed a steep increase in water content of sea stars at salinities of 11 after a shorter ac-

climation period of two weeks (Fig. B.4). This indicated that sea star volume regulation
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capacity operates over a wide range of salinities until a limit is reached. This limit cannot be
tolerated for prolonged periods and thus was only visible under shorter acclimation times.
The general response of water content in relation to salinity was thus similar for all inves-
tigated species. In sea urchins the relation between water content and salinity was linear.

A potential increase in tissue hydration around a threshold salinity of 20 for the green sea
urchin and 18 for the shore sea urchin could not be resolved due to a high variance and low
level of replication.

Survival rates in this study corresponded to salinities observed at geographic distribution
boundaries and/or were similar to published mortality rates for sea stars, green sea urchins,
sea anemones and mussels [173, 308, 313, 337]. Although none of our sea anemones died
under the applied salinity treatments, the observed cessation of asexual reproduction al-
ready at salinity 10 was slightly higher than found previously (salinity 7) [262]. Snails,
however, were more tolerant to low salinity during our experiments (salinity 8) than it was
found in older studies (salinity limit of 10-12.5) [148]. While we observed no mortality
of shore sea urchins even at the lowest applied salinities of 15, in the field, the distribution

limit of shore sea urchins has been reported between salinities of 17 and 20 [98].

3.3.2 CELLULAR OSMOREGULATION

Organic osmolyte concentrations in tissues decreased following long-term low salinity ac-
climation in all species, except in shore sea urchins, confirming hypothesis 1. This decrease
was linear in sea anemones, green sea urchins, sea stars and mussels, whereas it stabilized at
low salinity in snails (Fig. 3.1, 3.2, [262]).

Our second hypothesis, namely that tissue inorganic osmolyte concentrations decrease
after long-term low salinity acclimation, can be accepted for mussels, snails and sea stars

and has to be partially rejected for green sea urchins. Tissue ion concentrations in mussels
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decreased with declining salinity, but stabilized at salinity < 8, indicating hyperosmotic
regulation at low salinity. Similarly, inorganic ion concentration in snail tissues revealed
stabilized concentrations at low salinity, indicating hyperregulation. Hyperosmotic intra-
cellular regulation was proposed to occur in mussels acclimated to low salinity [382]. In
order to measure this, fine-scale monitoring is needed, but the rare inorganic osmolyte stud-
ies were not designed to detect this pattern [267, 316]. This exposes a huge research gap for
fine-scale monitoring of inorganic osmolyte profiles of osmoconforming invertebrates.

In green sea urchins, inorganic osmolyte concentrations were stable across salinity treat-
ments. Inorganic osmolytes do not seem to play a role in green sea urchin CVR. In general,
tissue inorganic ion concentrations are higher than intracellular values due to the influence
of the extracellular fluids. However, consideration of the inorganic ion contribution of the
extracellular space does not change the overall results substantially. To do so, we calculated
the maximal ECS contribution, compared this to literature values and conservatively esti-
mated a likely ECS fraction (Appendix B.1: Estimation of the intracellular inorganic pool
by calculating the likely ECS fraction). Even when factoring in maximal ECS fractions,
the inorganic osmolyte concentration was still significantly affected by salinity in mussels,
snails and sea stars and inorganic osmolyte pool size remained larger than the organic share
(Fig. B.s).

Organic and the inorganic osmolyte pool played important roles in cellular osmoreg-
ulation in molluscs and sea stars, whereas in green sea urchins, only the organic pool was
involved. Furthermore, the higher inorganic osmolyte concentration (compared to the or-
ganic pool) implied an even higher importance of the inorganic pool for the CVR process
in molluscs and some echinoderms. Only three other studies are available, (exclusively as-
sessing molluscs) that measured inorganic as well as organic compounds after long-term

low salinity acclimation. Similar to our results, these studies found significant effects of
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salinity on both osmolyte pools and a larger inorganic pool size [267, 316, 358].

3.3.3 ORGANIC OSMOLYTE CONCENTRATION

Opverall, we observed three recurrent patterns of individual organic osmolyte concentration
changes with salinity. First, for some osmolytes (e.g. intermediate osmolytes in sea stars) we
detected a steady decrease of osmolyte concentration with decreasing salinity, which agrees
well with previous studies ([308], Fig. 3.4). A second pattern we observed was a decline of
organic osmolyte concentrations with declining salinity that eventually stabilized - indicat-
ing hyperregulation - at low salinity. This pattern was very prominent for the major organic
osmolytes betaine (molluscs) and glycine (sea stars; Fig. 3.4) and is also consistent with liter-
ature results [65, 296]. Third, the major osmolytes glycine in green sea urchins and taurine
and mussels reached maximum concentrations already at intermediate to high salinity. A
similar saturation pattern for taurine concentrations was found in bivalves [163]. At lower
salinities the third pattern can either show a linear decrease as described in the first pattern
(e.g. taurine or aspartate in mussels), or concentrations can stabilize as described in pattern
2 (e.g. aspartate and glutamate in green sea urchins).

Furthermore, a selective utilization of intermediate organic osmolytes below a certain
salinity threshold was observed. This indicates that under severe salinity stress a wider vari-
ety of organic osmolytes is modulated, whereas under moderate stress only major osmolytes
are utilized. Under moderate salinity stress, intermediate osmolytes occurred at low con-
stant concentrations and were not accumulated further at higher salinity. The reason for
this could be that many minor osmolytes are intermediates in metabolic pathways that gen-
erate major osmolytes - and are thus converted instead of being accumulated [79, 258, 370].
We propose that the examined Baltic Sea invertebrates prioritize a reduction of major os-

molytes during low salinity acclimation and only resort to intermediate osmolytes when

158



salinity stress progresses.

The taxon-specific differences in osmolyte composition (for example methylamines) be-
tween echinoderms and molluscs confirmed our third hypothesis. This is consistent with a
recent meta-analysis about taxonomic variation of the salinity effect on osmolyte concen-
trations in tissues of osmoconformers [264]. Our study highlights methylamines as an im-
portant part of the organic osmolyte pool in marine invertebrates. However, a large deficit
of studies utilizing untargeted metabolic profiling leads to a severe under-representation of
methylamines in the osmolyte literature [264].

Within the echinoderms studied, both sea urchin species had an almost identical organic
osmolyte composition. The organic osmolyte pool of the sea star was only slightly different
in its composition to that of the two sea urchin species. All three species utilized glycine
as main osmolyte and serine as accompanying intermediate osmolyte. Previous studies
detected similar concentrations for glycine, but smaller values for serine and other minor
osmolytes [308]. Sea stars additionally employed taurine and lysine as intermediate os-
molytes, the latter of which we only found in sea stars. Sea urchins were fed with algae,
while sea stars were fed with mussels that contain a high taurine concentration themselves,
which might explain small differences in osmolyte composition. While osmolytes are gener-
ated de novo [62], diet can also affect osmolyte composition. Amino acids have been shown
to be taken up via ingestion of food in green sea urchins, and tissue lipid content was af-
fected by diet in shore sea urchins [44, 178].

Between the two tested molluscs, we found larger differences in osmolyte composition
when compared to the variation among echinoderms. The largest difference was observed
for betaine. Snails utilized betaite osmolyte. In contrast, glycine concentrations were higher
in musne as a major osmolyte, whereas in mussels, betaine was an intermediasels com-

pared to snails, thus substituting betaine. This is consistent with some previous studies on
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molluscs [130, 296]. However, utilization of high concentrations of betaine has been ob-
served in a closely related mussel species (Mytilus californianus) [316]. Moreover, glycine
is a product of betaine catabolism [370]. Osmolyte pathways are linked and changes in
these metabolic processes could also be responsible for these observed differences [370].
Also betaine, has been shown to have other cellular functions: it is involved in regulation
of enzymes involved in energy metabolism, lipogenesis or beta-oxidation or regulation of
transcription factors [88]. Thus, differences in betaine osmolyte concentrations between
species could indicate differences in these metabolic pathways.

Why taxonomic group-specific osmolytes (such as methylamines in molluscs) have evolved
is yet unclear. Our results demonstrate the presence of betaine in high concentrations in
molluscs. While we cannot infer the source from that data, betaine biosynthesis has been
demonstrated in Mytilus galloprovincialis [62]. In contrast, echinoderms, do not seem to
employ betaine in large concentrations albeit the availability of a genomic blueprint for
betaine synthesis and precursor uptake via transporters [233]. Choline is a precursor of be-
taine. Genes coding choline transporters, responsible for choline uptake, as well as enzymes
for betaine synthesis (choline dehydroxygenase, betaine aldehyde dehydrogenase, choline
oxidase, glycine-sarcosine methyltransferase and sarcosine dimethyl transferase) are present
in echinoderms [104, 233].

Generally, methylamines are considered stronger protein stabilizers than non-methylated
osmolytes such as glycine [394]. Thus, the use of methylamines in euryhaline mussels and
snails could be an adaptation to the low saline conditions of their environment, whereas
habitat osmolality is usually higher for the typically more stenohaline echinoderms. The
sea star examined in this study is one of the few euryhaline echinoderms. The only notable
difference between sea urchins and sea stars were the larger concentrations of intermedi-

ate osmolytes (such as alanine, aspartate, lysine, ornithine, serine, etc.) at low to medium
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salinities and the use of taurine as an osmolyte in sea stars.

3.3.4 INORGANIC OSMOLYTE CONCENTRATION

Our second hypothesis, stating that tissue chloride and sodium concentrations decrease
with decreasing salinity, can be accepted for mussels, snails, sea stars and sea anemones. In
green sea urchins, only tissue chloride concentrations were significantly decreased following
acclimation to low salinity. Our hypothesis that constant tissue calcium and potassium
concentrations are maintained across salinity treatments, can only be accepted for green sea
urchins.

In our study, the monovalent ions chloride and sodium were the main inorganic os-
molytes involved in long-term low salinity acclimation, which is in line with other stud-
ies using mollusc model organisms [24, 267, 296, 316]. However, not all studies detected
a salinity effect on tissue monovalent inorganic osmolyte concentrations. In the mussel
Perna perna, no changes in cellular chloride or sodium concentration were detected [336].
The effect of salinity on potassium concentrations is however controversial. Our results
for mussels, snails and sea stars revealed a significant change in tissue potassium concen-
tration acclimated to different salinities, which is corroborated by other bivalve studies
[267, 336, 382]. Yet, usually potassium is assumed to be highly regulated in the intracellular
space [238], which is also supported by other mollusc studies [24, 296, 316].

Significant changes of other, lower concentrated, tissue inorganic ions (Tab. ??) may also
be of relevance. Tons like calcium and bromide aftect organisms by limiting many biological
processes, ranging from calcification to cytoprotective functions [33, 297]. Overall, how-
ever, our results highlight, the importance of the monovalent ions chloride and sodium as

inorganic osmolytes in long-term salinity acclimation processes.
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3.3.5 CRITICAL SALINITY CONCEPT

We previously defined a critical salinity (S,,) as the lower salinity threshold at which the
organic cellular osmolyte pool and fitness (proxies: mortality, growth) are reduced to zero
and postulated (hypothesis 4) that S,,;, can be identified in all experimental species (s, Fig.
3.5). We could not confirm this hypothesis for any of the investigated species. In contrast,
we discovered that organic osmolyte pools in most animals were not yet fully depleted
when severe loss of fitness occurred (Fig. 3.5). The previously reported S,,,; concept for
sea anemones [262] and sea stars [308] is thus not transferable across all invertebrate phyla.
In green sea urchins, sea anemones and sea stars, the determined S,,,; was lower than the
threshold we would have expected from fitness proxies and volume regulation capacity.
In mussels, the negative S, values are biologically nonsensical and thus the concept was
not applicable. In snails, or shore sea urchins, the concept was not applicable to organic
osmolyte data.

In snails, the original S,,;; concept was not applicable as organic osmolyte concentra-
tions stabilized below a lower salinity threshold, indicating hyperosmotic regulation. Sim-
ilar patterns could be seen for individual osmolytes in the other invertebrates when fitness
was reduced (i.e. betaine and homarine in mussels; alanine, glutamate and serine in green
sea urchins; glycine in sea stars). Hyperregulation is an energetically cost-intensive, time-
limited tolerance process [290]. In mussels, modeling .S, from osmolyte concentrations
was not meaningful as a S,,,; <o would be calculated, a phenomenon that was also observed
in a previous mussel study [296].

A shortcoming of the original concept was its focus on organic osmolytes (Fig. 3.5).
This study has, indeed, demonstrated the significant involvement of the inorganic osmolyte

pool in active CVR. An altered concept therefore has to include inorganic osmolytes in
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Figure 3.5: Depicted are hypotheses on how salinity affects the osmolyte pool in combination with idealized fitness
parameters and capacity for cellular volume regulation. A) the original S,,;; concept for the total organic osmolyte pool.
A linear decrease of organic osmolytes (yellow) is shown until the organic osmolyte pool is fully depleted (red line) while
inorganic ion concentration (blue) is constant. .S,,;; is defined as the point when the organic osmolyte pool is depleted.
Figure B) shows an altered concept of two scenarios that show a S,,;; range which incorporates the inorganic (blue) and
organic osmolyte pool (yellow). In scenario B1 both pools decrease with salinity (in some species these concentrations
stabilize at low salinities), but concentrations do not reach zero (red line). Scenario B2 shows a decrease with salinity in
the organic pool, but concentrations do not reach zero (red line), while the inorganic pool remains constant. C) Depicted
is a fitness proxy (e.g. survival; dark grey) in relation to salinity, which according to the S,,;; concept reaches zero when
the organic osmolyte pool is depleted. D) Here we see a fitness proxy that drops rapidly after a low salinity threshold

is reached (i.e. survival), meanwhile tissue water content (light grey) increases below this limit. The species symbols in
figure 5B and 5D symbolize if the suggested concept applies to the investigated species in this study.



long-term acclimation processes to low salinity (Fig. 3.5). There does not seem to be a uni-
versal concept based on osmolyte concentrations that defines the lower salinity threshold of
species. Rather, the combination of multiple parameters characterizes the mechanistic basis
of the lower salinity threshold of study organisms.

For snails the salinity threshold derived from reduced fitness and inorganic and organic
osmolyte hyperregulation matched perfectly. A clear tipping point was apparent in snails
with a salinity of 14, where biomass is catabolized, volume regulation capacity was im-
paired, survival was impacted and inorganic and organic osmolyte pools stabilized. While
snails can endure lower salinities of 6-13 for some time, living under such conditions will
not be sustainable. These findings roughly match known species distribution limits at a
salinity of 1o-12.5 [148].

In mussels, we saw a clear tipping point at salinity ro where tissue water content sharply
increased and survival declined and the major organic osmolytes betaine and taurine had
their inflection points. At salinity < 7, this increase stagnated and water content as well
as inorganic and organic osmolyte concentrations stabilized. Biomass was not catabolized
until salinity dropped below 6. Another study (with individuals of similar size) found an
increase of mortality only at salinities < S [296]. Altogether, a critical salinity range of 7-10
can be suggested, in which a majority of mussels can still survive, yet with energetic trade-
offs due to costs for cellular osmoregulation that affect growth, which was demonstrated by
a 64% reduction in growth. While they can, hence, tolerate lower salinities under laboratory
conditions, M. edulis-like genotypes (as used in our study) are replaced in the field by A1.
trossolus-like genotypes already at salinities <10 [152, 337]. The distribution limit of 4.
edulis-like mussels in the Baltic Sea is therefore defined by M. edulis’ physiological limits.

The fitness parameters, mean water content, concentrations of inorganic osmolytes chlo-

ride and sodium as well as the inflection point in total osmolality of sea anemones matched
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perfectly to suggest a salinity limit of these animals at 10 (Fig. 3.1). Previous studies on or-
ganic osmolytes in sea anemones, however, showed a S, at salinity 6.5 [262]. No mortality
was observed for sea anemones at the measured salinities, but when net growth was zero,
asexual reproduction of sea anemones ceased. Thus, despite short-term survival at lower
salinities, the long-term lower salinity threshold that permits growth and reproduction of
sea anemones appears to be located at salinities around ro. This also agrees with distribu-
tion limits of sea anemones in the field [262].

While our calculated S, values for sea stars (S, = 10) agreed with literature data [308],
S was lower than could be expected from fitness proxies. Catabolism of biomass was as-
sociated with decrease in survival of sea stars at salinities < 13. Furthermore, while tissue
total osmolality stabilized at salinities < 13 (Fig. B.1), this pattern was not apparent in the
inorganic or organic osmolyte pool (Fig. 3.2). However, a closer look at the main organic
osmolyte glycine demonstrated stabilizing concentrations at salinities < 13 (Fig. 3.4). We
can, hence, corroborate a low salinity threshold between salinities of 12 and 13, which was
published before [46, 308].

As in sea stars, the S,,;; = 14.4 calculated for green sea urchins was lower than expected
from net growth and survival, which both decreased at salinity 20. No threshold was vis-
ible in water content, total organic osmolyte pool and the major osmolyte glycine, while
the inorganic ion pool remained constant. Yet, at a salinity of 20, a stabilization of some
minor organic osmolytes was observed, agreeing well with the performance fitness parame-
ters. Thus, in green sea urchins no clear salinity threshold was indicated by osmolyte data,
whereas fitness parameters proved more useful. The fitness threshold at salinity 20 cor-
responds well with the distribution limit reported for North Sea populations that occur
down to a salinity of 21.5 [173].

Responses in for physiological parameters in shore sea urchins appeared to be simi-
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larly associated (even though a low number of replicates hindered the statistical analysis
of osmolytes): zero net growth and increasing tissue water content indicated a low salin-
ity threshold at 15, even though survival was not impacted yet. As seen for sea stars, once
a tipping point is reached, the survival of marine animals suffering from desalination can
decline very rapidly. We hence expect the threshold for mortality to be located close to the
lowest salinity treatment (salinity = 15) tested in our experiment. In the field, the distri-
bution limit of shore sea urchins has been reported between salinities 17 and 20 which is

higher than could be expected from our data [98].

3.4 CONCLUSION

O verall, we found that low salinity acclimation had severe effects on the physiological

performance and osmotic system of six Baltic Sea invertebrate species.

i We were able to demonstrate that the total organic osmolyte pool was dynamically

modulated by changes in salinity in mussels, snails, sea stars and green sea urchins.

ii We detected significant changes in tissue inorganic osmolyte pools in mussels, snails,
sea stars and sea anemones. These were mainly driven by modulation of monovalent

ion concentrations (sodium, chloride) and less so potassium and calcium.

iii Taxon specific differences in osmolyte composition between studied Echinodermata
and Mollusca were mainly manifested in the utilization of methylamines by molluscs
(main osmolytes betaine taurine) and the restriction to FAAs in echinoderms (main

osmolyte glycine).

iv Lastly, we found the S,,,; concept seznsu Podbielski et al. [262] not applicable as os-

molyte pools, albeit being reduced with salinity, were not fully depleted at low salin-
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ity. Organic osmolyte content alone cannot predict a species’ lower tolerance limit.
Fitness parameters and osmolyte profiles were found to be linked. However, the rela-

tionships are not simple and mechanisms are not uniform between species.

While we found that all species can endure reduced salinity over a certain range, we

determined clear physiological limits. Our results nicely show that the low salinity
threshold marks a critical salinity range (rather than one specific point). Here, fine-scale
monitoring around the anticipated lower salinity threshold is needed to detect the stabi-
lization of osmolyte levels as well as an increase in water content reliably. With respect to
future changes in salinity we thus hypothesize that all species studied here will experience
a shift in species distribution with the projected salinity changes. Further, fitness of local
populations in high salinity environments may be reduced in response to the lowered salin-
ity conditions in the future. As the salinity effects found in this study were species-specific
the use of a universal concept is not supported. We propose an alternate comprehensive
approach that includes fitness parameters, water content and osmolytes (Fig. 3.5), to un-
derstand how distribution limits are determined and identify the mechanisms that control
salinity tolerance.

A recent meta-analysis highlighted large gaps of knowledge with respect to intracellu-
lar osmolyte concentrations across invertebrate taxa [264]. Research in the field of salinity
tolerance, especially cellular osmoregulation, is essential, and certainly needed, to establish
reliable physiological limits of species in order to estimate consequences of future salinity
changes with ongoing climate change. It is important to assess the salinity tolerance capac-
ity in euryhaline species to obtain a better understanding of the basic mechanisms that are
utilized in a wide range of species. It is further crucial to establish cellular inorganic and or-

ganic osmolyte profiles that build a foundation for applied cellular physiological research,
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for example for designing suitable bufters for 77 vitro assays as these buffers need to incor-
porate complex organic and inorganic osmolyte changes. Knowledge about cellular and
whole-organism biochemistry and physiology is absolutely crucial for characterizing the
functions of genes that are under selection by climate change stressors [211]. The Baltic
Sea, with its natural salinity gradient and locally adapted populations, can be used to sim-
ulate future selection gradients to identify which cellular mechanisms and genes are mod-
ulated under persistent salinity reductions. This fundamental knowledge is necessary in
order to assess whether there is potential for acclimation and rapid adaptation in changing

oceans.

3.5 MATERIAL & METHODS

3.5.1 COLLECTION & MAINTENANCE

tudy organisms were collected in the western Baltic Sea from spring to autumn 2018.
S All organisms were transported within 1-5 hours (except for green sea urchins from the
Kattegat: 2 days) to a climate chamber at GEOMAR, Kiel where they were cultured (Fig.
B.6, Tab. B.10, Tab. B.11).

3.5.2 EXPERIMENTAL SET-UP

Independent experiments were conducted for each species. After gradual salinity adjust-
ment for 1-3 units day’l, species were exposed to seven salinity treatments for four weeks
(Fig. B.7). A minimum of 14 days are necessary to examine stable osmolyte pools [9]. Each
tank was considered an experimental unit, with replicate numbers » = 2 — 6 (Fig. B.7,
Fig. B.8). The number of individuals per tank was adjusted according to size and avail-

ability of the animals. In total, we maintained 168 tanks for a minimum duration of six

168



weeks. Physiochemical water parameters were recorded every 1 - 7 days to ensure high water
quality (Tab. B.13). Water was changed depending on accumulation of nitrogenous waste
products measured in randomly chosen tanks of the lowest and highest salinity treatment
(Tab. B.12). Feeding was stopped a day prior to sampling. At the end of the experiment,
two shares of samples were taken from individuals. The first set was used for dry weight

measurement, the second one was processed for osmolyte analysis (Fig. B.8).

3.5.3 FITNESS PROXIES & TISSUE WATER CONTENT

We investigated fitness proxies (survival, growth) and volume regulation capacity to under-
stand when low salinity stress became severe for our model organisms. Survival rate was
utilized as a proxy to estimate critical salinity. Mortality was recorded on a daily basis. Dead
individuals were removed from tanks and water was fully exchanged. At the end of the ex-
periment, average survival per tank was compiled. Asno mortality of sea anemones was
detected in our experiment, instead of survival, asexual reproduction rate was used as an
indicator for salinity stress of these animals. Asexually reproducing sea anemones that in-
creased in numbers were expressed as percentages >100%.

Growth was measured as change in total wet weight (WW). All animals were weighed
prior to the experiment. At the end of the experiment total WW was recorded. The differ-
ence between initial and final total weight (g) was used as measure for net growth. For dry
weight (DW) determination, one set of samples was dried for 48-72 hours at 80°C and DW
weighed (Fig. B.8). Molluscs tissues were removed from shells and weighed subsequently.

Water content was determined using WW and DW values from the growth measurements

(WWwW—DW)

at the end of the experiment expressed as: SWW = I



3.5.4 INORGANIC OSMOLYTES & TOTAL OSMOLALITY

Next, we measured the concentrations of nine inorganic ions, as well as the total osmolality
in body fluids and tissues. After non-invasive parameters were recorded, body fluids were
retrieved from the second set of samples (Fig. B.8, Tab. B.11). Body fluids were centrifuged
at 1000 rpm for 1 min. The supernatant was extracted and frozen in liquid nitrogen. Body
fluid samples of the same individuals were used for total osmolality, cation and anions anal-
ysis. Tissues were shortly immersed in iso-osmotic sucrose solution and flipped over once
to remove adherent seawater, blotted dry and snap-frozen in liquid nitrogen. The same
tissue material was used for anion, cation, total osmolality and metabolic profiling.
Commonly, concentrations for each anion are titrated separately [267, 316]. We, how-
ever, established a novel protocol for ion extraction from tissue samples - involving a suf-
ficient cleaning of proteins to measure anions in tissue extracts via ion chromatography.
Our method omits chemical precipitation of proteins which generates a noise that overlaps
with the targeted anion signals. If tissue extracts are measured without filters, proteins clog
the IC-column eventually leading to increased maintenance costs. As a novel technique,
we instead used a mechanical filtering step applying mini dialyzers which are usually used
for protein/DNA purification. These filters concentrate the protein fraction of a sample
extract via vertical membranes of a specific pore size (here 3K). Instead of keeping the pro-
tein fraction, we processed the filtrated (protein-free) fluid sample. We used reference stan-
dards (IAPSO Standard Seawater and Merck IC-multi element standard V) to verify that
the anion concentration in a fluid sample does not change via this technique and that no
additional signal was added. This is the first protocol to sustainably measure anions in fil-
tered tissue extracts via ion chromatography. This method replaces the need for separately

conducted measurements of anions via titration. It further allows for a shorter throughput
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time and could also be used via auto-analyzer.

For anion, cation and total osmolality analysis, soo mg powdered tissue samples were
used. Material of different individuals from the same tank was pooled if necessary. MilliQ
water was added in the smallest dilution possible (usually a 1:1 weight to volume ratio)
to retrieve a final sample volume of 400 - 500 pL. The sample was then homogenized in
a batch disperser (Ultra-Turrax, IKA, USA) attached to a VWR VDI 12 Homogenisator
(IKA, USA) for 6o s and extracts freeze-thawed three times. Afterwards, samples were cen-
trifuged (1500 g, 4°C, 5 min) and supernatants transferred to 3K dialyzers (Amicon Ultra
Centrifugal Filter Devices, Merck, Germany). Samples were centrifuged (14000 g, 4°C, 20
min). The eluent was retrieved and used for subsequent analysis. For ion chromatography
(Dionex ICS 2100, Thermo Fisher, Germany), fluid and tissue samples were diluted to a
final volume ratio of 1:25 for salinity treatments <15 and 1:50 for salinity >15. A conduc-
tivity cell and a self-regenerating suppressor were used to reduce background conductivity.
An IonPac AS11-HC column was used with potassium hydroxide (KOH) as eluent. We
achieved separation with an isocratic flow rate of 0.6 mL min-1 15 mM KOH at 40°C for
seawater and body fluid samples. For tissue samples, a ramp protocol was applied with 8
mM KOH increasing to 15 mM after 5.5 min with a flow rate of 0.5 ml min™'. Anion con-
centrations were computed in mM relative to an IC-multi element standard V (Merck,
Germany) containing the main anions fluoride, chloride, bromide, nitrate, sulfate and
phosphate.

Aliquots for cation and total osmolality measurements in tissue extracts and fluid sam-
ples were used in concentrated form. Total osmolality (osmol kg™') was determined with
a freeze-depression osmometer (Osmomat 030, Gonotec, Germany). Cations were deter-
mined via flame-photometry (EFOX 5053 Eppendorf, Germany) using urine standards.

Samples were measured in duplicates.
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3.5.5 ORGANIC OSMOLYTES

Metabolic profiling was conducted on the basis of Podbielski et al. [262]. Briefly, metabo-
lites were extracted from 200 mg of tissue (FW) by methanol extraction. The sample sus-
pension was concentrated at 30°C overnight and pellets subsequently re-suspended 1:1 in
deuterium oxide (D,O) containing 0.05% trimethylsilyl propioniate (TSP) (Sigma Aldrich,
St. Louis, USA) as internal standard. Untargeted metabolic profiling was conducted at
the Alfred-Wegener-Institute (Bremerhaven, Germany). One-dimensional 'H-NMR spec-
troscopy was performed on a wide-bore 400 MHz spectrometer (9.4 T WB with Advance
I HD electronics, Bruker-BioSpin GmbH, Germany) using a triple-tunable (*H, BC,
N) probe for 1.7 mm NMR tubes. A sample volume of 50 #L were used for NMR-
spectroscopy at room temperature. Each sample was measured four times using a standard
one-dimensional Carr—Purcell-Meiboom-Gill (cpmg) sequence with water suppression
from the Bruker pulse program library (cpmgprr). Parameters were as described in [307]
using a 5 us pulse for 90°. 32 scans were usually acquired resulting in a total acquisition
time of 4 min 35s. 128 number of scans were used in one sample from Psammechinus
milliaris in order to increase the signal to noise ratio. Spectra were processed with a Line
broadening factor of 0.3, followed by baseline-, shim-, phase-corrections and TSP calibra-
tion using the software Chenomx NMR suite 8.1 (Chenomx Inc., Canada). Afterwards
metabolites were identified by their chemical shifts using the Chenomx data base. Iden-
tification was confirmed by additional 2D "H-*C HSQC NMR recordings of individual
samples from the tissues of the respective species similar to [278]. After assignment, NMR
peak integrals were fitted manually to a specific compound and metabolite quantification
was based on the TSP standard concentration of 3.2 mM. Across species, we identified

and quantified 60 organic substances. All solutes that changed concentration in relation
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to salinity were regarded as osmolytes. We categorized them into minor, intermediate and
major osmolytes according to their contribution to the overall organic solute pool by <1%,

1-10% and >10%, respectively (Fig. ??).

3.5.6 STATISTICS

Statistical analysis was conducted with R (version 4.1.1). All parameters were correlated to
salinity and a model was fitted to the data. A range of models was tested for best fit using
AIC or R? and degrees of freedom. Amongst all significant models, we selected all models
with the lowest AIC+s5. Amongst those models we always chose the model with the fewest
number of parameters. If the selection of significant models only included linear models,
we chose the model based on R2. If the final model was linear, assumptions were tested. If
assumptions were flagged, the data set was examined manually. No model was fitted if no

salinity effect was found or the number of data points was too low.
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Fig. B.1 TorAL OSMOLALITY
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£ 10001 Sea stars
§ Sea anemones
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Figure B.1: Effect of salinity on total osmolality of tissues. Depicted is total osmolality in tissue extracts of the six study
organisms: mussels (blue, Mytilus edulis), snails (turquoise, Littorina littorea), green sea urchins (green, Strongylocentrotus
droebachiensis), sea stars (red, Asterias rubens), sea anemones (orange, Diadumene lineata) and shore sea urchins (purple,
Psammechinus milliaris). Total osmolality (mosm Lfl) is shown of the y-axis and salinity is depicted on the x-axis. Models
were chosen according to best fit and their predicted values are depicted by lines. A. rubens: Quadratic model (R2 =
0.4486, df = 2, 15, F-value = 6.1, p-value = 0.0115), D. lineata: 3-parametric logistic model (Residual S.E. = 115.01, DF =
17,b=-1.16,d = 871.90, e = 6.69), L. lineata: Linear model (R2 =0.9411, df = 1, 19, F-value = 303.7, p-value < 0.001),
M. edulis: Linear model (R2 =0.9793,df = 1, 19, F-value = 896.9, p-value < 0.001). No model is shown for shore and
green sea urchins, because there was no significant relationship. Confidence intervals (95%) are shown as shaded area.
Abbreviations: b = y-intercept, d = upper limit, e = steepness of increase as x.



F1G. B.2 ALL IDENTIFIED INORGANIC & ORGANIC COMPOUNDS, THEIR SALINITY
EFFECT AND PERCENTAGE OF THE ORGANIC OSMOLYTE POOL |
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Figure B.2: Map of all identified organic compounds, their salinity effect and percentage of the organic osmolyte pool
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Fic. B.3 ALL IDENTIFIED INORGANIC & ORGANIC COMPOUNDS, THEIR SALINITY
EFFECT AND PERCENTAGE OF THE ORGANIC OSMOLYTE POOL II
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Figure B.3: Map of all measured inorganic compounds, their salinity effect and percentage of the total inorganic com-
pound pool
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Fic. B.4 TISSUE WATER CONTENT OF SEA STAR ASTERIAS RUBENS ACCLIMATED TO
DIFFERENT SALINITY TREATMENTS FOR TWO AND FOUR WEEKS
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Figure B.4: Tissue water content of sea star Asterias rubens acclimated to different salinity treatments. Comparission

of a four week acclimation period (solid circles, n = 6) to two week acclimation period (open circles, n = 11). Two-week
acclimated animals were exposed to salinities of 11, 17 and 23. Four-week acclimated animals were exposed to seven
different salinity treatments (10, 11, 12, 13, 15, 18 and 23). Acclimation rate was 1 S day_l. After two weeks of ac-
climation to low salinity (11) an increase in water content was observed, whereas after four weeks water content de-
creased. All animals in the four-week acclimation at a salinity of 10 died. At a salinity of 11 animals lost body turgor. In
the two-week acclimation two individuals died at salinity 11, these animals also had a collapsed body turgor. Reference:
F. Melzner, F. Bauer, |. Podbielski (unpublished).
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ESTIMATION OF THE INTRACELLULAR INORGANIC POOL BY CALCULATING THE LIKELY
ECS FracTION ]

Tissue inorganic ion concentrations are slightly higher than intracellular values due to the
influence of the extracellular fluids. The ionic composition of the extracellular space (ECS)
in osmoconformers is nearly identical to that of seawater as opposed to the intracellular
space, that additionally contains organic osmolytes. Hence, tissue ion concentrations are
slightly higher than intracellular values due to the influence of the extracellular fluids. The
extracellular space can vary widely depending on species and tissue type (from 8-81% total
water content) and the number of studies is unfortunately low. It was, hence, not feasi-

ble to apply ECS literature values to calculate intracellular concentrations. Furthermore,
obtaining precise ECS estimates for our experimental species was beyond the scope of this
study. We therefore estimated likely ECS fractions for mussels, sea stars, green sea urchins
and snails. The most likely ECS fractions were determined by calculating the maximally
possible ECS fraction (before measured osmolyte tissue concentrations became negative).
In our study, the individuals that were used for ion determination were simultaneously
sampled for their body fluids (hemolymph or coelomic fluid), except for sea anemones
which were to small to extract coelenteron fluid. Echinoderms were drained of coelomic
fluid first and tissue sampled afterwards. Thus, mainly intersittial fluids remain in the mea-
sured tissues, reducing the ECS bias. For molluscs the minimum amount of hemolymph
extracted was added to the calculated ECS fraction. The formula for calculating ECS
adapted from Freel [93] is documented below (Eq.1). Estimation of intracellular inorganic
pool sizes with the most likely ECS-coefficients resulted in a maximum ECS volume of
50-60%, 10-20%, 20-30% and 45-55%in mussels, sea stars, green sea urchins and snails,
respectively.

(G- [Cy] X ECS
Eq(1) [C]) = “ ity —

[C;] = intracellular solute concentration in (mmol kg~! cell water), [C;] = tissue solute concentration (mmol
kg™! tissue water), [CyA = body fluid solute concentration (mmol L~! body fluid) and ECS = the extracellular
space of the tissue (kg kg ™! tissue water).
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F1G. B.5 ESTIMATION OF THE INTRACELLULAR INORGANIC POOL BY CALCULATING
THE LIKELY ECS FrRACTION II
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Figure B.5: Depicted is the total inorganic compound pool and the total organic osmolyte pool for A) mussels (blue,
M. edulis, B) snails (turquoise, L. lineata), C) green sea urchins (green, S. droebachiensis) and D) sea stars (red, A. rubens).
Concentration of the osmolyte pool is shown on the y-axis (mmol L~ cell or tissue water) and salinity is depicted on
the x-axis. Models correspond to the models depicted in Fig. 3.1 & Fig. 3.2. Their predicted values are depicted by
dashed lines. Confidence intervals (95%) are shown as shaded area. If no model is shown, there was no significant
model. The osmolyte concentrations were corrected for relative weight change due to increased tissue water content
with decreasing salinity. The inorganic pool is marked with triangles, the organic pool with circles. The calculation of the
intracellular inorganic osmolyte pool with the most likely fractions of extracellular space (ECS) is shown with a gradual
color scale for each species. The darker the colour, the lower the ECS volume. The darkest color shows the original
inorganic tissue data. Total organic osmolyte concentation of tissues in shown in black. The most likely ECS fractions
were determined by calculating the maximally possible ECS fraction (before measured osmolyte tissue concentrations
became negative).
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F1G. B.6 EXPERIMENTAL SET-UP & SAMPLING PROCEDURE ]

Figure B.6: This figure depicts a part of the climate chamber set up. Here tanks (10 L aquaria, filtered Balitc sea water
0.2 um) of sea anemones, snails and mussels are shown. Air saturation in experimental tanks was maintained above
80% with air diffusor stones that were placed in each experimental unit. Salinity treamtments were positioned ran-
domly. Prior to experiments animals were acclimated to climate chamber conditions.

182



F1G. B.7 EXPERIMENTAL SET-UP & SAMPLING PROCEDURE II
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Figure B.7: In total, six different species were studied and each species acclimated to seven salinity treatments, of those
four treamtents were clustered around the species lower salinity limit. Salinity was gradually adjusted. Experimental
exposure lasted four weeks. In total 168 tanks were mainted for a minimum of 6 weeks.

F1G. B.8§ EXPERIMENTAL SET-UP & SAMPLING PROCEDURE [II
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Figure B.8: Flow chart of sampling procedure and division of sampling material for the different measurement with

Osmometer

mussels as example.
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Table B.5: Concentration of inorganic solutes (mmol g*IWW) in tissue of the six study organisms

Species Salinity ~ Tank Individual Medium Bromide Chloride Fluoride Nitrate — Phosphate Sulfate  Calcium  Potassium Sodium
Asterias 11 C 1 Tissue 0.07 40.98 0.36 0.18 0.18 0.82 0.38 42.00 10.32
Asterias 11 D 1 Tissue o.15 79.51 0.38 0.16 4.14 2.28 0.61 63.36 29.76
Asterias 11 F 1 Tissue o.15 76.85 0.39 0.19 5.01 2.16 0.70 62.40 34.08
Asterias 12 A 3 Tissue 0.19 83.62 0.93 0.39 8.22 2.53 0.88 76.86 29.30
Asterias 12 B 1 Tissue 0.13 100.24 0.76 o.17 8.12 2.64 0.8s 87.89 42.84
Asterias 12 C 2 Tissue 0.09 72.42 0.56 0.22 4.80 2.23 0.76 49.77 33.08
Asterias 13 A 1 Tissue o.18 96.28 0.69 0.16 7.67 3.66 0.87 8o.10 37.20
Asterias 13 E 1 Tissue 0.17 98.73 0.60 0.22 5.84 2.82 0.76 67.80 39.20
Asterias 13 F 1 Tissue 0.20 95.89 0.74 0.29 9.18 4.00 1.06 73.80 36.20
Asterias 15 B 1 Tissue 0.16 105.49 1.12 0.44 6.73 3.47 0.73 73.93 31.71
Asterias 15 C 3 Tissue o.11 99.99 1.02 0.31 12.03 3.30 0.99 69.89 29.90
Asterias 15 D 2 Tissue o.11 103.01 .20 0.22 12.92 5.12 0.85 81.81 32.72
Asterias 18 A 1 Tissue o0.21 113.30 1.23 0.40 11.64 5.44 0.85 81.95 32.66
Asterias 18 C 2 Tissue 0.24 117.98 1.40 0.33 10.77 5.95 0.96 88.19 41.81
Asterias 18 D 2 Tissue 0.21 111.66 1.97 0.32 10.19 3.60 0.98 78.83 38.90
Asterias 23 C 1 Tissue o.15 95.13 1.52 0.26 6.17 3.90 0.72 57.80 39.20
Asterias 23 D 2 Tissue 0.35 206.51 2.55 0.23 13.07 7.68 1.59 127.50 96.30
Asterias 23 F 1 Tissue 0.26 140.29 1.37 0.33 12.75 4.81 1.40 83.40 58.80
Diadumene 7 AEF pooled Tissue 0.37 126.19 655 1.04 20.08 12.18 2.94 124.25 74.55
Diadumene 7 BCD pooled Tissue 0.27 118.71 7.55 0.53 20.37 11.67 2.81 116.46 77.81
Diadumene 8 ABF pooled Tissue 0.36 177.99 8.84 0.46 21.68 16.79 4.84 168.78 139.17
Diadumene 8 CDE pooled Tissue 0.46 220.65 11.24 o.58 25.83 17.98 5.13 162.86 137.19
Diadumene 9 ACE pooled  Tissue 0.19 77.84 3.64 0.23 11.00 6.98 1.93 66.95 52.79
Diadumene 9 BDF pooled Tissue 0.19 81.05 3.22 0.23 9.48 7.49 1.94 60.98 54.21
Diadumene 10 AD pooled Tissue o.12 49.28 1.76 o.12 431 4.11 1.07 32.48 29.70
Diadumene 10 E pooled Tissue 0.13 57.01 1.56 o.12 3.77 4.15 1.16 29.23 41.99
Diadumene 10 F pooled Tissue o.12 49.91 1.58 o.12 4.40 3.77 1.03 33.18 35.83
Diadumene 12 AB pooled Tissue 0.29 137.94 4.44 0.21 8.73 11.08 2.95 79.38 96.80
Diadumene 12 DE pooled Tissue 0.29 147.85 3.86 0.20 7.34 11.13 2.72 62.44 108.17
Diadumene 12 C pooled Tissue 0.28 129.62 4.35 0.22 9.54 11.67 2.23 77.92 90.99
Diadumene 15 A pooled Tissue 0.36 181.30 5.86 1.00 8.61 13.47 3.11 103.09 122.96
Diadumene 15 B pooled Tissue 0.42 216.44 4.18 0.39 8.89 14.78 4.18 79.49 170.15
Diadumene 15 C pooled Tissue .19 209.12 4.91 0.20 9.08 15.82 3.75 96.60 150.14
Diadumene 15 F pooled  Tissue 3.23 106.81 113.44
Diadumene 20 A pooled  Tissue 3.64 66.80 154.80
Diadumene 20 B pooled Tissue 0.41 197.11 4.17 0.37 7.92 13.87 3.39 68.40 154.50
Diadumene 20 C pooled Tissue 0.43 218.55 3.13 0.33 439 13.84 3.84 55.20 168.90
Diadumene 20 F pooled Tissue 0.27 209.46 3.38 0.24 5.27 14.01 3.87 66.00 151.80
Littorina 6 A pooled Tissue 0.00 52.41 6.76 3.62 5.00 4.47 1.89 66.41 28.42
Littorina 6 B pooled Tissue 0.00 33.43 7.06 3.64 3.79 3.82 2.81 62.19 24.20
Littorina 6 D pooled Tissue 0.00 34.41 7.52 3.07 6.36 4.14 2.14 59.38 26.17
Littorina 7 A pooled Tissue 0.00 33.37 5.77 3.33 2.24 3.83 2.70 53.63 26.11
Littorina 7 B pooled  Tissue 0.00 35.05 5.50 3.41 1.49 3.90 3.36 54.57 30.34
Littorina 7 E pooled Tissue 0.00 34.72 5.09 3.27 1.39 3.43 3.53 56.68 28.93
Littorina 8 B pooled Tissue 0.00 41.05 5.39 3.62 2.44 4.31 3.45 61.34 30.32
Littorina 8 D pooled Tissue 0.00 40.13 5.49 3.70 1.15 5.14 3.71 60.16 30.55
Littorina 8 F pooled Tissue 0.00 42.32 5.33 3.60 1.21 4.43 4.04 $8.52. 31.96
Littorina 9 A pooled Tissue 0.00 44.36 5.03 3.67 1.00 5.00 3.96 62.13 34.60
Littorina 9 B pooled Tissue 0.00 42.87 4.94 3.52 0.97 5.04 4.05 $8.27 34.37
Littorina 9 D pooled Tissue 0.00 44.34 5.36 3.70 1.04 5.13 4.01 60.54 34.14
Littorina 11 B pooled Tissue 0.00 51.99 5.21 3.59 0.86 4.74 4.49 62.52 42.80
Littorina 11 C pooled Tissue 0.00 52.04 4.98 3.56 0.83 6.06 3.99 65.88 42.38
Littorina 11 F pooled  Tissue 0.00 $3.29 4.50 3.41 0.71 5.43 3.92 6o.21 41.75
Littorina 14 A pooled Tissue 0.00 61.60 4.13 3.28 0.70 5.41 411 59.28 49.70
Littorina 14 C pooled Tissue 0.00 65.51 3.69 3.27 1.01 5.98 4.17 64.47 50.50
Littorina 14 E pooled Tissue 0.00 70.10 4.72 3.52 0.61 5.82 4.95 67.32 54.71
Littorina 19 B pooled Tissue 0.00 100.84 4.44 5.12 0.52 7.28 4.50 73.00 77-40
Littorina 19 E pooled Tissue 0.00 106.24 3.87 4.92 0.53 6.87 4.54 73.20 83.80
Littorina 19 F pooled Tissue 0.00 102.43 3.63 4.25 0.61 6.56 4.38 71.80 82.40
Mytilus s B 1 Tissue o.10 88.53 3.00 0.23 17.05 5.34 1.51 26.34 36.11
Mytilus 5 C 2 Tissue 0.21 83.37 2.74 0.45 15.58 4.88 1.42 30.19 34.04
Mytilus 5 D 2 Tissue o.18 71.69 2.19 0.34 14.13 4.89 112 27.53 31.38
Mytilus 6 B 3 Tissue o.15 73.51 2.49 0.66 21.02 5.03 1.37 35.56 31.64
Mytilus 6 D 3 Tissue o.12 72.20 2.12 0.43 18.86 5.17 1.20 35.56 31.64
Mytilus 6 F 2 Tissue 0.14 83.97 2.67 0.28 15.73 4.94 1.29 31.92 34.72
Mytilus 7 A 1 Tissue 0.18 76.80 2.43 0.36 13.78 4.55 1.48 29.70 40.45
Mytilus 7 D 2 Tissue 0.26 114.02 2.93 0.38 13.65 5.01 1.51 33.54 38.14
Mytilus 7 E 1 Tissue 0.25 96.23 2.63 0.38 14.67 5.85 1.36 35.33 33.28
Mytilus 8 C 1 Tissue 0.24 99.14 2.13 0.26 13.30 §.11 1.18 30.45 44.52
Mytilus 8 E 2 Tissue 0.26 90.30 1.96 0.35 12.73 4.65 1.26 26.25 39.27
Mytilus 8 F 1 Tissue 0.26 77.09 2.28 0.34 14.45 4.57 0.97 33.81 33.39
Mytilus 10 A 3 Tissue 0.29 110.35 2.43 0.32 14.37 5.35 1.17 41.36 50.38
Mytilus 10 D 1 Tissue 0.31 119.08 1.88 0.38 17.32 5.72 1.21 41.58 49.28
Mytilus 10 E 2 Tissue 0.33 127.44 2.28 0.32 15.98 5.96 1.56 38.06 65.12
Mytilus 13 A 3 Tissue 0.37 132.15 1.93 0.35 15.47 6.57 1.89 44.10 66.57
Mytilus 13 E 3 Tissue 0.40 142.02 3.60 0.39 16.61 7.85 1.64 47.25 68.25
Mytilus 13 F 3 Tissue 0.35 150.49 2.98 0.71 19.13 7.09 1.66 42.63 69.93
Mytilus 18 A 1 Tissue 0.46 172.35 1.99 0.56 16.42 8.40 2.08 49.20 84.00
Mytilus 18 B 1 Tissue 0.48 215.17 1.78 0.56 14.24 8.75 2.68 46.20 109.40
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Table B.5: Concentration of inorganic solutes (mmol g*IWW) in tissue of the six study organisms

Species Salinity ~ Tank Individual Medium Bromide Chloride Fluoride Nitrate — Phosphate Sulfate  Calcium  Potassium Sodium
Mytilus 18 C 1 Tissue 0.49 204.04 2.14 0.58 14.85 8.76 2.18 50.00 97.60
Psammechinus 15 BC pooled Tissue o.15 86.09 0.88 0.46 5.90 4.97 1.34 38.02 56.16
Psammechinus 16 ABC pooled Tissue 0.05 58.98 0.59 0.35 455 3.80 1.15 33.79 34.94
Psammechinus 17 ABC pooled Tissue 0.08 82.97 0.47 0.46 3.31 4.38 2.43 29.99 59.02
Psammechinus 18 ABC pooled Tissue 0.05 47.67 0.57 0.41 5.04 2.99 1.18 37.80 25.62
Psammechinus 20 AB pooled Tissue 0.03 35.28 0.72 0.43 3.59 1.94 0.85 23.85 21.73
Psammechinus 23 AB pooled Tissue 0.04 49.78 0.69 0.53 5.08 3.17 1.64 37.91 28.55
Psammechinus 28 ABC pooled Tissue 0.09 84.43 0.56 0.37 2.98 3.86 1.92 25.50 59.10
Strongylocentrotus 17 A 1 Tissue 0.09 91.42 1.20 0.39 13.74 8.20 1.13 85.50 45-49
Strongylocentrotus 17 B 1 Tissue o.11 92.66 0.86 0.45 8.05 12.92 1.37 77.98 56.77
Strongylocentrotus 17 C 1 Tissue 0.14 74.56 0.99 0.64 3.41 6.89 1.57 55.75 41.38
Strongylocentrotus 18 A 1 Tissue 0.12 88.89 1.04 0.56 6.65 11.82 1.08 109.89 55.62
Strongylocentroms 18 B 1 Tissue 0.10 93.80 0.99 0.49 8.42 13.00 1.17 90.72 51.84
Strongylocentrotus 19 A 1 Tissue o.I1 83.06 0.92 0.37 8.52 11.70 112 77.04 46.55
Strongylocentrotus 19 B 1 Tissue o.10 69.78 0.81 0.55 6.11 9.70 3.02 74.79 34.99
Strongylocentrotus 19 C 1 Tissue o.I1 78.23 0.94 0.44 8.70 8.16 1.61 82.02 42.89
Strongylocentrotus 20 A 1 Tissue 0.09 80.90 1.97 0.90 6.41 7.10 1.13 101.43 42.84
Strongylocentrotus 20 B 1 Tissue o.15 73.07 0.90 0.48 8.33 5.90 0.88 57.16 33.67
Strongylocentrotus 20 C 1 Tissue o.15 107.61 0.84 0.43 9.47 8.45 1.29 79.07 67.73
Strongylocentrotus 22 A 1 Tissue o.11 87.02 1.04 0.52 10.29 9.74 0.78 88.37 43.88
Strongylocentrotus 22 B 1 Tissue 0.17 101.1§ 1.14 0.50 12.68 7.63 1.32 81.58 50.26
Strongylocentrotus 22 C 1 Tissue 0.16 80.04 0.99 0.46 11.68 9.38 0.72 78.69 32.14
Strongylocentrotus 25 A 1 Tissue 0.16 90.35 0.93 0.36 12.44 6.29 0.76 76.80 43.20
Strongylocentrotus 25 B 1 Tissue 0.16 86.80 0.72 0.42 12.08 4.46 0.90 71.80 41.60
Strongylocentrotus 25 C 1 Tissue 0.16 79.78 0.94 0.37 10.43 7.06 0.86 69.60 40.00
Strongylocentrotus 30 A 1 Tissue 0.20 98.39 1.03 0.36 9.62 7.92 0.98 72.80 52.40
S[rongylocentro[us 30 B 1 Tissue 0.20 105.74 0.84 0.33 9.86 9.85 I.11 82.20 55.20
Strongylocentrotus 30 C T Tissue o.12 112.82 093 0.22 10.52 6.93 1.02 77.00 58.20
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Table B.12: Monitoring of physio-chemical water parameters

Parameters Monitoring frequency Mean SD Min Max Device
Salinity daily 0.2 WTW Cond 315i
Temperature ( C) weekly 14.5 0.3 13.7 15.8 WTW Cond 315i
pH weekly 8.23 o.15 7.79 10.1 WTW pH 3110 probe
Toxic end products: bi-weekly/weekly JBL quick tests
PO?.Jr 0.17 0.51 S
NO; 1.18 2.69 Is
NO, o.17 0.26 1
Table B.13: Monitoring of physio-chemical water parameters
Species Treatment Mean SD Min Max
Asterias rubens 10 10.05 0.10 9.9 10.3
11 11.05 0.1 10.9 11.4
12 12.07 0.16 11.9 12.7
13 13.07 0.17 12.9 13.8
15 15.04 0.10 14.9 15.3
18 18.07 0.49 17.8 23.1
23 23.05 0.13 22.8 23.6
Mytilus edulis 5 5.01 o.11 4.8 5.3
6 6.01 0.13 5.8 6.5
7 7.00 o.11 6.8 7.3
8 7.99 o.12 7.8 8.6
10 9.98 o.11 9.8 10.3
13 12.96 0.09 12.8 13.4
18 17.95 0.11 17.6 18.5
Littorina littorea 6 6.07 0.22 5.9 8.1
7 7.08 0.28 5.9 9.6
8 8.08 0.22 7.9 10.2,
9 9.07 0.26 8.9 12.1
11 11.04 0.26 10.9 14.1
14 14.06 0.17 13.5 15.8
19 19.02 0.17 17.5 19.9
Strongylocentrotus droebachiensis 17 17.11 0.21 17.00 18.30
18 18.12 0.22 17.90 19.10
19 19.13 0.20 19.00 20.20
20 20.11 0.19 19.90 21.10
22 22.11 0.19 21.90 23.10
25 25.11 0.21 24.60 26.10
30 30.02 0.14 29.00 30.20
Psammechinus milliaris 15 I5.12 0.22 15.00 16.20
16 16.11 0.20 15.90 17.10
17 17.10 0.19 17.00 18.10
18 18.12 0.41 17.90 20.20
20 20.14 0.39 19.80 22.20
23 23.19 0.72 22.90 28.10
28 28.00 0.57 23.00 28.30
Diadumene lineata 7 6.95 0.07 6.80 7.10
8 7.95 0.07 7.70 8.20
9 8.98 0.08 8.90 9.30
10 9.97 0.09 9.80 10.30
12 11.93 0.19 9.90 12.20
15 14.97 0.08 14.80 15.30
20 19.95 0.07 19.80 20.20
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ABSTRACT

ow salinity has been demonstrated to reduce fitness of organisms, due to energetic
Lexpense for cellular osmoregulation and stress response mechanisms. However, lit-
tle is known about transcriptomic responses enabling cellular acclimation to low salinity.
The Baltic blue mussel population is a hybrid-population, characterized by a Western Baltic
Mytilus edulis-like population living at high salinities and an Eastern Baltic population

with higher Mytilus trossulus allele-frequencies living at low salinities. In Aytlus sp. lar-
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vae higher M. trossulus allele-frequency is coupled with better low salinity tolerance and
suggests a phenotype-genotype association of salinity tolerance. We studied the population-
specific and conserved transcriptomic responses in Kiel (native salinity 16) and Usedom
(native salinity 7) populations acclimated to five different salinity treatments (4.5, 5, 6, 7
and 16) for four weeks. We found a larger number of differentially expressed genes in Kiel
mussels. Additionally, many of the genes upregulated in Kiel population were downreg-
ulated in Usedom mussels. The transcriptomic response to low salinity of Kiel mussels

was an upregulation of solute transport and amino acid metabolism, which is related to
cellular volume decrease. Transcripts involved in stress response, energy storage and lipid
metabolism were also upregulated, indicating that individuals were stressed by the low
salinity conditions and the costs of osmoregulation were compensated via catabolism of
energy stores. Our results demonstrated that gene expression of Usedom mussels was not
strongly affected by the low salinity treatments, whereas results indicated a clear stress re-
sponse and a selection for more tolerant individuals in the Kiel population under low salin-
ity stress. However, Usedom mussel mortality at the highest salinity treatment was equal
to that in low salinity, compared to a low mortality in Kiel mussels at their native salin-

ity. Thus, persistent low salinity has a severe effect on the transcriptomic response in the
low salinity susceptible Kiel population, whereas the low salinity tolerant Usedom mus-
sels show a significantly smaller number of differentially expressed genes. Furthermore,
these responses are not just upregulated under acute osmotic shock, but are persistent after
long-term (four weeks) acclimation to low salinity stress in Kiel mussels. In the future, Kiel
mussels will likely experience stress under reduced salinities, which will cause an upregula-
tion of cellular volume regulatory processes which in turn will increase the energy demand

and lead to energetic trade-offs.
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4.1 INTRODUCTION

nvironmental stress affects biogeography of marine organisms. The physiological ca-
Epacity towards extreme environmental conditions determines the fundamental niche
of organisms [325]. The fundamental niche together with biological interactions then de-
fines species distribution boundaries [329].

Salinity is an important stressor in the marine environment. Unlike other well studied
abiotic factors such as temperature or carbon-dioxide, less is known about how salinity im-
pacts the physiological capacity of species [263]. Salinity stress can, however, have severe
impacts on physiological functions such as respiration, feeding, heart rate, fertilization and
strongly reduce an organisms fitness [111, 262, 331] and in turn lead to geographic range
shifts. While small changes in salinity can lead to an increased metabolic rate to cover ris-
ing energetic costs of osmoregulation and ensure cellular homeostasis [120], prolonged
severe osmotic stress can cause fundamental changes in metabolic processes and immune
responses that ultimately lead to cell death [111, 306].

Brackish species already living at their tolerance limits could be severely impacted by
changing salinity. Thus, the ability to acclimate and adapt to osmotic changes in their envi-
ronment will be crucial for marine organisms in the future.

While the negative effects of salinity stress on marine organisms are universally acknowl-
edged and more climate change scenarios emerge that predict salinity changes in aquatic
regions, little is known about the cell physiological mechanisms that shape the resilience to
low salinity conditions. There are two universal techniques of aquatic organisms to adapt
to their ambient osmotic conditions.

Osmoregulators, such as fish and mammals, can keep the osmolality of their body fluids

constant, independent of the environmental conditions. Osmoconformers on the other
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hand, have body fluids that are nearly isoosmotic to the ambient salinity [395]. Osmo-
conformers are thus strongly affected by salinity changes [23]. To avoid cell damage from
passive swelling or shrinking, osmoconformers undertake active cellular volume regulation
to maintain a relative constant cell volume utilizing inorganic or organic solutes, so called
osmolytes [250, 263, 264, 300, 360]. Under hypoosmotic stress, cells release or catabo-
lize osmotically active solutes [354]. These substances are taken-up again or re-synthesized
when salinity increases [398]. The first response to hypoosmotic shock usually involves an
immediate change in intracellular ion concentration. This is followed by a more gradual
modification of organic osmolyte concentrations during longer-term acclimation to low
salinity [324, 365].

In the course of climate change, salinity stress is projected to increase around the world,
which will have severe impacts on marine organisms. Overall precipitation has been shown
to increase in the northern hemisphere since 1951 [1, 207]. Generally, regions with low
salinity will very likely become less saline, whereas regions with high salinity will become
more saline. Higher precipitation, extreme rain events, melt water and increased surface
run-off in certain regions will lead to a decrease in salinity of marine habitats and increase
environmental stress on local species [218, 219, 327, 357]. Decreases in ambient salinity
have been observed in tropical coral reefs as well as in polar regions. These occurrences are
predicted to increase in magnitude or frequency in the future [27, 228, 369], impacting the
structure, health and recruitment of benthic communities [57, 113, 221, 310]. The Baltic
Sea, characterized by a strong salinity gradient that defines the aquatic fauna, is another
example for a region that will likely experience desalination in the future [107, 147, 209,
283].

Thus, if intense long-term habitat salinity changes occur that bring species to their toler-

ance limits, these will be forced to either acclimate, adapt or migrate (and suffer from local
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extinction). However, phenotypic plasticity may not only enable a species to tolerate ex-
treme conditions, but also induce fitness costs that hinder evolution of plasticity [81]. It
is assumed that, once a critical cost is reached plasticity has no further positive impact on
range extension [81].

Mytilid mussels are important foundation species in many temperate benthic ecosys-
tems and play ecologically and economically important roles. The Mytilid species (A yzzlus
edulis, Mytilus trossulus and Mytilus galloprovincialis) are known to readily hybridize when
occurring sympatrically, thus creating the so-called Mytilus species complex [361]. The
Baltic Mytilus sp. population is located in such a hybrid zone (Fig.4.1). Extraordinarily,
this population is exclusively comprised of hybrid populations. Along the salinity gradient
we find a high frequency of M. edulis-like alleles, whereas at low salinities there is an in-
crease in M. trossolus-like alleles [286] (Fig.4.1). In the Baltic Sea, the euryhaline M. edulis x
trossulus forms large mussel reefs and is estimated to account for a 90% dry weight of animal
biomass in some regions of the Baltic Sea [142].

The American M. trossolus is less tolerant to low salinity, but inhabits more wave ex-
posed niches compared to M. edulis. Additionally, the M. edulis x trossulus hybrid zone on
the American Atlantic coast is quite different in patterns of gene introgression and niches
occupied [285]. Pure M. edulis and M. trossolus individuals are abundant along the Amer-
ican coast [285]. On the other hand, there has been complete asymmetric introgression of
the female mtDNA of M. edulis into the Baltic Sea population so that no pure M. trossulus
individuals can be found.

Future salinity changes will likely impact Baltic Sea blue mussel populations, yet the
consequences and potential for acclimation and rapid adaptation remain unclear. With the
projected changes in salinity of the Baltic Sea, Mytilus sp. could lose >100 km? of habitat

leading to a massive shift in species distribution and community composition [264, 296,
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Figure 4.1: Salinity gradient in the Baltic Sea, distribution of Baltic Mytilus sp. allele frequencies and sampling locali-
ties. A: Sampling localities for the population comparison experiment (Kiel, KIE; Usedom, USE) and the salinity gradient
(Graph modified from Kndbel et al. [152]). B: Graph showing the hybrid index and salinity gradient along the geographi-
cal distribution of the sample locations (from Sanders [296]). C: Distribution of hybrid classes expressed as QMT values,
i.e., assignment of individuals to genetic clusters based on Bayesian analyses using STRUCTURE software for the two
populations used for RNAseq analaysis (Kiel & Usedom) [85]. Median QMT values are indicated by red diamonds. Salin-
ity is given for each locality according to hydrodynamic mode data obtained from Stuckas et al. [337]) (Graph modified

from Knébel et al. [152]).
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367]. Baltic blue mussels can colonize habitats with far lower salinities compared to other
Mytilus congeners.

Salinity has been shown to act as a selective pressure on larvae driving local adaption
to low salinity in Baltic mussel populations [152]. Translocation experiments of Baltic
and North Sea Mytilus mussels found differences in physiology and genetic composition
between the two populations even after one year acclimation that indicate differential se-
lection [136, 345]. Mytilus-hybrid zones are therefore most suitable to study basic mech-
anisms of interspecific hybridization, as well as the adaption potential towards changing
environmental conditions [151, 337].

This study investigated the transcriptomic response of Mytilus sp. populations from the
Baltic Sea to low salinity stress. We compared the transcriptomic response of two locally
adapted populations in order to assess population-specific responses to hypoosmotic stress
and gain a better understanding of the active cellular mechanisms involved in osmoregula-
tion. We sequenced mantle tissue transcriptomes to test for differential gene expression in
M. edulis-like mussels from Kiel (Salinity 16) and M. trossulus-like mussels from Usedom
(Salinity 7) acclimated to salinities of 4.5, 5, 6,7 and 16 for four weeks.

Our comparative transcriptomic approach is a companion study to an osmolyte analysis
measuring organic osmolytes, cations and survival of these two populations in response to
salinity [296]. The companion study discovered that the organic osmolyte pool was overall
smaller in Usedom mussels than in Kiel mussels, whereas the cation pool was larger. Use-
dom mussels were more tolerant to low salinities. In fact, the mortality rate in Usedom
mussels was unchanged by salinity, but overall at ~ 20%. In Kiel mussels, mortality in-
creased with salinity (Fig. 4.2).

This study addresses uncertainties regarding the genetic regulatory mechanisms of cellu-

lar volume regulation under current and future hypoosmotic stress. Adding transcriptomic

208



100 A

80

q
L 601
[o)
£ (ONO©)
>
®
+ 404 @)
[}
2 q
(]
@
20+
C $
0l
4550 60 7.0 16.0

Salinity
Figure 4.2: Total mortality rates per tank after the termination of the experiment expressed as a percentage of the initial
number of animals per tank. The Kiel populations is depicted in blue, the Usedom population in red. All replicates (n = 4)
are shown in circles, solid points represent the mean. Error bars represent standard deviation. Data from Sanders [296].
data to existing physiological data is a powerful approach, because it allows us to determine
whether the observed phenotypic differences are mirrored by the gene expression data. We
hypothesize that, in accordance with their phenotypic differences in salinity tolerance, de-

rived from mortality and osmolyte data of the companion study, Myzzlus sp. populations

will exhibit divergent transcriptomic responses under low salinity:

i Atlow salinity mussels will upregulate processes involved in cellular volume decrease

(i.e. reduction of osmolyte concentrations via release or degradation).
i Stress response in Kiel population will be enriched at low salinities.

iii Usedom mussels will have less changes in gene regulation than Kiel mussels at low

salinities.

iv Severely stressed organisms will show an enrichment in gene expression of stress re-
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sponse genes (i.e. heat-shock proteins) and pathways involved in apoptosis.

4.2  MATERIAL AND METHODS

4.2.1 STUDY ORGANISMS AND EXPERIMENTAL DESIGN

dult M. edulis x trossulus mussels (shell length 31 & 3mm) were collected for com-
Amon garden experiments from Kiel Fjord (54° 19’ 48.846” N, 10° 8’ 59.6436” E) and
Usedom island (54° 3’ 20.5668” N, 14° 0’ 40.0572” E) in September 2016 (Fig.4.1). The
populations are characterized by their differences in habitat salinity with an average habitat
salinity of 16 and 7, for Kiel and Usedom mussels, respectively. Kiel mytilids are AMytzlus-
hybrids with high M. edulis-like allele frequencies, where as in Usedom mytilids high A1.
trossolus-like allele frequencies predominate [337] (Fig.4.1). Mussels were transported to
the climate chambers of GEOMAR as quickly as possible in temperature controlled, aer-
ated cooling boxes. Mussels were allowed to acclimatize to climate chamber conditions
(10°C) for 2 weeks. Organisms were kept in 20 L aerated aquaria with filtered natural Baltic
Sea water (collected from Kiel Bight) at their native salinities. Water changes were made ev-
ery 2 days. Physiochemical water parameters (temperature, salinity, pH) were monitored
frequently. Mussels were fed with Rbhodomonas balthica (15000 cells mL™") twice a day.
Mortality was monitored daily. The experimental design consisted of two mussel popula-
tions acclimated to s salinity levels with four replicates per treatment level. Treatment levels
were 4.5, 5, 6,7 and 16, representing the natural salinity gradient from the Western Baltic
Sea to their physiological tolerance limit. Each experimental unit was gradually acclimatized
to their final salinity at a rate of 2-3 day ™. Experimental animals were acclimated to the
different salinity treatments for four weeks and mortality monitored with subsequent os-

molyte analysis (published in companion paper [296]. A total of 13 mussels were cultivated
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per 10 L tank. Inner mantle samples (the central portion of the mantle closest to the inner
shell surface) from one mussel per tank were dissected and quickly rinsed in isoosmotic so-
lution to remove seawater and afterwards blotted dry. Tissue samples were weighed and

frozen until further analysis.

4.2.2  RNA EXTRACTION AND SEQUENCING

Frozen mantle tissues of one animal per replicate M. edulis x trossolus were ground in liquid
nitrogen. Total RNA was extracted from mantle tissues using the Qiagen RNA extrac-
tion kit (Qiagen, Germany). RNA yield and purity were assessed determining A260/A230
and A260/A280 ratios with a NanoDrop spectrophotometer (NanoDrop 2000, Thermo
Scientific). A bioanalyzer was used to observe the integrity of extracted RNA (Experion,
Bio-Rad). The mRNA was purified and cDNA synthesized using the TruSeq stranded
mRNA HT sample preparation kit (Illumina, USA) according to manufacturer’s instruc-
tions. The quality and quantity of the resulting cDNA libraries were validated with a bio-
analyzer (LabChip GX, Perkin Elmer, USA). Equal molar pooled libraries were sequenced
on an Illumina NextSeqsoo sequencer to generate 75 bp single end reads. Illumina BCL
files were converted to fastq files and de-multiplexed using bcl2fastq (v2.17; Illumina) using

default settings.

4.2.3 DATA PROCESSING

All bioinformatics analyses were carried out using default parameters, unless otherwise
specified. After completing sequencing, data were retrieved and checked for quality. Se-
quence quality was checked using FastQC v.o.11.9 (Babraham Bioinformatics). Data were
trimmed using cutadapt v.3.3 [201]. This includes the removal of sequencing adapters

and the removal of low-quality bases by setting the phred-score to 30. Results were then



controlled by running a second quality control. We use a previously published, filtered
transcriptome of adult mantle tissue of a Baltic Sea M. edulis-like population from Kiel
Fjord for mapping reads [276] (PRJNA494236), collected from the same geographic co-
ordinates as the Kiel population animals in this study. The cleaned reads were mapped

to the Baltic M. edulis-like transcriptome using Bowtie2 v2.4.2 [176]. Because there was

a large number of duplicates, data were deduplicated using Picard tools v.2.25.3 (http:
//broadinstitute.github.io/picard/). All duplicate reads were removed. The transcript
abundance was quantified using RSEM (RNA-Seq by Expectation-Maximization) v.1.3.3
[185], using the transcript-to-gene-map option, obtaining read counts at the gene level.
Mapping statistics were acquired with samtools v.1.12 [186]. Genes with raw count values
< 10 were excluded from downstream analyses.

Contigs from the mantle transcriptome were annotated with Trinotate v.3.2.1 (https:
//trinotate.github.io/). TransDecoder v.5.5.0 was used to identify protein-coding se-
quences within the transcriptome. Sequence similarity searches of the transcript sequences
were performed using Basic Local Alignment Search Tool (BLAST) v2.10.1+ [4] with an
E-value cut-off of 1e—5 against the SwissProt database and using hmmer [89] to search the
Pfam-A database [271] (downloaded 07.2021). hmmer v.3.3.2, signalp v.5.ob [247] and
tmmhmm v.2.0c [159] were used to identify protein families, proteins containing signal

peptides and transmembrane domains.

4.2.4 DATA ANALYSIS

Differential gene expression analysis was conducted in R v.4.1.1 (R Core Team, 202.1) us-
ing the DEseq2 package v.1.32.0 [192]. We tested for differential gene expression using the
model factors 7salinity” (levels: 4.5, 5, 6, 7 with 16 as reference level), “population” (lev-

els = Usedom with Kiel as reference) and an interaction factor, resulting in 13 contrasts



(model design = ~ population + salinity + population:salinity). DEseq2 uses the so-called
Benjamini-Hochberg (BH) adjustment with an alpha = o.01 to correct for multiple testing,
this method calculates for each gene an adjusted p-value. We assessed overall patterns of the
expression data by plotting a two-dimensional principal component analysis (PCA) using
the plotPCA function in deseqz, which analyses soo genes with the highest variance across
samples. Count data for PCA were transformed with variance stabilizing transformation
with blind dispersion set to false. Transcripts that increased or decreased in response to low
salinity were identified using the contrast of low salinity treatment vs. 16 for the more tol-
erant (Usedom) and less tolerant (Kiel) population. Salinity tolerance was derived from

the mortality results of the companion study [296] (Fig. 4.2). Secondly, the interaction ef-
fects identified transcripts that differed in abundance in response to salinity by population.
Transcripts with an adjusted p-value of 0.05 were considered significantly differentially ex-
pressed. Additionally, normalized expression data of genes of interest were visualized. Data
were visualized using pheatmap v.1.0.12, ggvenn v.0.1.9 and ggplot2 v.3.3.5 [378] pack-
ages in R for expression pattern heatmaps, Venn diagrams and all other plots respectively.
We performed a rank-based gene ontology (GO) analysis with ermine] v.3.1.2 [13] and
GO_MWU (https://github.com/z0on/GO_MWU) as described in [388] on the DEseq con-
trasts to identify GO categories that were significantly enriched by up- or downregulated

genes under low salinity stress.

4.3 RESULTS

4.3.1 RNA SEQUENCING/ TRANSCRIPTOMIC DATA

The RNA sequencing resulted in an average of raw reads 12, 219, 495 £ 4, 418, 337 (all

values are given as mean =+ standard deviation). Phred scores were above 30. After
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quality filtering and deduplication 6, 372,187 £ 2,120, 728 reads remained (Tab. C.1).
The reads matched 25, 631 &= 792 contigs (Reference transcriptome: 29,177 contigs, [402],
PRJNA494236). Mapping rate was 26.05% = 3.49 when mapped to a reference tran-
scriptome from mantle tissue of M. edulis-like Kiel population. We found no significant
difference between mapping rate for Kiel (24.89% =+ 3.72) and Usedom (27.01% =+ 3.05)
mussels (t-value = -1.77, df = 36.57, p-value = 0.08; assumptions of normal distribution
and homogeneity of variances were met). Annotation was conducted for the M. edulis-like
reference mantle transcriptome. 46.86% of all contigs were annotated using Blastx, 40.86%

were annotated by hmmer with an overlap of 37.91% (Tab. C.2).

4.3.2 GENERAL PATTERNS OF TRANSCRIPTOMIC CHANGE

Gene expression data were first assessed using PCA to determine variation among samples
(Fig. 4.3). The PCA plot shows two separate clusters for the Kiel and Usedom mussels and
indicates that population was the dominant source of variation (PCr: 32% variance), which
is consistent with the known differences in allele-frequencies. Salinity explained another
large part of transcriptomic change (PC2: 21% variance) (Fig. 4.3). In the Kiel mussels,
higher salinities 7 and 16 were more closely clustered compared to the low salinity treat-
ments 4.5, 5 and 6. In Usedom mussels, all salinity treatments were more dispersed and
overlapped, indicating larger variation in the individual gene expression response to low

salinity. Only the lowest salinity 4.5 treatment was located slightly apart from the others.

4.3.3 DIFFERENTIAL GENE EXPRESSION

We used the R package DEseq2 to analyze differential gene expression by conducting pair-
wise comparisons between low salinity treatments and control group for each population.

These significant changes were compiled for each contrast and separated for up- and down-
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Figure 4.3: Principle components analysis for the RNA-seq data. Blue and red colours represent the Kiel and Usedom
populations, respectively. The color gradient depicts the salinity treatments, with lighter shades representing low salinity
and darker shades high salinity treatments (4.5, 5, 6, 7 and 16).

regulation (Tab. 4.1). In total, we found 4091 genes differentially expressed between the
two mussel populations without considering salinity effects. Overall, 3491 transcripts (12%
of all contigs) underwent significant changes in abundance in response to low salinity in
both populations. At moderate salinity stress (salinity 7 vs. 16), 326 genes were differen-
tially expressed in the Kiel population. This number increased under low salinity stress
(salinity 4.5 vs 16), where we identified 1398 differentially expressed genes in Kiel mussels
(Fig. 4.4). There was a clear trend of an increase in abundance of transcripts with decrease
of salinity for both up- and downregulated genes, however, the abundance of upregulated
genes was almost two-fold higher (Fig. 4.4). Of the 1398 transcripts differentially regulated
at extreme salinity stress (salinity 4.5 vs 16) in Kiel mussels, 844 were upregulated and 554
downregulated. Overall, 101 transcripts changed significantly in abundance under low

salinity stress in all treatments in the Kiel population (Fig. 4.5), of these 70 were annotated.
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genes for the interaction and D) the significantly downregulated genes for the interaction.

In the tolerant Usedom mussels, the total number of differentially expressed genes was

smaller than in Kiel mussels (Fig. 4.4). The number of DEGs was highest at moderate salin-

ity stress (salinity 7) with 173 genes, and 115 under extreme stress (salinity 4.5). There was

no overall increasing trend in number of DEGs (Fig. 4.4). The trend was similar for up-

and downregulated genes. Of the transcripts that were differentially regulated at extremely

low salinity, 53 were upregulated in Usedom mussels and 62 downregulated. Only 5 genes

were differentially expressed across all low salinity treatments in Usedom mussels, none of

these genes was annotated (Fig. 4.5).

Table 4.1: Number of significantly differentially expressed genes by contrasts

Total Annotated
Comparison Total Up Down | Annotated Up Down
Kiel vs. Usedom Population 4091 1671 2420 ‘ 1445 874 571
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Table 4.1: Number of significantly differentially expressed genes by contrasts

Total Annotated
Comparison Total Up Down | Annotated Up Down
Kiel - Salinity treatment
4.5 Vs. 16 1398 844 554 814 536 278
5 Vs. 16 764 475 289 502 360 142
6vs. 16 847 463 384 579 350 229
7Vs. 16 326 233 93 238 163 75
Usedom - Salinity treatment
4.5 vs. 16 115 53 62 49 12 37
5 Vs. 16 28 19 9 8 2 6
6vs. 16 73 29 44 25 I 24
7vs. 16 173 102 71 48 23 25
Interaction Population x Salinity
4.5 vs. 16 Use 4.5 1189 6383 506 717 340 337
5 vs. 16 Use s 301 210 91 158 118 40
6vs. 16 Use 6 203 138 65 88 40 48
7vs. 16 Use 7 396 266 130 132 83 49

SHARED RESPONSES TO LOW SALINITY STRESS

We plotted the log-fold change (LFC) of common genes that were differentially expressed
in both populations for the most extreme contrast (4.5 vs. 16, n = 49) and the onset of
salinity stress (7 vs. 16, n = 39) (Fig. 4.6 & Fig. 4.7). Moreover, the outlier transcripts with
very high or low LFC were not annotated. The salinity response at low and moderate stress
was regulated in the same direction, but the slope for the most extreme contrast was nearly
on the 1:1 line, whereas the under moderate salinity stress the slope is smaller, indicating
that transcripts of Usedom mussels are more highly regulated compared to Kiel mussels
(Fig. 4.7). All common genes correlated negatively between Kiel and Usedom mussels (i.e.
upregulated genes in Kiel population were down regulated in the Usedom population and
vice versa). Hence, the shared differentially expressed genes (n = 49) in Kiel and Usedom

mussels did not indicate a conserved response to extremely low salinity (4.5) across popula-
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tions, since commonly significant DEGs were regulated in opposite directions (Fig.4.5).

20 of the commonly differentially expressed transcripts (at salinity contrast 4.5 vs. 16)
were annotated. The upregulated genes in Kiel mussels (downregulated -Usedom) (n = 13)
included: negative regulation of apoptosis and stress response (Hypoxia up-regulated pro-
tein 1 (HYOUTr), DNA-(apurinic or apyrimidinic site) endonuclease (4PEXT)), genes in-
volved in lipid metabolism and homeostasis (3-keto-steroid reductase/ 17-beta-hydroxysteroid
dehydrogenase 7 (HSD17B7), Coatomer subunit gamma-1 (COPGTr), Polypeptide N-
acetylgalactosaminyltransferase 2 (GALNT2)) and genes involved in transcription and
cell cycle (Serine/arginine-rich splicing factor 4 (SRSF4), PR domain zinc finger protein s
(PRDAMy5), Spindle assembly abnormal protein 6 homolog (S4556)). Amongst the down-
regulated genes in Kiel mussels (upregulated - Usedom) (n = 7) were: immune response
genes (Protein unc-79 homologs (UNC93.4, UNC79)), a DNA stress response gene (Repli-
cation stress response regulator (SDEz)), a gene regulating energy expenditure and body

mass (Arrestin domain-containing protein 3 (4RRDC3), a glucose transporter (Solute

carrier family 2, facilitated glucose transporter member 3 (SLC243)) and a phospholipid-
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Figure 4.6: Differentially expressed genes between low and high salinity (4.5 vs. 16) in Kiel and Usedom population. A)
Venn Diagram showing the number of differentially expressed genes detected during analysis based on within-location
salinity response. Blue and red colors represent the Kiel and Usedom population, respectively. B) Scatterplot of the
log2 fold changes in gene expression in response to salinity stress in the Kiel vs. Usedom mussels for the 1349 genes
that were unique to the Kiel low salinity vs. control comparison (4.5 vs. 16). C) Scatterplot of the log2 fold changes

in gene expression in response to salinity stress in the Kiel vs. Usedom mussels for the 49 genes that were commonly
differentially expressed in both populations in the low salinity vs. control comparison (4.5 vs. 16). Each circle repre-
sents an individual contig. The line represents one-to-one log2fold change. Dots above the line had a larger magnitude
log2fold change in the more tolerant Usedom population compared to the susceptible Kiel population under extreme
salinity stress. The negative correlation indicates that upregulated genes in the Kiel population are downregulated in the
Usedom population and vice versa.
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transporting ATPase (4BCA1).

Only 11 of the 39 differentially expressed genes common in both populations at con-
trast of salinity 7 vs. 16 were annotated (Fig. 4.7). Again, the relationship between Kiel and
Usedom gene expression was negatively correlated. Amongst the upregulated genes in Kiel
mussels were: calmodulin mediating control of ion channels and other enzymes (Calmod-
ulin (CALAM)), genes indicating stress response and involved in apoptosis (Galectin-8
(LGALSS), Embryonic polarity protein dorsal (d/)), genes involved in diverse metabolic
pathways such as protein catabolism (Ubiquitin-protein ligase E3 A (UBE3.4)), glycogen
metabolism (Serine/threonine-protein phosphatase PP1-beta catalytic subunit (PPP1 CB))
and lipid synthesis (Acyl-CoA 6-desaturase (F4DSz)). Only two genes were significantly
downregulated in Kiel mussels (i.e. upregulated in Usedom mussels). First, the arrestin
domain-containing protein 3 (ARRDC3) which was also differentially expressed under ex-
treme salinity stress but at 3 5% higher LFC rate. Secondly, a gene responsive to oxidative
stress that acts as cell death activator (CHRB).

Given indications that gene expression was stimulated in susceptible Kiel mussels dur-
ing low salinity exposure, we sought to identify unique transcripts increasing in abundance
as a result of greater transcription and translation (n = 1349, annotated = 749) and com-
pare the log-fold changes in Kiel mussels vs. more salinity tolerant Usedom mussels (Fig.
4.6). To do so, we isolated 30 transcripts undergoing the lowest and highest fold change in-
crease (range = -21.13 — -2.06-fold, 3.34 — 5.3 5-fold) during low salinity exposure (Tab.
4.2& Tab. 4.3). We presumed that the transcripts with the largest increases in abundance
in the Kiel mussels under extreme salinity stress yield key indicators of the cellular stress
response. Amongst the upregulated response to low salinity were genes involved in amine
metabolism (hydroxylases (7BH 1) and aminopeptidases (LPQL)), stress response (sev-

eral heat shock proteins: HSP68, HSP70Bz, HSPA4, Mitochondrial uncoupling protein
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Figure 4.7: Differentially expressed genes between moderate low and high salinity (7 vs. 16) in Kiel and Usedom pop-
ulation. A) Venn Diagramm showing the number of differentially expressed genes detected during analysis based on
within-location salinity response. Blue and red colors represent the Kiel and Usedom population, respectively. B) Scat-
terplot of the log2 fold changes in gene expression in response to salinity stress in the Kiel vs. Usedom mussels for the
287 genes that were unique to the Kiel moderate low salinity vs. control comparison (7 vs. 16). C) Scatterplot of the
log2 fold changes in gene expression in response to salinity stress in the Kiel vs. Usedom mussels for the 39 genes that
were commonly differentially expressed in both populations in the moderate low salinity vs. control comparison (7 vs.
16). Each circle represents an individual contig. The line represents one-to-one log2fold change. Dots above the line
had a larger magnitude log2fold change in the more tolerant Usedom population compared to the susceptible Kiel popu-
lation under extreme salinity stress. The negative correlation indicates that upregulated genes in the Kiel population are
downregulated in the Usedom population and vice versa.
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2 (SLC25.A8), WAP four-disulfide core domain protein 18 (WFDC1§)), ion transport
(Sodium-independent sulfate anion transporter (SLCz6411)), organic solute transport (or-
ganic anion transporter (SLCO4A4 1), Sodium- and chloride-dependent glycine transporter
(SLC6Ay5)), water transmembrane transporter (SLCs.A1), Phospholipid-transporting AT-
Pase (ABCA ), septate junction assembly (CNTN), calmodulin mediated control of ion
channels and other enzymes (CALAM), biomineralization (TEMPT'), ion homeostasis &
myelination (HEXB) (Tab. 4.2). Notable downregulated genes were involved in solute
transport for inorganic ions, organic ions or energy substrates (SLC6A4 s, Organic cation
transporter (ORCT'), glucose transporter (SLCz.Az), Proton myo-inositol cotransporter
(SLCzA13), ligand-gated ion channels (ligand-gated sodium channel (4S7Cz), glutamate-
gated calcium ion channel (GRIN2B)), calmodulin (CALAM), metabolism of carbohy-
drates (B3GAT1, B3 GAT3), metabolism of amino acids (XPNPEP1, SULT1Br), acid-

base balance (Carbonic anhydrase-related protein (C4¢)), immune response & apoptosis
(MAP3K14, HERCs5, ADAMTS7, DEPTOR, CHRB), protein stability (A DGR V). Oth-

ers were involved in RNA regulation, signaling pathways and processing (Tab. 4.3).

Table 4.2: Top 30 up-regulated genes uniquely differentially expressed in the Kiel population at low salinity (4.5) and the
significant changes in log-fold change compared to control conditions (16) for Kiel and Usedom mussels

Gene name Gene e-value GOid Kiel Use
symbol LFC LFC
1 Temptin TEMPT  3.44E-26 GO:0005576 5.35 -1.T0
2 Tyramine beta-hydroxylase TBH1 6.31E-15 GO:0005615 4.96 0.01
3 Putative tyrosinase-like protein tyr-3 TYR3 1.35E-57 GO:0046872 4.69 -3.14
4 Mitochondrial uncoupling protein 2 UCP2 3.00E-97 GO:oo16021 4.63 -2.38
s Laccase-4 LAC4 2.06E-62 GO:0005576 4.54 -3.73
6 Tyramine beta-hydroxylase TBH1 2.32E-17 GO:0005615 4.46 0.29
7 Tyramine beta-hydroxylase TBH1 1.97E-40 GO:0005615 4.43 0.32
8  Temptin TEMPT  4.14E-27 GO:0005576 4.43 0.49
9  Contactin CONT 7.06E-147  GO:0031225 4.41 -0.35
10 Calmodulin CALM 2.54E-31 GO:0005509 4.27 -4.04
11 Patched domain-containing protein 3 PTHD3  2.80E-114 GO:oo16021 4.24 -3.27
12 MAM and LDL-receptor class A MLRP2  7.87E-61 GO:0005576 4.21 -1.03

domain-containing protein 2
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Table 4.2: Top 30 up-regulated genes uniquely differentially expressed in the Kiel population at low salinity (4.5) and the
significant changes in log-fold change compared to control conditions (16) for Kiel and Usedom mussels

Gene name Gene e-value GOid Kiel Use
symbol LFC LFC
13 Probable lipoprotein aminopeptidase LPQL 4.34E-07 GO:0005576 4.14 -2.44
LpqL
14 Solute carrier organic anion transporter SO4A1x 1.37E-90 GO:0005887 4.10 -1.17
family member 4A1
15 Beta-hexosaminidase subunit beta HEXB 4.57E-52 GO:0001669 4.02 -2.80
16 Ras-related C3 botulinum toxin sub- RAC1 1.02E-34 GO:0005884 3.83 -2.51
strate 1
17 WAP four-disulfide core domain protein ~ WFD18 3.73E-11 GO:0005615 3.80 -1.63
18
18 Retinal-binding protein RALB 5.48E-75 GO:0050896 3.66 -0.61
19 Zinc finger protein 862 ZN862 2.46E-11 GO:0005634 3.64 -3.26
GO:0046872
20 Low-density lipoprotein receptor-related ~ LRP3 3.51E-14 GO:0005905 3.61 -1.01
protein 3
21 Putative ariadne-like RING finger YRS811 1.75E-06 GO:0046872 3.55 -2.86
protein R811
22 Heat shock 70 kDa protein IV HSP74 7.51E-93 GO:0005524 3.46 -3.23
23 Sodium-independent sulfate anion S2611 1.17E-138  GO:0005783 3.37 0.14
transporter
24 Sodium- and chloride-dependent glycine ~ SC6As 1.28E-141  GO:0031045 3.35 -0.34
transporter 2
25 Heat shock protein 68 HSP68 7.75E-103  GO:0005737 3.34 -3.00
GO:0005829
GO:0005634
GO:0005886
26 Heat shock protein 70 B2 HSP74 3.67E-103  GO:0005524 3.32 -3.07
27 Sarcoplasmic calcium-binding protein SCP 3.17E-06 GO:0005509 3.31 -1.88
28 Transmembrane protein 45B TM4s5B 4.14E-44 GO:oo16021 3.29 -2.94
29  Phospholipid-transporting ATPase ABCA1  4.14E-35 GO:0030139 3.26 -2.08
ABCA1
30 Sodium/glucose cotransporter 1 SCsA1 5.59E-131  GO:0016324 3.26 -1.46

Table 4.3: Top 30 down-regulated genes uniquely differentially expressed in the Kiel population at low salinity (4.5) and

the significant changes in log-fold change compared to control conditions (16) for Kiel and Usedom mussels

Gene name Gene e-value GOid Kiel Use
symbol LFC LFC
1 Mitogen-activated protein kinase kinase M3Ki4 4.01E-07 GO:0005829 -21.13 21.60
kinase 14 GO:0001650
2 Proton-coupled folate transporter PCFT 7.16E-20 GO:oo16021 -6.42 2.01
3 Probable glycosyltransferase STELLO1 STL1 4.96E-30 GO:0005768 -5.46 5.10
GO:0005794
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Table 4.3: Top 30 down-regulated genes uniquely differentially expressed in the Kiel population at low salinity (4.5) and
the significant changes in log-fold change compared to control conditions (16) for Kiel and Usedom mussels

Gene name Gene e-value GOid Kiel Use
symbol LFC LFC
4  DEP domain-containing mTOR- DPTOR  8.44E-71 GO:0035556 -4.29 6.38
interacting protein
s Ras-related protein Rab-30 RAB30 1.99E-22 GO:ooos5801 -3.82 .55
6 Organic cation transporter protein ORCT 8.26E-66 GO:o016021 -3.27 2.64
7 Galactosylgalactosylxylosylprotein B3GA1 3.58E-64 GO:0005789 -3.18 2.35
3-beta-glucuronosyltransferase 1
8  Ultraviolet-B receptor UVRS UVRS 2.74E-17 GO:0000785 -2.70 2.03
GO:0005829
GO:0005634
GO:0009536
GO:0003682
9  Xaa-Pro aminopeptidase 1 XPP1 2.16E-112  GO:0005737 -2.67 2.57
GO:0005829
GO:0070062
10 Glutamate receptor ionotropic, NMDA ~ NMDE2  9.76E-96 GO:0005856 -2.63 2.79
2B GO:0005887
11 Carbonic anhydrase-related protein CAHS 2.33E-89 GO:0005737 -2.57 1.41
GO:0004089
12 Calmodulin CALM 7.18E-90 GO:0005509 -2.35 2.61
13 Sarcoplasmic calcium-binding protein SCP 3.44E-66 GO:0005509 -2.33 2.07
14 Sulfotransferase family cytosolic 1B ST1B1 8.96E-44 GO:0005737 -2.33 1.55
member 1 GO:0004062
15 Spondin-1 SPON1 4.52E-16 GO:oo31012 -2.26 2.10
16 Helicase POLQ-like HELQ GO:0005634 -2.24 1.28
GO:oo17117
17 Helicase POLQ-like HELQ 1.47E-71 GO:0005634 -2.24 1.70
GO:0005524
18  Adhesion G-protein coupled receptor AGRV1  6.78E-81 GO:oo16021 -2.22 1.28
Vi
19  Solute carrier family 2, facilitated glucose ~ GTR2 6.30E-10 GO:o016021 -2.20 1.82
transporter member 2
20 E3 ISG1s-protein ligase HERCs HERC;5 1.12E-17 GO:o005737 -2.15 1.83
GO:0005829
GO:0048471
21 A disintegrin and metalloproteinase with ~ ATSy 2.18E-10 G0O:0009986 -2.09 -0.72
thrombospondin motifs 7
22 Proton myo-inositol cotransporter MYCT 1.04E-46 GO:0097450 -2.09 1.13
23 Protein charybde CHRB 3.17E-19 GO:0005737 -2.07 1.62
GO:0006915
24  Galactosylgalactosylxylosylprotein B3GA3 2.13E-52 GO:ooo5801 -2.06 1.68
3-beta-glucuronosyltransferase 3
25 Sulfotransferase family cytosolic 1B ST1B1 7.76E-44 GO:0005737 -2.06 2.30
member 1 GO:0004062
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Table 4.3: Top 30 down-regulated genes uniquely differentially expressed in the Kiel population at low salinity (4.5) and
the significant changes in log-fold change compared to control conditions (16) for Kiel and Usedom mussels

Gene name Gene e-value GOid Kiel Use
symbol LFC LFC

26 Sodium- and chloride-dependent glycine ~ SC6As 2.93E-148  GO:0031045 -2.05 2.11
transporter 2

27 Tryptase TRYB1 2.76E-42 GO:0005615 -2.03 3.14
28  Degenerin-like protein asic-2 ASIC2 3.80E-33 GO:0005887 -2.02 0.89
29 Beta-1,3-galactosyltransferase 1 B3GT1 1.56E-32 GO:0000139 -2..00 1.65
30  Ephrin type-B receptor 4b EPB4B 7.34E-06 GO:0005887 -1.92, 1.91

POPULATION-SPECIFIC RESPONSES TO LOW SALINITY

Within the Kiel population we found an overlap of 101 genes that were differentially reg-
ulated across all salinity treatments (annotated n = 70) (Fig. 4.5, Tab. 4.4). These were

mostly upregulated (n = 63). Amongst those genes were amino acid transporters (amino

acid transporter (SLC747, SLC7A49), Sodium-coupled monocarboxylate transporter (SLCsA12),
Sodium- and chloride-dependent glycine transporter (SLC6A5), and other solute carri-

ers (SLCr2A42,SLCr3.A5) and ion transporters (Sodium/glucose cotransporter (SLCs A1,
SLC5Ay), Sodium-dependent phosphate transporters (SLC3441, SLC34A42), sulfate an-

ion transporter (SLC26A11). Upregulated were further, genes involved in amino acid
metabolism (Glycine, proline and pyruvate dehydrogenase (GLDC, PRODH, PDK2),
Carnosine synthase (CARNS1), Choline-phosphate cytidylyltransferase (PCY71B), Serine/
threonine-protein phosphatase (PPPr CB), Cysteine sulfinic acid decarboxylase (CS4D),
Ornithine aminotransferase (O4T'), peptidases (NAALAD:z), genes associated with gap/septate
junctions (UNCy, CNTN) and lipid metabolism (NVD, ADIPOR, CPT14).In con-

cert with upregulated stress response (Hypoxia up-regulated protein (HYOUT ), Hypoxia-
inducible factor (HIF1.A4) and immune response genes (YES1)), pathways relating to apop-

tosis (GHITM, ADA1o, TAX1BP1, PDIA6) and proteolysis (BIP) were significantly up-
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regulated. Notable downregulated genes were involved in protein glycosylation (B3 GALT6)

and response to oxidative stress (CHRB). Simultaneous up- and down regulation of amino

acid transporter (SLC6A ) suggests that the glycine transport pathways was being bal-

anced, but that cellular response was not uniform.

Table 4.4: List of commonly differentially expressed genes in the Kiel population across low salinity treatments com-

pared to control salinity

Gene name Gene e-value GOid
symbol
Up-regulated
Carnosine synthase 1 CRNS1 1.94E-10 GO:0005524
Roquin-1 RC3H1 o GO:0005737
GO:0010494
Y+L amino acid transporter 1 YLAT 9.38E-151 GO:0016323
Pyruvate dehydrogenase (acetyl-transferring) kinase isozyme ~ PDK2 1.12E-149  GO:0005829
2, mitochondrial GO:0005759
Choline-phosphate cytidylyltransferase B PCY:1B 8.91E-100  GO:0005737
GO:0005783
Innexin unc-9 UNCo 2.91E-68 GO:o005911
Proline dehydrogenase 1 PROD 2.15E-152  GO:0005759
Hippocampus abundant transcript 1 protein MF14A o GO:oo16021
Serine/threonine-protein phosphatase PP1-beta catalytic PP1B 5.77E-153  GO:0005737
subunit GO:0005634
GO:0072357
Contactin CONT 7.06E-147  GO:0031225
Endoplasmic reticulum chaperone BiP BIP o GO:0005788
Ras-related protein Rab-4B RAB4B 4.12E-122  GO:0005768
GO:0032593
Cholesterol 7-desaturase nvd NVD 2.63E-111 GO:oo16021
Adiponectin receptor protein ADRL 4.63E-141  GO:oo16021
Eukaryotic translation initiation factor 4 gamma 3 1F4G3 4.71E-116  GO:0005829
GO:0016281
Ras-related protein Rab6 RABG6 1.08E-122  GO:0005776
GO:o031410
Sodium-dependent phosphate transport protein 2B NPT2B 4.10E-59 GO:0016324
Sodium-dependent phosphate transport protein 2.A NPT2A 4.80E-88 GO:0016324
b(o,+)-type amino acid transporter 1 BAT: 1.15E-129  GO:0016324
Cathepsin L CATL 7.06E-125  GO:0005764
GO:0004197
Cysteine sulfinic acid decarboxylase CSAD o GO:0005737
GO:0004068
Acid phosphatase type 7 ACP7 1.66E-163  GO:0005576
Tyrosine-protein kinase yes YES 1.32E-160 GO:0005829
GO:0031234
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Table 4.4: List of commonly differentially expressed genes in the Kiel population across low salinity treatments com-

pared to control salinity

Gene name

Coatomer subunit gamma-2
Sodium-coupled monocarboxylate transporter 2
Alpha-N-acetylgalactosaminidase

Receptor-transporting protein 3

Growth hormone-inducible transmembrane protein
Pregnancy zone protein

Coatomer subunit alpha

AFG3-like protein 2

Sodium-independent sulfate anion transporter

Glycine dehydrogenase (decarboxylating), mitochondrial

Sodium/glucose cotransporter 1

Sodium/glucose cotransporter 4

Protein misato homolog 1

Sodium-dependent phosphate transport protein 2B
Collagen alpha-2(IV) chain

Collagen alpha-2(IV) chain

Neprilysin-4

Neprilysin-1

Sodium- and chloride-dependent glycine transporter 2
Carnosine synthase 1

Solute carrier family 13 member s
Solute carrier family 12 member 2

Ornithine aminotransferase

Protein sel-1 homolog 1
N-acetylated-alpha-linked acidic dipeptidase 2
Protein RFT1 homolog

Nuclear export mediator factor Nemf

Hypoxia-inducible factor 1-alpha
Lysine-specific demethylase 3B

Protein strawberry notch homolog 1

Disintegrin and metalloproteinase domain-containing
protein 10
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Gene
symbol
COPG2
SCsAC
NAGAB

RTP3

GHITM
PZP
COPA
AFG32
S2611
GCSP

SCsA1
SCsA9
MSTO1
NPT2B
CO4A2
CO4A2
NEP4
NEP
SC6As
CRNS1

S13A5
S12A2

OAT

SE1L1
NALD2
RFT1
NEMF

HIF1A
KDM3B

SBNO1:

ADA10

e-value

o
1.08E-147
7.41E-126

3.89E-10

1.25E-89
2.64E-127
o

o
1.17E-138
o

5.59E-131
5.69E-68
1.89E-113
2.07E-148
2.10E-13
1.32E-08
2.61E-10
o
1.28E-141
6.25E-174

1.01E-79

7.76E-172
o
2.95E-113
o

1.59E-109
o

(¢]

8.80E-163

GOid

GO:0030126
GO:0016324
GO:0005737
GO:0005764
GO:0004557
GO:0005737
GO:0016021
GO:0070062
GO:0072562
GO:0030126
GO:0005745
GO:0005783
GO:0005739
GO:0004375
GO:0016324
GO:0016021
GO:0005741
GO:oo16021
GO:0005604
GO:0005604
GO:0005615
GO:0016021
GO:o031045
GO:0005829
GO:0005524
GO:0005829
GO:0016021
GO:0016324
GO:0005737
GO:0005829,
GO:0005759
GO:0036513
GO:0016021
GO:0005789
GO:0005634,
GO:1990112
GO:1904115
GO:0000785
GO:0000118
GO:0005634
GO:0031490
GO:0005912



Table 4.4: List of commonly differentially expressed genes in the Kiel population across low salinity treatments com-
pared to control salinity

Gene name Gene e-value GOid
symbol
Tax1-binding protein 1 TAXB1 1.72E-51 GO:0005829
GO:0070062
Collagen alpha-1(IV) chain CO4A1 4.81E-38 GO:0005604
Protein transport protein Sec24C SC24C o GO:0030127
Hypoxia up-regulated protein 1 HYOU1 1.28E-177  GO:0034663
Carnitine O-palmitoyltransferase 1, liver isoform CPT:1A 1.13E-59 GO:oo16021
Protein disulfide-isomerase A6 homolog PDIA6 2.22E-98 G0O:0009986
Apolipophorins APLP 6.17E-61 GO:0005576
Legumain LGMN 6.92E-113  GO:0045177
Carnosine synthase 1 CRNS1 6.43E-16 GO:0005829
GO:0005524
Down-regulated
Beta-1,3-galactosyltransferase 6 B3GT6 7.10E-87 GO:0005794
Spondin-1 SPON1 4.52E-16 GO:oo31012
Protein charybde CHRB 3.17E-19 GO:0005737
GO:0006915
Transcription intermediary factor 1-beta TIF1B 3.38E-11 GO:0000785
GO:0000791
GO:0000792
GO:0005654
GO:0005634
GO:0032991
Pescadillo homolog PESC 2.24E-07 GO:0005730
GO:0005654
GO:0070545
Sodium- and chloride-dependent glycine transporter 2 SC6As 2.93E-148  GO:0031045
Integrator complex subunit 6-B INTG6B 1.34E-31 GO:0005634

The total number of DEGs that was differently affected by an interaction of the two fac-
tors salinity x population was highest at the most extreme salinity 4.5 (Fig. 4.4, Fig. 4.5).
The trend was similar for up- and downregulated genes. In total, 37 transcripts (annotated
n = 19) exhibited a significant interaction of salinity and population, i.e. a population-
specific response to low salinity across all low salinity treatments (salinity 4.5 -7) (Fig. 4.5).
The annotated interaction” genes were filtered for genes that were upregulated in Kiel
mussels and downregulated in Usedom mussels (n = 16). These included genes that were

previously reported from the conserved response to low salinity in Kiel mussels, namely
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genes involved in amino acid metabolism (CARNS1, GLDC, OAT), amino acid other so-
lute transporters (SLC7A49, SLCsA12,SLC6As, SLC22A43), ion transporter (SLC26A11)

and septate junction assembly (CNTN).

4.3.4 IDENTIFICATION OF PATHWAYS INVOLVED IN CELLULAR OSMOREGULATION

The primary objective of this study was to identify candidates of proteins, pathways and
functions potentially involved in osmoregulation and differentiate between conserved re-
sponses and population-specific responses of a highly salinity tolerant and a moderately
salinity tolerant mussel population. Functional enrichment of the GO-terms was tested
with a rank-based Mann-Whitney-U test for each contrast to determine transcripts ampli-
fied or inhibited as part of the response to low salinity. However, enriched GO terms were
few in number and categories broad.

In response to moderate low salinity stress (salinity 7), seven GO-terms were significantly
enriched in Kiel mussels, three of those were upregulated. These included protein bind-
ing, receptor binding, and peptidases. Four GO terms were downregulated, namely, trans-
ferases, fatty acids synthases and nucleotide binding. At more severe salinity stress (salinity
4.5) more GO categories were enriched. Protein binding, nucleotide binding and pepti-
dases were further enriched. Upregulated were further hydrolases, hexosaminidase and
calmodulin. Additional downregulated GO categories included rRNA binding and struc-
tural molecules.

In response to moderate salinity stress, Five GO-terms were significantly enriched in
Usedom mussels. Three of those were upregulated (transferases, fatty acid synthases and
serine-type endopeptidase), 2 were down-regulated (protein binding and phosphotrans-
ferases). With decreasing salinity, number of enriched GO-categories increased and more

peptidases were upregulated. Upregulated categories under moderate salinity stress were
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turther enriched. Phosphotransferases were more downregulated under more severe salin-
ity stress. Additional GO terms downregulated under severe salinity stress were involved in
DNA/RNA binding.

GO categories that were significantly enriched in the interaction of population and salin-
ity included mainly downregulation of transferases, kinases, GTP binding and RNA/DNA
binding. Upregulated GO categories included fatty acid synthase, peptidases, hydrolases,

oxidoreductases, amino acid dehydrogenases, hexosaminidases and calcium-ion binding.

4.4 DiscussioN

4.4.1 POPULATION-SPECIFIC RESPONSES TO LOW SALINITY

he most remarkable results were the different transcriptomic responses to low salinity
Tobserved in Kiel vs. Usedom mussels. Since M. trossulus-like populations are known
to be more tolerant to low salinities, we expected no significant response at moderate salin-
ity stress (salinity 7) which corresponds to their habitat salinity at Usedom. However, un-
der severe salinity stress (salinity 4.5), which poses a physiological limit for both species, we
would have expected to see a similar response in gene expression in the Usedom population
compared to the Kiel population. Instead we found a consistent negative correlation of dif-
ferentially expressed genes across salinity treatments between Kiel and Usedom mussels.
Similar patterns of differential gene expression were observed between M. trossulus and M.
galloprovincialis under acute salinity stress (0.17% of all genes). However, these popula-
tions exhibited a much larger parallel response (1.7% of all genes assayed, [191]).

This raises the question: do the two populations employ different strategies of salinity

acclimation? The companion study illustrated a significant increase in mortality of Kiel

mussels from 2% == 4 at salinity 16 to 67% = 7 at salinity 4.5 with decreasing salinity [296]
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(Fig. 4.2). Itis notable that these results are similar to other studies, where survival of A4,
edulis-like mussels was maintained until a critical salinity threshold was reached at a salin-
ity < 10 [263]. Mortality rate in Usedom mussels was constant at ~ 20% across salinity
treatments, which corresponds to the low number of differentially expressed genes that
were unaffected by salinity. The mean salinity at Usedom lies at 7 &= 0.6, but fluctuates
between 2.8 to 8.6 [297]. Our findings point to a higher tolerance for low salinity in Use-
dom mussels. Our results are consistent with the notion that Usedom mussels are locally
adapted to low salinity conditions and do not have to significantly change gene expression
to successfully acclimate to very low salinity. Another option could be that gene expression
in Usedom mussels was generally elevated compared to Kiel mussel, as was shown for two
coral populations with different heat stress responses [18].

A different explanation could be that instead of a change in gene expression, Usedom
mussels used post-translational modifications to cope with salinity stress. It has been shown
that the initial response to salinity stress is mediated via cell signaling and post-translational
changes of pre-existing proteins [164]. For example, short-term hypoosmotic stress in .
galloprovincialis and M. trossulus caused changes in the phosphorylation states of pro-
teins involved in diverse cellular regulatory processes mediated by protein kinases, such as
suppression of apoptosis [84]. A higher level of phosphorylated proteins could indicate a
higher ability to regulate adaptive processes of cellular osmoregulation via MAPKs during
low salinity stress [166].

Since the transcriptomic data was mapped to a M. edulis-like reference transcriptome,
another explanation for the low number of differentially expressed genes in Usedom mus-
sels compared to Kiel mussels could be suboptimal mapping rates. However, compared
to Kiel mussels there were no significant differences in mapping rates. The mapping rates

in Usedom mussels were even slightly higher (SIt). The generally lower mapping rate can
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be attributed to the fact that our reference transcriptome was heavily pruned [276, 402].
Specifically, amino acid metabolic pathways and solute transporters were differentially ex-
pressed between the two mussel populations under salinity stress. In Kiel mussels, these
processes were upregulated while they were downregulated in Usedom mussels. These re-
sults point to an active cellular volume regulation in Kiel mussels. Under hypo-osmotic
stress cells release osmolytes, passively via channels or actively via transporters, to avoid an
increase of water and cell damage through swelling, the so-called regulatory volume de-
crease [172, 306]. Free amino acids are common organic osmolytes used for cellular volume
regulation [264, 395]. Another mechanism to reduce osmolyte content is the catabolism
of organic osmolytes [49]. Kiel mussels were generally characterized by a higher organic
osmolyte content compared to Usedom mussels [296]. This could explain why metabolic
pathways involving organic osmolytes are enriched in the Kiel population, but downregu-
lated in the Usedom population. We identified genes that are involved in both mechanisms:
release and degradation of osmolytes. Genes coding enzymes involved in the degradation of
organic osmolytes were ornithine aminotransferase (O4 T, conversion of ornithine to glu-
tamate) and a glycine dehydrogenase (GLDC, degradation of glycine). These amino acids
were also detected during metabolic profiling in both mussel populations [296]. Glutamate
content was significantly higher in Kiel mussels compared to Usedom mussels. Glycine

was one of the main organic osmolytes in Myz7lus sp. and showed the largest magnitude

of change with decreasing salinity. GLDC has been previously found to be upregulated

in Arctic M. edulis [17]. Several solute transporters were differentially expressed between
populations in relation to salinity, that are likely engaged in reduction of intracellular os-
molyte content. The upregulation of the glycine transporter (SLC6A4 ) fits to the previ-
ously mentioned role of glycine in osmoregulation in Kiel mussels. Whereas SLC6A§ was

found to be downregulated under acute low salinity stress in . trossulus and M. gallo-
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provincialis [191]. SLCz2.A43 was another osmolyte transporter that was upregulated in
Kiel mussels (downregulated in Usedom mussels). SLCz243 codes a symporter that is re-
sponsible for co-transport of sodium and quaternary ammonium compounds (such as be-
taine). Betaine was one of the main osmolyte in Kiel mussels, but its concentration was low
in Usedom mussels. This could explain the significant interaction of a quaternary ammo-
nium compound transporter between salinity and population.

Surprisingly, we did not find significantly differentially expressed genes coding ion chan-
nels for the interaction of population and salinity. This might be explained by the fact that
both populations showed a common phenotypic response of cation content decrease with
salinity [296]. However, there was no common change in gene expression data between
the two populations, either. Instead, we found the sodium-independent sulfate anion
transporter gene (SLC26A11) to be differentially expressed. An upregulation of sulfate
transport in Kiel mussels is plausible, as sulfate has been shown to significantly decrease
in tissues of Kiel mussels [263]. Foshtomi et al. [91] further identified sulfate as inorganic
osmolyte involved in cellular volume regulation in Ctenophores. However, we have no in-
formation on sulfate content in tissues of Usedom mussels.

Significantly different gene expression results further included genes involved in sep-
tate junction assembly (CNTN). This could be related to the observed differences in tissue
water content between the two populations, where a higher water content was found in tis-
sues of Usedom mussels. When salinity is reduced and organisms reach capacity for volume
regulation the cellular water content increases [175]. An upregulation of CNTN could
change septate junction organization and paracellular barrier functions and serve as a way
to impede diffusion under hypoosmotic stress in Kiel mussels. This could further be an
indicator, that Kiel mussels have i) reached CVR capacity and ii) have to actively adapt ex-

tracellular space structuring to counteract structural damages that might otherwise be cause
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by an increase in water content, while the low salinity-adapted Usedom mussels are already
equipped with a higher tissue water content. An increase of genes involved in cell adhesion

was also detected in arctic M. edulis under low salinity stress [17].

4.4.2 COMMON RESPONSE TO LOW SALINITY IN KIEL MUSSELS

We found a strong common transcriptomic response across all low salinity treatments in
Kiel mussels, as well as uniquely differentially expressed genes in this population. This sug-
gests that Kiel mussels were severely stressed under low salinity conditions in this experi-
ment and there was a common response at all low salinity treatments. The identified genes
mainly comprised the physiological functions: osmoregulation, metabolism and cell cycle.

Surprisingly, we did not find many ion channels or any aquaporins (which were anno-
tated in the reference transcriptome) differentially expressed in response to salinity stress,
which we would expect with regard to other transcriptomic studies of Myzzlus sp. to re-
duced salinities [17, 191, 212]. This could be due to the difference of long-term acclima-
tion in this study (four weeks) vs. relatively short acclimation (4 hrs - 6 days) in the other
studies. Ion channels and aquaporins might rather be upregulated as an immediate re-
sponse to hypo-osmotic stress and are downregulated during long-term acclimation if
enough protein has been synthesized or to protect against water currents [194, 212]. Con-
tradicting this, is a previous long-term study on snails that found a variety of ion channels
upregulated at low salinity [123].

We found many genes involved in solute transport to be upregulated in Kiel mussels, in-
dicating an active cellular osmoregulation of both inorganic and organic osmolytes. Sur-
prisingly, we did not find an upregulation of taurine transporters, which were upregu-
lated in other salinity bivalve studies [187, 292]. Taurine was one of the major osmolytes

in Mytilus sp. and heavily regulated with salinity [296]. However, we found an upreg-
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ulation of amino acid transporters for glycine (SLC6A 5 ), neutral or dibasic amino acids
(SLC7A49,SLC7A7) and transporters for quaternary ammonium compounds (i.e. betaine)
(SLC22A3) and other organic solute (SLCsA12, SLCs A1, SLCs A9, SLCO4A1, SLC13A5)
under low salinity stress. Literature results corroborate our findings in terms of active or-
ganic osmolyte transporters [123]. We further found an upregulation of ion transporter
genes for sodium, chloride, potassium (SLCr24z), phosphate (SLC34.A41, SLC34.A42) and
sulfate (SLCz6A411) at low salinity. Positive regulation of ion transport was also detected
in transcriptomes of M. galloprovincialis after long-term low salinity acclimation [292].
However, we also detected simultaneous downregulation of some organic osmolyte trans-
porters which suggests that the cellular response is not uniform. Additionally, many of the
solute-transporters are sodium or chloride dependent. This indicates that the two osmolyte
pools did not operate separately, but were intertwined. For example, sodium is needed for
co-transport with amino acids and a certain concentration is required for maintenance of
membrane potential, downregulation of ligand-gated ion channels might thus prevent
uncontrolled sodium efflux or disruption of homeostasis. We further identified enriched
transcripts that are connected to ion homeostasis (HEXB), that support this assumption.
In addition to osmolyte transporters, many amino acid metabolic enzymes were upreg-
ulated. This suggests a degradation and transformation of organic osmolytes. Enriched
were hydroxylases, aminopeptidases, dehydrogenases and phosphatases (CARNSz, CSAD,
GLDC, LPQL, NAALAD:z, OAT, PRODH) that are involved in metabolic pathways of
amino acids and their precursors such as aspartate, beta-alanine, carnosine, choline, cys-
teine, glutamate, glycine, histidine, hypotaurine, ornithine, proline, taurine and trypto-
phan. This corroborates findings of other bivalve hypo-osmotic stress studies [212]. The
main osmolytes in Kiel mussels were aspartate, betaine, glycine and taurine, which we find

represented in these pathways [296].
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An active osmoregulatory response is further highlighted by an upregulation of genes in-
volved in myelination (HEXB, AFG3 Lz) and the sodium/glucose transporter (SLCsA1).
Sodium/glucose transporters are known to be involved in pumping water or facilitat-
ing passive water transmembrane transport in humans [82, 304, 387]. This suggests that
Sodium/glucose transporters might adopt the role of aquaporins under low salinity stress
to contribute to regulatory volume decrease via water transport out of the cells. Myelina-
tion is a process that was previously observed in salinity-stressed M. edulis, that increased
the thickness of the myelin sheath of nerve cells, likely in order to support maintenance of
membrane potential [382]. Upregulation of water transport likely counteracts cell swelling
after increases in water content at low salinity. A steep increase in water content has been
documented for M. edulis-like mussels at salinities < 8 [263]. An upregulation of water
transport has also been observed in the salinity stressed mussel Xenostrobus securis [292].

The second physiological function that was heavily expressed in salinity stressed Kiel
mussels was energy metabolism. Growth rate of M. edulis-like mussels has been shown to
deteriorate until biomass is catabolized under severe stress, likely due to depletion of en-
ergy reserves [263]. We found an upregulation of genes related to metabolic pathways of
glycogen, glucose and fatty acid metabolism and lipid storage (4DIPOR, CPT14, NAGA,
PDKz, PPP1CB). This suggests an energetic cost of salinity acclimation. This is further
supported by upregulation of cholesterol metabolism (NVD) involved in body growth
throughout development in invertebrates. We did find upregulated as well as down regu-
lated glucose transporters, that indicate that energy metabolism is enhanced but not uni-
form across cells. Upregulation in sugar and lipid metabolic pathways was observed in a
Spanish 7z situ study in the invasive and less tolerant X. securis, whereas in the native more
tolerant M. galloprovincialis only the regulation of glucose metabolic process was also ob-

served under prolonged low salinity stress [292].
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Other changes in lipid metabolism and transport could indicate changes in membrane
composition (4BCA1, APOLPz, PCYT1B, SEL1L). Salinity has been previously shown
to affect membrane composition in M. edulis [230], as well as phospholipid transport
via ATPase [17]. Changes in the lipid composition of membranes affect the fluidity, per-
meability or activate signal transduction pathways [103, 110]. Furthermore, changes in
membrane lipid bilayer composition and fluidity in mud crabs was correlated to modifica-
tions in ATPase activity which in turn is involved in regulation of intracellular ion content
[25]. Willmer [381] discovered an increase of ~ 70% in ATPase activity in low salinity
stressed M. edulis. An increase in phosphorylation of lipids via calmodulin pathways in
molluscs was linked to an increase in membrane permeability that allows efflux of taurine
and water [251]. We also found up- as well as downregulation of calmodulin (CALAL) in
Kiel mussels, which suggests that this pathway is operated by activation and deactivation
of CALM. The upregulation of genes (HEXB, AFG3Lz) involved in calcium homeostasis
supports this. Calmodulin is a calcium-binding protein that is activated by calcium ions
and involved in signaling cascades involved in many biological processes such as muscle con-
traction, cell proliferation, or apoptosis. Downregulation of calmodulin was also observed
in salinity stressed oysters [409].

In concert with a differential expression of genes involved in apoptosis, stress response
genes were uniquely upregulated in Kiel mussels. Heat-shock proteins perform chaperone
functions to stabilize protein structures and are known to be upregulated under stress-
tul conditions. They have been first described to be upregulated under thermal stress, but
that are also upregulated under osmotic stress [71, 213, 234, 265]. This corroborates our
findings of upregulation of HSPs (HSP68, HSP70Bz, HSPA4, BIP). We further identi-
fied stress response genes that are usually linked to hypoxia (HYOU1, HIF1A). This could

indicate that i) mussels were simply stressed by lack of oxygen due to valve closure under
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low salinity stress, or ii) that hypoxic stress response genes react to multiple stressors, such
as HSPs, and are also upregulated under osmotic stress. In support of the first explana-
tion, Kiel mussels were observed to be closed more often and have reduced clearance rates,
while no such effect was found for Usedom mussels (pers. communication T. Sanders).
Other stress response genes that were enhanced in Kiel mussels under low salinity were
genes that reduced production of reactive oxygen species and are also otherwise active in
cellular stress response to cold, hypoxia and starvation (SLC25.48). We found indicators
for severe salinity stress uniquely in Kiel mussels. Severe salinity stress can cause cell dam-
age and death. Upregulated apoptotic pathways are indicators of this process (4DAM 10).
On the contrary, several genes were upregulated that potentially interfere with apoptotic
process to promote cell survival (GHITM, PDKz, SLC25.A48, TAX1BPr) [236]. We fur-
ther found genes involved in the regulation of immune response, cell survival and apoptosis
(WFDC18, YEST). A study on two mussels subjected to low salinities also found a signifi-
cant enrichment of GO terms related to immune response including apoptotic processes
[292]. Downregulated genes, were related to enhancing of signaling cascades mediated

by tumor necrosis factor involved in immune response and apoptosis (CHRB, HERCy,
MAP3K14). MAPKs are a family of proteins that has previously been shown to be an im-
portant part of salinity adaptation in mussels and fish and are further important regulators
of the cell cycle [166, 165, 191]. MAPKS were upregulated in response to hypo-osmotic
stress [165, 191], yet our results showed an extreme downregulation of MAP3K14.

With respect to the identified genes involved in osmoregulation, metabolism and stress
response we would have expected significant and meaningful results from the GO enrich-
ment analysis, however this was not the case. Insignificant GO analysis results, were also
experienced by other researchers examining salinity effects between species [191]. They

attributed this result, to the relatively small response of hypo-osmotic stress versus other
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stressors, but also pointed out that it could be incomplete description of molecular func-
tions and biological processes of genes. We think the latter most likely, since we studied a
non-model organism. Most of the annotations refer to model-organisms such as human
and mice, and their genetic functions. In invertebrates these gene functions could be very
different. Furthermore, cellular volume regulation involves an array of intertwined cellular
functions. Organic osmolytes, intracellular inorganic ions, ion channels and solute trans-
porters are all involved in a variety of other metabolic and regulatory processes. Thus, GO
categories of involved genes could be widespread. Another explanation linked to the latter
is, that, instead of a group of genes belonging to a specific GO category, potentially only
few individual genes (i.e. channels and key enzymes) are involved in adaptive processes of
CVR. A third explanation can be the difficulty to assess physiological states due to their
time-depend responses [199]. Time-dependent processes such as CVR, which are enriched
at the beginning of osmotic stress, but can be downregulated during acclimation and thus

not detected in molecular probes from long-term experiments.

4.4.3 MYTILUS SP. IN CHANGING SALINITIES OF THE BALTIC SEA

With ongoing climate change the salinity of the Baltic Sea is predicted to decrease by 1.5

- 2 until 2100, shifting the salinity gradient [107, 209]. The physiological threshold of
Mytilus sp., derived from its current distribution [288] and mortality data from this study
(Fig. 4.2), was found to lie at a salinity of 4.5-6. According to the most severe desalination
model the salinity isoline of 5 would shift hundreds of kilometers westwards into the Baltic
Proper [209]. We assume that desalination will result in a southward range shift of the en-
tire species complex, as was previously proposed by [367]. This would cause the mussels

to lose huge areas of potential habitat. Mytzlus sp., as a reef-building species, is one of the

main Baltic ecosystem engineers [142]. Thus, any ecological displacement would also affect
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benthic communities severely [367].

With the observed differences in the transcriptomic responses to low salinity between
Kiel and Usedom mussels it can be suspected that the two population may fare difterently
under future desalination. The projected future reduction of the ambient salinities at Use-
dom to ~ 5 will likely be tolerated by M. trossulus-like individuals as no increase mortality
or gene expression was observed at salinities <7 in this study. Yet salinities <5 constitute a
physiological threshold for M. trossulus-like individuals [288], which would likely cause
a westward range-shifts of populations from the Bothnian Sea and the Gulf of Finland.
Further, salinity fluctuations at Usedom currently range from 2.8 to 8.6 [297]. But with
a reduced mean salinity, fluctuations below a salinity of 5 could become more common.
Such fluctuations would likely reduce the fitness of Usedom mussels.

The Kiel population (current native salinity 16) will be subjected to lower salinities of
approx. 10-13 according to desalination scenarios [107, 209]. The high number of differ-
entially expressed genes observed in Kiel mussel demonstrated that Kiel mussels are severely
stressed at salinities < 7. Itis thus likely that already moderate salinity reductions (10-13)
will cause an increased transcriptomic response of osmoregulatory and metabolic path-
ways and affect fitness of adult mussels. Also larvae mortality has been shown to increase
with decreasing salinity in Kiel mussels [152]. Furthermore, salinity fluctuations, common
to the western Baltic Sea [297], will expose mussels to salinities similar to the here applied
treatments which will cause a more severe stress response.

Moreover, the predicted future habitat salinity of Kiel mussels (10-13) would lie directly
in the genetic transition zone of Mytilus hybrids, in which an ongoing selection for low
salinity adapted genotypes takes place in Mytzlus larvae [152, 337]. Itis therefore likely that
Kiel mussels will undergo low salinity selection in the future which would change their cur-

rent M. edulis-like allele frequencies to a more M. trossulus-like genome. The high mortal-
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ity of Kiel mussel at low salinities can already be an indication of such natural selection pro-
cess towards low salinity tolerant individuals ( 4.2). However, a change in allele-frequencies
towards the more tolerant M. trossulus genotype, would not guarantee better performance
under higher salinity conditions. A reduced fitness of Usedom mussels was visible in the
relatively high mortality rates at the high salinity for adult mussels in this study ( 4.2), as
well as for larvae in a previous experiment [152]. An overall shift in the Baltic Sea hybrid
gradient would have implications for ecosystem structure, since Usedom mussels and Kiel
mussel differ in size and shell thickness [143, 297]. Such morphological changes of mussel
reefs would likely have consequences for predator-prey interactions [156].

With the projected salinity changes, lower habitat salinities will likely affect both popula-
tions. An increase in cellular osmoregulation processes and subsequent energetic trade-offs
were observed in salinity stressed Kiel mussels. Such a consequence will likely also be ob-
served in Usedom mussels under prolonged low salinity stress. M. trossulus-like mussels
were found to have a higher phenotypic plasticity than M. edulis-like mussels, established
by the low number of differentially expressed genes and low mortality. While this tolerance
capacity may permit survival, the increasing costs for osmoregulation (i.e. plasticity) can
potentially hinder evolution of plasticity [81]. As the Kiel population was found more af-
fected by salinity stress in terms of mortality rates and gene expression response, Kiel mus-
sels would likely show a higher osmoregulatory response and thus suffer larger trade-offs in
their energy budget. This lower plasticity in Kiel mussels could also facilitate rapid adapta-
tion [74].

Our transcriptomic data suggests that adaptive change would likely be located in the
genetic markers for osmolyte transport and organic osmolyte degradation and poten-
tially cell-cell adhesion and myelination, since this was heavily upregulated in Kiel mussels,

but was downregulated or showed no response in Usedom mussels. Changes in energetic
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metabolism and immune response, seen in Kiel mussels, are likely an energetic trade-oft due
to insufficient acclimation. Based on the companion paper results [296], it can also be as-
sumed that the osmolyte pool would undergo changes in the course of low salinity acclima-
tion towards a higher percentage of inorganic cations, as well as shifts in organic osmolyte
composition. The salinity-driven selection of F1 generation of experimental mussels origi-
nating from the transition zone, has shown that there is capacity for adaptation [152]. We
thus think that the Baltic hybrid population has the potential for adaptation, albeit only
within their current salinity tolerance range down to 4.5 [288, 376].

Yet, also other environmental factors have to be considered for estimation of future mus-
sel performance under low salinity. With climate change, not only salinity is predicted to
decrease, but also increase sea surface temperatures and decrease pH are predicted [1, 107,
112, 283]. Temperature has been shown to function as a synergistic factor with salinity
stress and thus higher future temperatures would decrease capacity for salinity tolerance
in Mytilus sp. [17, 191, 121]. Ocean acidification might further increase energetic costs
for calcification [297], coupled with increased costs for osmoregulation this could further

reduce mussel fitness in a future Baltic Sea.

4.5 CONCLUSIONS

his study demonstrated a distinctive gene expression response to low salinity in the
Ttwo mussel populations. This points towards a potential local adaption of Kiel and
Usedom mussels adapted to their habitats. Future desalination will likely shift species cur-
rent range limits southwards. Kiel populations reach their tolerance capacity at a salinity
<6, while the most eastern distribution of Mytilus sp. has been described for salinities of

4.5. Or results suggest that the Kiel population is more susceptible to low salinity stress,
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compared to the more tolerant Usedom mussels. This was illustrated by the overall larger
transcriptomic response of Kiel mussel at low salinity, while Usedom mussels had a much
lower number of differentially expressed genes. This is shown specifically in the upregula-
tion of genes responsible for osmoregulation processes in Kiel mussels including ion, amino
acids and quaternary ammonium compound transport and amino acid degradation, water
transport, consumption of energy reserves as well as active stress response to stabilize pro-
tein structures and suppress apoptosis. In this regard, interesting field for future research
are the mechanisms of water transport and myelination, which could be additional factors
in CVR, next to osmolytes, that influence CVR capacity. Due to the susceptibility of Kiel
mussels to low salinity stress we expect a change in allele-frequency towards low salinity
adapted genotypes. As can be seen by the increased lipid metabolism of Kiel mussels, an
increased osmoregulatory response has energetic trade-off which will likely affect scope for
growth, evolution of plasticity and fitness of the entire future Baltic hybrid population.
Such extensive range shifts of an ecosystem engineer will likely affect the entire benthic

community and cause massive ecological changes in the future.
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Table C.2: Overview of annotation rates

Information Value
Number of unique transcripts 29177
Number of annotated transcripts (Blastx and/or PfamA) 14533
Number of annotated transcripts (Blastx) 13673
Number of annotated transcripts (PfamA) 11922
Number of overlapping annotated transcripts (Blastx & PfamA) 11062
Annotation rate (Blastx) 46.86
Annotation rate (Hmmer) 40.86
Annotation rate overlap (Blastx & Hmmer) 37.91
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Discussion

n my thesis I studied the effects of low salinity stress on marine benthic osmoconform-
Iers on multiple levels ranging from organismal to a biochemical and a transcriptomic
level. This was done using the example of the Baltic Sea, which is characterized by a pro-
nounced horizontal salinity gradient and thus is an ideal model to investigate future salinity
changes and selection of locally adapted populations. An integrative approach was applied
to understand the mechanisms of cellular volume regulation (CVR), capacity for salinity

tolerance and the potential for acclimation and adaptation of salinity tolerance in osmo-
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conforming model species.

This thesis broadened the scope of osmolyte research and increased our understanding
of the mechanisms of CVR. It is an important contribution to climate change research as it
elucidates mechanisms that drive changes in coastal biodiversity with regards to salinity.

Study 1 reports the results of the first systematic literature review with subsequent meta-
analysis of osmolyte concentrations. The specific aim was to assess the state of the art and
highlight overall similarities of CVR response to low salinity between phyla. A precise fil-
tering procedure and thorough scanning of the included reference library assured a reduc-
tion of subjective bias towards evidence-based outcomes. This approach identified inor-
ganic ions, free amino acids (FAA) as well as methylamines as osmotic effectors. Addition-
ally, taxonomic differences in organic osmolyte composition were discovered. This review
further revealed large biases in the current osmolyte literature. This suggests that it is cru-
cial to investigate the complete palette of osmolytes to understand the CVR system and its
potential for acclimation and adaptation to persistent low salinities. It is further crucial to
implement this for a broad taxonomic range to identify potentially distinct mechanisms
specific for each taxon. The meta-analysis established a useful baseline for active osmolyte
systems (study 1). This knowledge was then implemented in study 2.

Study 2 reports an integrative experimental approach to measure tissue inorganic ion
and organic osmolyte concentrations in parallel with proxies for fitness after four weeks of
low salinity stress. The aim was to compile comprehensive osmolyte budgets in addition to
physiological biomarkers for multiple species from different phyla and to examine them for
their capacity and similarities. A series of long-term low salinity acclimation experiments
were conducted using six model invertebrate species (two molluscs, three echinoderms,
one cnidarian). A decline in fitness (i.e. survival and net growth) and an increase in tissue

water content (as measure for cellular volume regulation capacity) occurred simultaneously

250



at low salinities. These organismal responses were associated with a reduction in organic
and inorganic osmolyte pools. Yet, the S,,;; hypothesis could not be validated for any of the
studied species. In this study, there was no universal concept defining species’ tolerance
limits, instead multiple factors were needed to outline a critical salinity range. While this
study investigated the cellular osmolyte aspect of salinity tolerance, determinants for CVR
capacity could also be related to other cellular processes. Therefore, the next study assessed
transcriptomic responses to acclimation to low salinity to better constrain the complex
suite of cellular processes impacted by osmotic stress.

Study 3 investigated the transcriptomic response to long-term low salinity stress in two
locally adapted mussel populations of the Mytilus edulis x trossulus hybrid zone in the
Baltic Sea. M. edulis-like mussels from Kiel live in the high salinity environment of the
Western Baltic Sea, whereas the more tolerant M. trossulus-like mussels from Usedom pre-
dominate in the low salinity environment of the Eastern Baltic Sea. The aim of this study
was to compare two locally adapted populations that differ in habitat salinity and identity
differences in their transcriptomic response to salinity acclimation. After four weeks of
acclimation to five salinity levels, the number of differentially expressed genes was highly
different between the two populations. While there was a clear stress response and upregu-
lation of CVR mechanisms in Kiel mussels an opposite response was observed in Usedom
mussels. This suggests that Usedom mussels are not severely affected by low salinity stress.
On the contrary, the transcriptomic response in salinity stressed Kiel mussels involved an
upregulation of osmoregulatory transport pathways, enzymes involved in catabolism of or-
ganic osmolytes, proteins connected to changes in cellular structures that increase stability
and limit water flow and upregulation of protein stabilizers, as well as proteins inhibiting
apoptotic pathways. The upregulation of pathways involving energy metabolism further

indicate an energetic trade-off towards these osmoregulatory processes in Kiel mussels. This
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indicates that with decreasing salinity Usedom mussels will be better equipped to cope with
low salinity environments and thus M. trossulus allele frequencies will become more fre-

quent in the Western Baltic Sea.

5.1 INTEGRATIVE APPROACH

hile all three studies had the aim to understand how salinity tolerance works in

; ; marine invertebrates and what defines the capacity for salinity tolerance, this was
investigated on different levels and with different approaches.

The main mechanism assessed in study 1 and 2 was CVR. The analysis of osmolyte
pools in both studies therefore made it possible to compare meta-analysis results (study
1) to experimental results (study 2). The systematic review illustrated the state of the art
and recommended increased research efforts towards filling specific research gaps. These
suggestions were thus implemented in both subsequent experiments (study 2 and 3).

Specifically, the systematic review revealed three important biases in the osmolyte liter-
ature. The first bias is the organic osmolyte bias: Inorganic osmolytes were often not mea-
sured leading to a bias towards organic osmolytes. Even fewer studies from the reference
library (» = 3) investigate both pools simultaneously. Consequently, it is difficult to evalu-
ate the relative importance of inorganic vs. organic osmolyte pools during salinity acclima-
tion. Thus, in study 2, I investigated all potentially relevant substance classes. The second
bias, the FAA bias, was generated by targeted osmolyte analysis in many older studies that
neglected detection of methylamines and methylated sulfonium compounds leading to a
bias towards FAAs in the current literature. Thus, in study 2, organic osmolyte pools were
assessed via untargeted metabolomic profiling that allows for detection of FAAs as well as

methylamines. The third bias, the mollusc bias, consists of a strong focus on mollusc study



organisms in the literature, with emphasis on bivalve species (study1: Fig.2.3). In study 1,
the analysis of two entire phyla (i.c. Cnidaria, Porifera) was impaired by the low number

of studies available. Therefore, the use of model organisms as reference for a wider variety
of phyla was advocated. Following this suggestion study 2 thus investigated six different
species of three different phyla (Molluscs: one bivalve, one snail; Echinoderms: one sea star,
two sea urchins; Cnidarians: one sea anemone).

Study 2 examined the phenotypic plasticity of osmolyte systems and physiological biomark-
ers. It was then suggested to investigate the plastic response of salinity acclimation on a
transcriptomic level. The analysis of gene expression can give insight into the molecular ba-
sis of salinity tolerance [191, 63]. It can further indicate candidate osmoregulatory genes
and specific pathways that are upregulated during salinity acclimation with potential for
selection for low salinity tolerance [78, 63].

Lastly, all three studies focused on long-term salinity acclimation to study the effects
of persistent low salinity predicted by future desalination scenarios. While the systematic
review used an inclusion criterion of more than two weeks of acclimation time to altered
salinity regimes, which is sufficient for most invertebrates [260] and ensured a large enough
number of studies for meta-analysis, other researchers recommend longer acclimation peri-
ods. According to [145] a period of up to four weeks can be required for full acclimation in
some species. This period is determined by the duration of modulation of intracellular os-
molyte pools in response to changes in salinity. The experimental duration in study 2 and 3
were thus chosen to last four weeks. This is already a major asset of this study, distinguish-

ing it from most published salinity tolerance experiments.
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5.2 OSMOLYTE POOLS

smoconformers adjust to changes in seawater salinity via cellular volume regula-

O tion [1o1]. This process is achieved by modulating concentrations of osmotic so-
lutes in the cell (i.e. osmolytes) [300, 126, 375]. The main actors in CVR are inorganic
and organic solutes [250, 101, 132, 47]. The time-dependent changes in intracellular os-
molyte concentration usually involve an immediate reduction in inorganic ion concen-
tration under hypo- osmotic stress [324]. Organic osmolyte concentrations are reduced
minutes to hours later [324, 365]. Full acclimation, however, takes 1-4 weeks [145, 260].
Meanwhile the organic osmolyte composition is still modulated for 2-4 weeks, within
which readily available, simpler structured organic osmolytes are replaced by more complex
compounds [9]. While most studies agree on the role of inorganic ions as an immediate
response [315, 173, 55, 300, 324], most studies do not consider inorganic solutes in long-
term acclimation. Instead, it is presumed that inorganic ion pools are being replenished
after the immediate response [55, 330, 398, 39].

Yet, it has been postulated by a few studies, that the organic osmolyte pool size alone
is not solely responsible for long-term salinity acclimation [250, 23]. The meta-analysis
demonstrated that inorganic ions as well as organic osmolytes are utilized in cellular vol-
ume regulation after long-term acclimation to low salinity (study 1). Yet, there were only 3
references that reported complete osmolyte budgets including both inorganic and organic
osmolytes [316, 267, 358]. Additionally, the systematic review revealed that the number of
references investigating organic osmolytes vs. inorganic compounds in tissues was nearly
thrice as high and there is a lack of research investigating intracellular inorganic ion concen-
trations after long-term acclimation to low salinity (study 1). This lack of data on inorganic

ion concentrations was already stated 30 years ago [66]. Unfortunately, the situation has
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not improved much. There is not a single invertebrate species for which detailed informa-
tion of intracellular ionic parameters exists (i.e. osmolytes, acid-base and carbonate chem-
istry) [211]. The overall proportion of the intracellular inorganic vs. the organic osmolyte
pool did not change with salinity in study 1, which indicates that both pools are reduced
simultaneously with salinity. The overall pool proportion of approximately 30% organic
osmolytes vs. 70% inorganic osmolytes (study 2) agrees with literature values [250, 269].
However, the meta-analysis of osmolyte pool size is based solely on mollusc studies.
Thus, there is a huge need for experimental studies investigating complete osmolyte bud-
gets in a variety of phyla subjected to long-term low salinity stress. This was implemented
in the second study. Salinity acclimation experiments demonstrated that the overall inor-
ganic osmolyte pool is reduced along with salinity in mussels, snails and sea stars, but not
in sea urchins (study 2). The organic osmolyte pool was found to change significantly with
salinity in mussels, snails, sea stars, green sea urchins and sea anemones. The utilization of
inorganic and organic osmolytes is further corroborated by enriched gene expression of
pathways linked to both compound classes acclimated to low salinities was then shown in
study 3. Thus, this thesis demonstrated, by measuring both osmolyte systems in parallel,
that inorganic and organic osmolytes play a crucial role in long-term acclimation to low

salinity in molluscs and an echinoderm species.

5.3 INORGANIC OSMOLYTES

5.3.1 LACK OF STUDIES & METHODOLOGICAL CHALLENGES

fter having established that inorganic osmolyte pools are persistently reduced under
f &hypo—osmotic conditions in most taxa (study 1 and 2), the goal was to gain more in-

formation on the specific inorganic ions that are being modulated. Yet, clear results of the
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literature review were precluded by a general lack of data. While [66] criticizes the lack of
data on inorganic ion concentrations in general, the meta-analysis expands this statement
onto specific substances. The reference library established via the systematic review com-
prised data on 7 inorganic ions. However, only 4 inorganic compounds had a large enough
sample size to permit a meta-analysis. Most studies assess sodium, potassium and to a lesser
degree chloride. Yet, other potentially important ions are neglected, such as e.g. calcium,
magnesium, sulfate, phosphate and bromide.

The reason for this lack of data, specifically with respect to anions, is the time-consuming
methodology. Up to now, anion measurements are rare and concentrations were usually
titrated separately for each ion [267, 316]. The majority of studies in the reference library
analysed cations, because they are more easily measured via flame-photometry [24, 296,
2277]. Additionally, more studies in the reference library reported body fluid concentrations
than tissue concentrations, presumably due to extraction issues or to bypass the complexity
of estimation of interstitial fluids in tissues. Thus, osmolyte analysis in this study attempted
another, more comprehensive approach by measuring cation and anion concentrations in
parallel. Cation concentrations were measured via flame-photometry. To assess inorganic
anions in tissues a novel protocol was established that allowed for the measurement of sev-
eral jons in tissue extracts via ion-chromatography.

An additional obstacle that likely hampered intracellular ion determination in previous
osmolyte studies, is the complex procedure of accounting for the contribution inorganic
ion concentrations in extracellular fluids within tissues. Currently, extracellular volume
is estimated via radioactively labelled tracers [215, 350, 382]. Due to time constraints and
lack of adequate lab space such experiments were not conducted as part of the salinity ac-
climation experiments presented in study 2, instead, tissue extracts were used. To estimate

to which degree changes in inorganic ion concentrations of tissues are overlain by extracel-
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lular fluid concentrations, a likely extracellular space (ECS) fraction was estimated using
equations from [93] (study 2). The maximal possible ECS fraction was calculated using
measured ion concentrations in tissue and body fluid data (study 2: Supplementary text
and Eqr). The maximal possible ECS fraction represents the largest value that can be in-
serted in the calculation for the ECS parameter before intracellular osmolyte concentra-
tions become negative. Together with available literature data, a likely ECS fraction was
then estimated (study 2: Figure S4). This bears some uncertainty with regard to absolute
intracellular concentrations (which are lower than tissue concentrations). Yet this approach
is sufficient to conclude whether the effects seen in tissue extracts represent intracellular

signals, or whether they are an artefact of extracellular fluid ion concentration.

5.3.2 SPECIFIC INORGANIC OSMOLYTES

The results of the meta-analysis indicated a significant salinity effect for intracellular sodium
concentrations, while intracellular chloride, intracellular potassium and tissue magnesium
concentrations did not change with salinity. The effect found for sodium concentration in
the meta-analysis was confirmed by the osmolyte analysis in study 2. Here, a significant ef-
fect of salinity on tissue sodium concentration was detected in mussels, snails, sea stars and
sea anemones, but not in sea urchins. Yet, results presented in study 2 indicated that not
only sodium, but also chloride and potassium concentrations were significantly reduced
with salinity. Chloride and sodium were the main inorganic ions with respect to their con-
centration. Other studies have also highlighted the role of sodium, chloride and potassium
as inorganic osmolytes [101, 324, 23, 68].

The differences between the meta-analysis and the experimental ion analysis could be
due to the relatively low sample size (n=4) for chloride in the meta-analysis. Only one of

four studies found no decrease in intracellular chloride concentration, two found a signif-
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icant effect, and another had a high within-study variation and therefore no significant ef-
fect. In fact, the original random-effects model showed a significant effect size for chloride,
but the robust test that was used because of low sample size generated more conservative
confidence intervals. Only then did the mean effect size become insignificant. It is thus
likely, that a larger sample size would generate a significant effect for intracellular chloride
concentration at low salinity. Furthermore, all of these studies investigated bivalves, thus
the results may not be entirely transferable to the results for snails, sea stars, sea anemones
and green sea urchins investigated in study 2. This is, thus, an example, where results of
the meta-analysis were impaired by the low sample size for inorganic ion concentrations
in tissues, as well as by the mollusc bias in the literature. It is thus necessary to gain more
knowledge of ion concentrations across a wide range of phyla.

While this may explain the different results of meta-analysis and osmolyte analysis for
chloride, this was not the case for intracellular potassium effect size, where variation around
the mean effect size in the meta-analysis was low. Usually, potassium is considered to be
tightly regulated around constant concentrations intracellularly [238, 404], and thus was
not expected to change with salinity. However, there are studies within the reference li-
brary that report a decrease of intracellular potassium concentrations with decreasing salin-
ity, which corroborate the osmolyte analysis results [382, 267, 336]. This suggests that dif-
ferent species may utilize specific inorganic ions differently to either reduce osmotic pres-
sure or maintain resting potential in neuronal tissues [336, 382].

While the meta-analysis could not offer insight into the salinity effect of minor intracel-
lular inorganic ions, ion chromatography and flame-photometry together allowed for analy-
sis of nine inorganic compounds: sodium, potassium, chloride, calcium, fluoride, bromide,
sulfate, nitrate and phosphate. The analysis revealed that most of the minor ions are also

modulated in relation to salinity in tissues in at least one of the investigated species (study
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2, SIo3). While there were no overall patterns of minor inorganic ion utilization between
species, bromide, calcium and sulfate were modified with changing salinities in most species
(namely: calcium and sulfate in sea stars, mussels, snails and sea anemones, but not sea
urchins; bromide in sea stars, mussels and green sea urchins). Few studies on minor inor-
ganic osmolytes were found during the systematic literature review. A previous blue mussel
study found no salinity effect on intracellular calcium concentration [296]. Whereas sulfate
has been detected to decrease with salinity in body fluids of ctenophores [91]. Minor ions
are rarely studied, but can affect organisms by limiting many biological processes, ranging
from calcification (i.e. calcium) to cytoprotective functions (i.e. bromide) [297, 33].

The transcriptomic responses, presented in study 3, to low salinity stress in mussels
validate the findings regarding major inorganic osmolytes and some minor ions. They
illustrated an up-regulation in sodium and chloride, sulfate, potassium and phosphate
transmembrane ion exchange proteins as well as sodium/chloride-dependent solute co-
transporters. The transmembrane transport of inorganic ions via transporters and channels
has previously been demonstrated to be stimulated by acute low salinity stress [1071, 68,
191, 16, 69, 205]. These results provide evidence, that despite species-specific differences,
most taxa utilize inorganic ions as an osmolyte system during long-term acclimation to low

salinity.

S-4 SPECIFIC ORGANIC OSMOLYTES

lanine, betaine, glycine and taurine were identified as the main osmolytes in the
I &meta—analysis. The metabolic profiling confirms this for betaine, glycine and tau-
rine, whereas alanine comprised only minor to moderate concentrations (study 2: supple-

mentary information SI 03). These results agree with the literature, where it is stated that
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the most abundant organic osmolytes in marine animals are non-essential amino acids (i.e.
taurine, glycine, alanine, proline, hypotaurine, aspartate, serine and glutamate) and methy-
lamines (i.e. trimethylamine-N-oxide (TMAO), glycine-betaine, sarcosine, dimethylsulfo-
nioproprionate (DSMP)) [39, 101, 331].

Study 1 revealed that methylamines, specifically betaine, are an important component
of the organic osmolyte pool. Osmolyte analysis in study 2 supported this, but also de-
tected other methylamine compounds (such as DSMP, homarine, methylamine, sarcosine,
etc.). While the main organic osmolytes are reported in most studies, there are also many
individual reports of potentially meaningful, but largely unknown, osmolytes. Out of the
6o organic compounds that were mentioned in the literature, only 24 had a large enough
sample size to permit meta-analysis. This excluded methylamines to a large degree (such as
proline-betaine, homarine or DSMP) but also rarer FAAs their derivatives (such as beta-
alanine, study 1: Tab. A.1). Albeit the scarcity of methylamine data, these substances can
comprise the majority portions of the osmolyte pool [254, 262, 125, 314, 393].

Most of the earlier osmolyte studies indicated that FAAs are the main solute source mod-
ified under long-term salinity stress [250, 252, 259]. However, these results were often gen-
erated using targeted analysis methods, which do not detect methylamines [62]. By now it
has been sufficiently established that methylamines are at least equally important osmolytes
[39, 101,331, 259, 371, 62]. Untargeted methods such as 'H-nuclear magnetic resonance
have the ability to measure methylamines. Yet, there are still recent studies that do not in-
corporate them in their osmolyte profiling [162, 122, 187, 277]. Untargeted metabolic pro-
filing is crucial to reveal the true composition of osmolyte pools and the specific influence

of all major osmolytes.
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5.5 DIFFERENCES OF OSMOLYTE POOLS BETWEEN TAXA

5.5.1 TAXONOMIC DIFFERENCES OF INORGANIC OSMOLYTES

hroughout the meta-analysis, the number of studies on inorganic ion concentration

Twas so small, that no subgroup analysis on taxonomic differences was possible. In
study 2, differences in the overall utilization of specific inorganic ions between phyla were
detected. Molluscs, cnidarians and some echinoderms (i.c. sea stars) used a large variety of
inorganic ions as osmolytes (i.e. chloride, sodium, potassium, calcium and sulfate tissue
concentrations changed significantly with). An exception were sea urchins, which only
reduced very few inorganic ions (i.e. chloride, phosphate and bromides) in tissues after
long-term acclimation to low salinity.

Since differences in inorganic ion utilization in body fluids are known to exist in bivalves
with different salinity tolerances, it is thus likely that such differences can also be found for
tissues [64]). According to the systematic review, up to now no study exists that compared

inorganic ion concentrations of tissues between phyla after prolonged low salinity stress.

5.5.2 TAXONOMIC DIFFERENCES OF ORGANIC OSMOLYTES

Considering organic osmolytes, taxonomic differences were clearly carved out by the meta-
analysis, as well as by the osmolyte analysis. In study 1, taxonomic affiliation had as a sig-
nificant influence on osmolyte concentrations in tissues. However, out of the five phyla
that were mentioned in the literature, only molluscs, echinoderms and annelids had a large
enough sample size to permit meta-analysis, thus excluding jellyfish and sponges. Interest-
ingly, differences were found between all three analysed phyla, but the number of studies
targeting annelids or echinoderms was low compared to molluscs. Therefore, study 2 in-

corporated multiple study species from non-molluscan phyla (i.e. cnidaria: sea anemones;
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echinoderms: sea stars, shore sea urchins and green sea urchins).

The meta-analysis showed, that all major osmolytes were present in molluscs, echino-
derms and annelids. However, the proportion of the major organic osmolytes differed be-
tween phyla. More specifically, the primary organic osmolyte was different for each taxon.
Echinoderms used primarily glycine, while molluscs used mainly betaine and taurine (study
1: Fig. 2.8). A statistical comparison for taurine between phyla could not be conducted
due to lack of data on taurine concentration in other phyla, yet in molluscs taurine always
comprised a major portion of the osmolyte pool (study 1: Fig. 2.8). Annelids did not have
a primary osmolyte, instead they used a variety of FAAs in moderate concentrations (i.e.
alanine, glycine, or proline). Other reports measured high levels of asparagine, serine or tau-
rine in annelids that could not be statistically tested in the meta-analysis due to low study
numbers [56, 305]. Study 2 could confirm these results for molluscs, echinoderms and
cnidaria and expand them in terms of variety of osmolytes. Glycine was also found to be
the primary osmolyte in echinoderms (sea stars, green sea urchins and shore sea urchins).

In molluscs, taurine could be identified as major osmolyte alongside betaine for snails and
mussels. Sea anemones were found to utilize betaine as well as taurine as main osmolytes.

In study 2, all main osmolytes were found to be present in each taxon and species. Not
every organic solute changed significantly with salinity, thus identifying some osmolytes
as species- or even taxon-specific. Differences were also found for minor organic osmolyte
compositions. The echinoderm-specific use of leucine, serine and threonine found in study
1, could be confirmed via osmolyte analysis in sea stars, green sea urchins and shore sea
urchins in study 2. On the contrary, results for aspartate and glutamate differed between
the two studies (study 1: Fig. 2.5; study 2: Fig. 3.4 SIo8). Reasons for the differences be-
tween study 1 and 2 could be the following: considering glutamate, the low sample size of

echinoderm studies in the meta-analysis, which included exclusively sea stars and not sea
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urchins, could have affected the non-significant results. Additionally, tissue type and exper-
imental duration was found to have a significant effect on glutamate effect size and could
thus explain the significant heterogeneity. Considering aspartate, the effect size for mol-
luscs had a large within-study variation in the meta-analysis which could have affected the
results (study 1).

Other studies on organic osmolyte content of multiple species are rare - only seven stud-
ies were found via the systematic review. Although studying different species, all studies
were exclusively conducted for one taxon, i.e. molluscs. [100, 130] found, similar to the
findings in study 2, that there is no uniform pattern of FAA utilization amongst mollusc
species. For example, alanine was exclusively utilized by mussels, while glycine and tau-
rine were reduced by snails and mussels alike [100]. Also, the degree to which the main
osmolytes alanine, glycine and taurine are used differs between species [260]. It was further
found that the overall FAA pool size can vary strongly between mollusc species [65, 100,
175].

Another interesting finding is the taxon-specific utilization of methylamines in study 2.
Pierce [250] and Burg & Ferraris [39] suggested that the basic CVR mechanisms utilized by
all cells are likely very similar and that the major organic osmolyte systems include the same
compounds (i.e. polyols, FAAs, urea and methylamines). The osmolyte pool were pro-
posed to only differ in relative contribution of inorganic and organic osmolytes rather than
the osmolyte type [250]. These statements could not be confirmed by the results of the os-
molyte analysis in study 2. While the previous statement was supported for FAAs, because
most phyla seemed to include the same FAAs (study 1: Fig. 2.8, study 2: Slo3), the major
contribution of methylamines to the organic osmolyte pools of molluscs vs. the negligible
proportion of methylamines in echinoderms stands out. While mussels and snails utilize

betaine, homarine and other methylamines, echinoderms (i.e. sea stars, green sea urchins
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and shore sea urchins) did not employ methylamines or only in negligible amounts (study
2, Fig. 2.4). This is corroborated by meta-analysis results for betaine (study 1, Fig. 2.5). Yet,
other studies mention a large contribution of methylamines to the osmolyte pool in corals,
sea anemones, sponges, gastropods and polychaetes [254, 262, 125, 314, 393]. However,
there are no studies that directly compare multiple species or phyla after prolonged low
salinity acclimation that utilized untargeted techniques to quantify FAA as well as methy-

lamines.

5.6 FITNESS PARAMETERS AND TISSUE HYDRATION

n this work, survival, growth and water content were monitored in parallel with os-
Imolyte systems. Survival is the ultimate parameter of defining a tolerance limit and was
used here as a fitness proxy. Mortality increased with decreasing salinity in mussels, snails,
sea stars and green sea urchins (study 2). The results agree with distribution limits of said
species [308, 173, 367, 337]. Study 3 demonstrated differences in salinity tolerance be-
tween locally adapted blue mussel populations. The results for the Kiel population agree
with results from experiments in study 2. Overall, the results support the previously es-
tablished distribution limits of the Mytzlus species complex [152, 337, 376, 287]. Here,
mortality of the more tolerant Usedom mussels was not impacted by changes in salinity but
was overall high (~ 20%) across all salinity treatments. This indicates that Usedom mussels
are locally adapted to low salinity conditions, but have a lower fitness at high salinities. On
the other hand, mortality of the less tolerant Kiel population was significantly impacted by
salinity, which could indicate a potential selection towards low salinity tolerant individuals.
Survival, as fitness proxy, has been previously used to discuss potential patterns of selective

differentiation in bivalves with different salinity tolerances [78, 152]. However, survival
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alone does not offer much understanding of the non-lethal effects under sub-optimal salin-
ity conditions, which is why other fitness parameters are necessary.

Growth rates were impacted by salinity in all studied species (study 2). Previous stud-
ies have reported reduced growth for Baltic Sea blue mussels under salinity stress, as well
as for sea anemones and sea stars [171, 346, 308, 262]. This study also documented that
biomass was catabolized under severe stress. This was supported by gene expression re-
sults that showed an upregulation of lipid metabolism (consumption of energy stores)
in salinity stressed mussels (study 3). This indicated a re-allocation of energy towards os-
moregulatory processes and supports previous studies that postulated that salinity toler-
ance strategies come at a considerable metabolic cost[116]. Loss of biomass has been well
established in other studies, e.g. for sea stars, sea anemones, or mussels under low salinity
stress [308, 262, 303]. Modulation of energy metabolism is a central aspect of the cellular
stress response [164]and low salinity stress has been shown to result in energetic trade-offs
and catabolism of energy stores [138, 123, 292, 202, 347]. It can therefore be concluded
that such an energetic trade-off will likely affect the organism’s scope for growth and overall
fitness of Baltic Sea populations.

Other studies refer to changes in the water content of tissues or cells when discussing
CVR capacity, i.e. an organisms’ ability to keep or reinstate its cell volume after osmotic
challenges [175, 95, 94, 45]. A measure of change in water content is thus often applied as
an indicator for completeness of CVR [299, 95, 92]. Osmoconformers have been found
to have an overall larger capacity for water regulation than osmoregulators [92]. The wa-
ter content measurement demonstrated an increase of water content for all investigated
species (study 2). This has previously been described for many marine invertebrates, but
only rarely in combination with osmolyte analysis [140, 256, 313]. Also, gene expression

analysis corroborated these results. An upregulation of pathways involved in transmem-
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brane water transport or structural changes in the extracellular space that control diffusion
was found at low salinity. However, no upregulation of aquaporins was observed. Other
studies also detected an upregulation of pathways involved in water content and perme-
ation [17, 123, 409, 212]. However, most of these studies highlighted aquaporins and uti-
lized short-term acclimation times. This indicates that synthesis of aquaporin proteins is
upregulated as an immediate response to osmotic stress and cellular volume decrease. It is
likely that this is a time-dependent response, similar to Na™ Kt ATPase activity observed
in echinoderms [199], and that no elevated gene expression of this component can be de-
tected after long-term acclimation. On the other hand, the pathways observed in this study
seem to constitute a long-term response to low salinity. They presumably lead to expression
of structural proteins that counteract persistent increases in water content (seen in study 2
by stabilizing cell structures against increased water pressure and induce structural changes

to inhibit water inflow into cells.

5.7 S,y CONCEPT

ne of the main goals of this project was to better understand what defines the capac-
O ity for salinity tolerance in marine invertebrates. Euryhalinity in osmoconformers is
assumed to be directly proportional to CVR capacity [250, 92, 299]. Theories have linked
the capacity for salinity tolerance to organic osmolyte pool size, FAA pool size and organic
osmolyte composition [262, 256, 260, 328, 379]. Thus, one of the first objectives was to
test these hypotheses, primarily the S,,;,-concept. The S,,,,-concept states that the critical
salinity of an organism is reached when the organic osmolyte pool is depleted, which fur-
ther coincides with a loss of fitness [262]. Study 2 applied the S,,,,-concept to the organic

osmolyte pool of the study organisms. While the S,,.;-concept was previously found appli-
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cable for sea stars and sea anemones [308, 262], study 2 could not find a total depletion of
the organic osmolyte pool at the perceived salinity threshold for any species. A linear re-
duction in organic osmolyte concentration with salinity was found in mussels, sea stars, sea
anemones and green sea urchins (but not in snails and shore sea urchins), yet the extrap-
olated S,,,-values were below the critical salinity threshold of fitness proxies, or it was not
possible to fit a linear relationship that included [organic osmolytes| = 0. No further study
is currently known that tested the S,,,,-concept. The integrative approach of study 2 re-
vealed that fitness proxies, water content and osmolyte profiles were linked (Fig. 5.1). Study
3 validated this, as it demonstrated an upregulation of pathways involved in osmoregula-
tion, as well as energy metabolism, apoptosis, or water transport. Similar findings have been
reported for lipid and energy metabolism pathways as well as anti-apoptotic pathways in
comparable studies using mollusc model species [410, 409, 138].

Throughout the analysis of multiple parameters across species, no uniform pattern of
salinity acclimation could be detected. This agrees with studies that have previously re-
ported species-specific cellular osmoregulation strategies [101, 331, 260, 96, 130]. How-
ever, no studies investigated the entirety of osmolyte systems between species or phyla,
which is a huge drawback since only looking at the complete osmolyte system allows to un-
derstand the underlying mechanisms of salinity tolerance and predict species distribution
in a changing world.

While the S,,,-concept defines a specific point a as low salinity threshold, the results
from study 2 point towards a critical salinity range during which inorganic and organic
osmolyte systems as well as fitness parameters and tissue hydration indicate severe salinity
stress (Fig. 5.1). Within this range, survival can be achieved by more tolerant individuals, al-
beit with major trade-offs for example in net growth, while less tolerant individuals do not

survive (indicated by the onset of mortality).
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Figure 5.1: Depicted are hypotheses on how salinity affects the osmolyte pool in combination with idealized fitness
parameters and capacity for cellular volume regulation. S, is defined as the point when the organic osmolyte pool

is depleted. Figure A) shows an altered concept of a S,,;, range which incorporates the inorganic (blue) and organic
osmolyte pool (yellow). In Scenario A1l: the organic and the inorganic pool are depleted with decreasing salinity, but
concentrations do not reach zero (red line) In some cases concentrations stabilize at low salinities indicating hyperregu-
lation (blue and yellow dashed lines). Study 2 showed that this was applicable for mussels, snails and sea stars. Scenario
A2: shows a linear decrease of organic osmolytes, while inorganic osmolyte concentration is constant. This concept
was found applicable for green sea urchins and sea anemones in the scope of study 2. Scenario A3: Additionally, study
1 revealed a depletion of organic osmolytes for polyplacophora, sponges, and annelids. However, no data exists on
inorganic osmolyte concentrations after long-term acclimation for these taxa. B) Depicted is a fitness proxy (e.g. sur-
vival) (dark grey) that drops rapidly after a low salinity threshold is reached, meanwhile tissue water content (light grey)
increases below this limit. Results from study 2. C) Depicted is a fitness proxy (e.g. survival) (dark grey) for two locally
adapted mussel populations with different salinity tolerances. The Kiel population (blue line) is adapted to high salinity
environments and showed a significant decrease in fitness with decreasing salinity, whereas Usedom mussels (red line)
are more tolerant to low salinities, but have a lower fitness at high salinities.
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In combination with the reduction of osmolyte systems water content increased and fit-
ness decreased (net growth and/or survival) under hypoosmotic stress (Fig. 5.1). An overall
outcome, resulting in an adapted concept, was that (i) either the organic osmolyte pool,

(ii) or both the inorganic and organic osmolyte pools, were reduced with salinity (Fig. s.1).
In some species this was linear (i.e. mussels, sea stars, green sea urchins), in other species
osmolyte concentrations stabilized at low salinities (i.e. snails), indicating hyperregulation
of cellular osmolality. Hyperregulation can stabilize cellular homeostasis and guarantee
cellular functioning and a working membrane potential, but is also costly osmoregulatory
process that affects the energy budgets of organisms and thus likely can only be maintained
in a certain salinity range and for a limited time period. Furthermore, species difter in their
ability to hyperregulate.

Other osmolyte studies have previously shown that fine-scale monitoring can help to
elucidate changes in pool composition at different salinity treatments [259, 195, 140]. The
approach of study 2 further illustrates the usefulness of a fine-scale monitoring to detect
potential hyperregulation of osmolyte systems, detect the onset of water content increase

(i.e. limit of CVR capacity) and anticipate the low salinity threshold.

5.8 DIFFERENTIAL GENE EXPRESSION IN MUSSELS WITH DIVERGING SALINITY TOLER-

ANCE

fter having established the phenotypic plasticity of osmolyte systems and physiolog-
Aical biomarkers in study 2, the investigation of molecular basis of salinity tolerance
can give further insights into this process. Investigation of the transcriptomic response to
persistently low salinity can give further indication for candidate osmoregulatory genes and

specific enriched pathways.
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The Baltic Sea salinity gradient is a useful tool to investigate selection for tolerance to low
salinity environments. In such conditions the Baltic Sea offers a unique setting to examine
salinity stress in locally adapted populations. Thus, this was utilized in the third study. The
differences of transcriptomic response of a highly salinity tolerant and a more susceptible
locally adapted mussel population from two divergent salinity regimes were studied.

Changes in the transcriptome drive the ability of organisms to react to environmental
stress [266]. The transcriptomic response of Kiel and Usedom Mytlus sp. populations
to low salinity indicated local adaptation to their native habitat salinity, as number of low
salinity significantly increased differential gene expression and mortality in Kiel mussels,
whereas Usedom mussel mortality and the number of differentially expressed genes was un-
affected by salinity. A previous study on mussel larvae reached similar conclusions [152].
Transplantation experiments of Baltic Sea Myt7lus further demonstrated phenotypic differ-
ences of Mytilus populations, which are likely based on the underlying genetic adaption to
local salinity conditions [345, 143, 136]. However, epigenetic differences cannot be ruled
out at this stage and multigenerational common garden experiments are needed to estimate
the influence of epigenetic factors [152, 239, 298].

It was, nevertheless, clearly demonstrated that the Usedom population is more tolerant
and the Kiel population is more susceptible to low salinity stress. These results are corrob-
orated by the previous salinity acclimation experiments (study 2). Here, the critical salinity
range of mussels was located at salinities <1o. Other references determined a similar salin-
ity threshold [152, 156, 289, 288]. The overall transcriptomic response was much stronger
in Kiel mussels, compared to Usedom mussels. This indicates that Kiel mussels were more
heavily stressed at low salinities. The specific pathways that were enriched under persis-
tent low salinity conditions in Kiel mussels (but not in Usedom mussels) further support

this conclusion. CVR pathways were differentially expressed alongside pathways that are
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related to energy metabolism, growth, water permeability and cell survival.

The annotations of the enriched genes revealed differential regulation of various solute
transporters that are responsible for transport of amino acids, other organic anions (e.g.
methylamines) and inorganic ions. Also, genes that code enzymes involved in the degrada-
tion of amino acids were upregulated. These findings indicate that different mechanisms
(e.g. release and degradation) are utilized to reduce intracellular osmotic pressure. And
turther, that multiple osmotic effectors are modulated. This was supported by the results
from meta-analysis and osmolyte analysis, where the reduction of FAAs, methylamines and
inorganic ion concentration in response to low salinity acclimation was demonstrated.

Another group of pathways that was upregulated under low salinity conditions in Kiel
mussels were lipid and energy metabolism, as well as factors involved in organism devel-
opment and growth. As shown in study 2, growth was affected in all species under low
salinity stress. This is mirrored in the transcriptomic response that indicates an energetic
trade-oft due to the increased energy demand of osmoregulatory processes. The catabolism
of energy stores in mussels at low salinity, retrieved from gene expression and net growth
results, suggests that salinity conditions <8 are not sustainable for Kiel mussels.

Furthermore, the transcriptomic response of salinity-stressed Kiel mussels included the
upregulation of stress response genes (i.e. heat-shock proteins, oxidative stress response)
and the inhibition of apoptotic pathways. This cellular stress response is supported by or-
ganismic responses that showed a decrease of fitness and capacity limit for volume regula-
tion at low salinity.

Opverall, the transcriptomic response to low salinity acclimation is similar to that ob-
tained for other bivalve species [392, 123, 410, 411, 191, 212]. My study, however, is the
only study that illustrates differences between Mytilus edulis x trossulus hybrid populations

that are locally adapted to different salinity regimes. This study highlights the differences
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in salinity tolerance of the Mytilus species complex and presents further evidence for local
adaption of Baltic Sea Mytilus populations.

Subsequently, the question arises whether gene expression patterns in response to low
salinity are similar in other species. However, little is known about transcriptomic re-
sponses for non-bivalve invertebrate species. Literature research revealed almost no tran-
scriptomic studies on salinity tolerance of the study organisms investigated in study 2. The
exception is a single study on green sea urchins, were low salinity acclimation resulted in an
enrichment of heat-shock proteins [223].

Despite this lack of knowledge, it has been estimated that, similar to blue mussels, many
populations of dominant marine species inhabiting the Baltic Sea are locally adapted, have
lost genetic variation and are relatively isolated in terms of gene flow [137]. It is postulated
that if such locally adapted populations were to go locally extinct, their key roles in their
local ecosystems may not be easy to replace by migration of individuals from North Sea
populations, because Baltic Sea populations are evolutionary tailored to the particular local
conditions [137]. Itis thus crucial to gain more knowledge on phenotypic plasticity and
local adaption in Baltic Sea key species to estimate the consequences of future desalination

on marine invertebrate populations.

5.9 FUTURE PROJECTIONS

ith ongoing climate change, salinity is predicted to decrease in many oceanic coastal

; ; regions worldwide [214, 335, 27, 107, 113, 75]. It is thus necessary to determine if
species and populations in the affected regions are able to cope with changing conditions.
This includes researching whether high phenotypic plasticity or rapid adaptations are the

underlying mechanisms for survival. Hence, it is essential to understand how salinity tol-
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erance functions and determine current tolerance ranges of species in order to estimate the
potential for acclimation and rapid adaptation to persistently low salinity environments.

Based on the critical salinity ranges for Baltic study organisms that were established in
study 2, range shifts along the Baltic Sea salinity gradient of these species due to future
desalination are likely. This is further emphasized for the Baltic Mytilus species complex
presented in study 3. Future range shifts of foundation species and affiliated organisms will
likely affect entire benthic communities and cause ecological changes [367]. Expected range
shifts due to climate change, specifically salinity changes, have been postulated for many
oceanic and coastal regions world-wide from tropical mangrove forests to polar regions
[367, 127, 14,221, 57,75, 335, 341]. Empirical data on observed range shifts due to ocean
warming is mounting [183, 139, 40].

In the course of desalination, a shift in allele frequencies is predicted for the Baltic Mytilus
species complex (study 3). This was previously suggested by [152, 337]. A shiftin the West-
ern mussel populations from the M. edulis-like genotype towards the more salinity tolerant
M. trossulus-like genotypes (study 3) could possibly result in an extended low-salinity toler-
ance of Western Baltic mussel populations.

The loss of fitness in populations under hypo-osmotic stress has been established in this
study. The other side of the coin is the potentially reduced performance of low salinity
adapted populations that are faced with higher salinities. This was demonstrated by the
relatively high mortality of Usedom mussels at the highest salinity treatment. Selection
towards low salinity genotypes does not guarantee a good performance under moderate or
high salinity conditions. Transplantation experiments of locally adapted Baltic Sea mussels
in to North Sea waters demonstrated a reduced performance (i.e. survival, shell size, weight,
growth rate, clearance rate) despite long acclimation times (one year) [143, 136, 345, 297].

The Western Baltic Sea experiences larger and more frequent fluctuations in salinity than
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the Central Baltic [297]. Thus, if Baltic Sea populations were to shift westwards, the fitness
of low-salinity adapted species may be reduced by high salinity inflow events.

To make future projections on how Baltic Sea species will cope with future changes in
salinity it is necessary to assess species’ potential for acclimation through phenotypic plas-
ticity vs. rapid adaptation. Investigating the effects of low salinity on cellular osmoregula-
tion as the foundation for salinity tolerance together with other phenotypic parameters can
give insights on the present phenotypic plasticity, whereas the investigation of gene expres-
sion under low salinity can give insights on both phenotypic plasticity of cellular pathways
as well as potential osmoregulatory candidate genes for rapid adaptation. For this, however,
genome scans would be necessary to identify targets of selection and quantify underlying
genetic variation of assumed adaptive genetic markers [30]. In copepods an invasion into
freshwater environments was achieved by the evolution of physiological tolerance and plas-
ticity [179]. This freshwater invasion was accompanied by an evolutionary shift to regu-
late body fluids and ion transporter activity and expression [181, 179]. It was found that
balancing selection in the native range, which is presumably facilitated by environmental
fluctuations, can promote freshwater invasions and enable rapid adaptation [333].

The potential for acclimation through phenotypic plasticity can be a key factor in defin-
ing species capacity to tolerate salinity changes [384]. Diverse phenotypic plasticity was
previously found in Hong Kong oysters living in extreme conditions across a natural salin-
ity gradient [391]. High phenotypic plasticity has been suggested to facilitate the survival
of Baltic barnacle and isopod populations in future climate change scenarios, whereas no
indication for local adaptation was found in these studies [384, 386]. Indicators for phe-
notypic plasticity was tested in this study by way of the S,,,,-concept and osmolyte con-
centrations. The salinity tolerance of species assessed in study 2 gives evidence on the phe-

notypic plasticity that may enable individuals to buffer effects of salinity changes without
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genetic selection for low salinity adapted genotypes. The salinity acclimation experiments
revealed the different degrees of phenotypic plasticity for each study organism. Here, mus-
sels and snails showed a large plasticity, whereas an intermediate tolerance was seen in sea
anemones and sea stars and least capacity for salinity tolerance was observed for both sea
urchin species. Generally, it was found that euryhaline animals utilize the inorganic os-
molyte pool, whereas the stenohaline species did not. Furthermore, only euryhaline species
were found to employ the more complex methylamines in their organic osmolyte pool.
Methylated osmolytes are known to be better protein stabilizers than non-methylated com-
pounds [394] and could be an adaptation of euryhaline species to lower salinities. How-
ever, an assessment of these two assumptions is needed for a wide array of stenohaline
organisms from different taxa to exclude a taxonomic reason for these findings, since all
stenohaline organisms in this study were sea urchins. Lastly, the euryhaline AMytilus species
complex investigated in study 3 demonstrated a high plasticity regarding their gene expres-
sion patterns of osmoregulatory pathways. Whether this is an ability of euryhaline species,
would have to be investigated by expanding such studies to stenohaline species.

Another mechanism to cope with future environmental salinity changes is genetic adap-
tation. Ultimately, tolerant phenotypes could become fixed in the population [74, 170].
Moderate levels of phenotypic plasticity can compensate some effects of salinity changes
and may drive evolution [268, 74], while high levels of phenotypic plasticity may reduce in-
tensity of selection and thus limit adaptation rate [268, 74, 81]. Adaptation via natural se-
lection to environmental changes requires time, and is regarded to limit the response capac-
ity, especially for long-lived organisms [284]. However, there is emerging evidence for the
potential of rapid adaptation over timescale of anthropogenic climate change [298, 153].

The Baltic Sea with its pronounced salinity gradient and locally adapted populations is

an ideal set-up to simulate future selection gradients [283, 384]. Indication of local adap-

275



tation in the genomes of Baltic Sea organisms has been detected in a number of fish species
such as cod, herring flounder or stickleback [168, 109, 177, 19]. Previous studies have as-
sessed the transgenerational plasticity and standing genetic variation in oysters from the
Gulf of Mexico and found ample genetic variation for evolutionary adaptation to low salin-
ity conditions, whereas transgenerational plasticity as well as epigenetics did not appear

as a primary mechanism for low salinity acclimation [106]. While mussels show a large
genetic difference between populations, this was not found for sea stars [308]. It is thus
likely, that similar to isopods and barnacles, that show little differences between popula-
tions [384, 386], the main mechanism for salinity tolerance capacity in sea stars lies in their
phenotypic plasticity. Yet, little is known about other Baltic key organisms. This shows
that underlying response mechanisms towards environmental stress can be quite species-
specific.

The large differences in gene expression between the two Baltic mussel populations and
phenotypic traits such as osmolyte concentrations and mortality, in combination with the
known differences in allele frequencies, indicates a local adaptation of Baltic Mytzlus sp.
populations. It seems that these species had a high potential for adaptation which was ex-
ploited over the last thousands of years to adapt to the low salinity conditions of the Baltic
Sea. This is indicated by the extremely wide range of salinities tolerated by Baltic Myt7lus
sp.. The Baltic Sea thus offers the possibility to study organisms that are now adapted to
living at their physiological limit. Research on the tolerance capacities of populations along
this salinity gradient could give insight into the evolutionary processes involved in achieving
euryhalinity. With respect to future projections it seems likely that these species are already
adapted to low salinity conditions and thus a passive shift of species with the salinity gradi-
ent in the Baltic Sea will take place. However, with decreasing salinities in other areas (e.g.

estuaries), eastern Baltic Sea organisms could migrate to such regions and have the potential
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to successfully inhabit such areas in the future.

5.10 FUTURE RESEARCH

n the course of this project the systematic review revealed that there are still large gaps of
Iknowledge with respect to CVR, especially regarding differences between phyla and os-
molytes. Future studies should broaden their scope to analyse the whole palette of organic
compounds as well as inorganic ions in parallel. The best-practice guidelines give clear in-
dications of what to consider when designing an osmolyte analysis study. Furthermore,
current efforts in the workgroup pursue the establishment of a protocol with a fluores-
cent tracer (FITC-inulin) to estimate extracellular space in invertebrates instead of using
radioactive tracers, as has been achieved in recent studies on mammals [26, 363], to ren-
der measurement of extracellular volume more accessible (Bauer, Podbielski, Melzner, on-
going work). Inulin is a compound that is not incorporated into the cells and distributed
throughout the extracellular space after injection into body fluids without being eliminated
from it (e.g. by excretion, storage or decomposition) [161]. Thus, by attaching a tracer to it
the extracellular volume can be quantified.

Furthermore, to assess the potential for acclimation and rapid adaptation under per-
sistent low salinity stress and distinguish which mechanism are in place, multiple popula-
tions of target species would have to be assessed, preferably in multi-generational common-
garden experiments on a physiological and genomic level [224].

Other research areas such as the generation of desalination scenarios, other functions
of osmolytes, or changes in biotic interactions as a result of changing environmental salin-
ity are closely related to osmolyte research and will require more attention in the future as

these are relatively sparsely investigated and will gain more relevance with future salinity
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changes.

The first research area that is interesting for future research are desalination scenarios.
While desalination is already observed in the polar regions [241] salinity changes are also
predicted in other areas such as the Baltic Sea, the Gulf of Mexico, shallow Australian coral
reefs and the Arctic [27, 107, 113, 341]. Itis thus crucial to obtain more knowledge on
potential regions affected by desalination and to achieve a higher precision in forecasts.

In the specific case of the Baltic Sea, multiple studies predict a desalination of 1.5-2 until
2100 [107, 209], however models are still very coarse and results depend significantly on
the models applied. A recent study showed the large degrees of uncertainty of future pre-
dictions [208]. By incorporating sea level rise into their model, increases in seawater and
freshwater input could potentially cancel each other out and thus no desalination would
take place in the Baltic Sea [208]. However, it was shown that the results depend highly on
the applied Earth System Models. A change between global models that are incorporated
into the regional model of the same study supported previous literature and also found a
decrease in salinity, thus emphasizing the uncertainty we still face [208]. The natural vari-
ability of physical parameters of the Baltic Sea hampers precise estimations of the magni-
tude of change. Despite these uncertainties, desalination in the Baltic Sea is still very likely
to happen (pers. communication U. Griawe). Thus, further research is needed to increase
the predictive capacity of future projections.

On a biochemical level, osmolytes might have additional effects, for instance as a chemi-
cal defense against predators, or potentially act as attractant in marine invertebrates [396],
but this needs further research . It is known that amino acids stimulate activity in prawns
[54]. Furthermore, homarine was shown to inhibit growth of epibionts and predation in
corals[344, 206, 322]. Organic compounds in algae are known to possess abilities that serve

as wound-induced chemical defense, or as antifouling defense [294]. DMSP is widespread
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in marine microalgae and may serve to repel grazers [383, 359, 294]. Proline is known as
a deterrent of herbivores brown algae [294]. And betaines of beta-alanine, proline and
hydroxyproline are speculated to fulfill a role as chemical defense against herbivores and
pathogens in terrestrial plants [114]. Future research on potential additional chemical ef-
fects of osmolytes would be interesting with regards to their effectiveness when concen-
trations are reduced under low salinity. Would future desalination potentially diminish
chemical defense of organisms and thus further affect marine invertebrates? How would
this affect predator-prey interactions and benthic ecosystems?

On an ecological level, not much is known how predator-prey interactions might be af-
fected by changes in salinity conditions. Predator-prey interactions of blue mussels and
a major predator Carcinus maenas have been shown to be affected by low salinity [156].
Salinity has been shown to affect shell stability, which could favor crab predation, the
main predator of blue mussels in the Baltic Sea, which eftectively controls their popula-
tion [143, 156]. Also prey preference of crabs has been demonstrated to shift at low salinity
[156]. Moreover, salinity changes will likely cause changes in benthic community com-
position due to expected range shifts of foundation species and affiliated species in a fu-
ture climate [367]. Vuorinen et al. [367] assume that the cascading effects of these changes
would be extensive in the Baltic Sea. There is thus a large need to study the effect of climate
change stressors on species interactions and to investigate how this could affect benthic
communities in a desalinated environment.

Lastly, multiple climate change stressors influence the capacity for salinity tolerance such
as temperature, pH, pollution, food supply, etc. [43, 342, 242, 52, 406]. Especially the in-
teraction of temperature and salinity was shown by multiple studies to have severe effects
on mortality, metabolism, osmoregulation, condition index and stress responses of ma-

rine invertebrates [86, 17, 362, 138, 229, 121]. Thus, climate change-induced increases in
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warming, ocean acidification and desalination can exacerbate the negative effects on ma-
rine species and aggravate survival in changing oceans. This should be considered in future
research when estimating the effects of salinity on individuals, populations and benthic

communities of marine invertebrates.
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Conclusion

y thesis contributed to a better understanding of the underlying mechanisms of
M CVR in osmoconformers and established complete osmolyte budgets by using
untargeted methods. It further incorporated organismal physiological parameters to assess
salinity tolerance. I investigated what determines successful salinity tolerance in osmocon-

formers.

The first part of this thesis generated a baseline of current osmolyte research and revealed

the diversity of osmolytes utilized by marine osmoconformers. The meta-analysis high-
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lighted that inorganic as well as organic osmolyte concentrations are significantly reduced
under persistently low salinities. Furthermore, it was shown that significant differences be-
tween phyla exist. Yet, it became apparent that large gaps in the current literature exist due
to the application of targeted methods for organic osmolyte analysis and taxonomic bias.
The best-practice guidelines that resulted from my analysis suggest an improved approach
for future osmolyte research.

Within the second part I analysed the osmolyte systems in multiple Baltic Sea species af-
ter long-term acclimation to low salinity. This approach used a variety of analytical tools
to include multiple types of organic and inorganic osmolytes and thus establish a compre-
hensive osmolyte budget. This study could corroborate findings from the meta-analysis,
namely i) that taxonomic differences in organic osmolyte pools exist between molluscs and
echinoderms, ii) that inorganic ions and organic osmolytes are utilized to acclimate to salin-
ity changes, iii) that both, methylamines and FAAs are important in cellular osmoregula-
tion, iv) that alanine, betaine, glycine, taurine, sodium and chloride are the main osmotic
effectors. The analyses of osmolyte systems could be further linked to other phenotypic
biomarkers for individual fitness and CVR capacity. This integrative approach used a fine-
scale monitoring at the lower salinity threshold. Together these results helped to determine
a critical salinity range of each of the organisms and highlighted their phenotypic plastic-
ity. These two studies thus successfully established a better understanding of underlying
mechanisms of CVR and salinity tolerance of multiple species.

The third study used transcriptomics to better understand mechanisms of CVR and
cellular pathways that are activated during prolonged salinity stress. It tested the capacity
in salinity tolerance of two locally adapted AMytilus sp. populations living at distinctly dif-
ferent native habitat salinities (S = 5 — 8 vs..§ = 1220). This study showed a divergent

transcriptomic response between moderately and highly low-salinity tolerant mussels from
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the Mytilus species complex. It identified genetic marker genes involved in CVR. The gene
expression study further highlighted gene expression variation between locally adapted
populations. Whether this gene expression variation is heritable, needs to be determined in
future studies.

With ongoing climate change, geographic range shifts are predicted for many species.
Range shifts will be the consequence, if organisms are not able to acclimate through high
levels of phenotypic plasticity or rapidly adapt through genetic assimilation or natural selec-
tion of tolerant genotypes from standing genetic variation. This study is thus an essential
contribution to determine capacity of Baltic Sea key species to tolerate predicted changes in
salinity and to increase our understanding of their phenotypic plasticity via the underlying

mechanisms of CVR.
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