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Summary

The marine biological pump not just impacts the uptake of atmospheric CO, but also con-
tributes to the regulation of ocean dissolved oxygen concentrations. The degree of ocean
oxygenation has varied strongly throughout earth’s history. After several periods of oxy-
gen depletion, the ocean currently exhibits relatively high oxygen concentrations. How-
ever, in the past 50 years, a decrease in oxygen concentrations of 2% in the global ocean
has been observed and it is expected that the oxygen concentration will decrease even
further with global change conditions, reducing the habitat volume of hypoxia-sensitive
pelagic species. Although the interplay between supply of oxygen by ventilation and its
consumption by biogeochemical processes is generally known, it is still unclear to which
degree both processes influence the global marine oxygen distribution even under today’s
climate conditions. Thus, this thesis focuses on features of the biological pump that might
impact the marine oxygen distribution. Moreover, a comprehensive understanding of pro-
cesses that influence the oxygen distribution is important to be able to estimate potential
changes under future global change scenarios.

Global models are an important tool to get a deeper insight into determinative processes
for the marine oxygen distribution. In this thesis, three approaches regarding the biologi-
cal pump are tested to advance the understanding of processes that determine the oxygen
distribution under current climate conditions, which, in turn, potentially enable under-
standing of the expansion of oxygen minimum zones (OMZs) under future global change

conditions:

In the second chapter of this thesis, I test two competing feedbacks, which impact fu-
ture oxygen concentrations, in the University of Victoria Earth System Climate Model
(UVic ESCM) of intermediate complexity. This study shows, that the warming-induced
phosphorus-oxygen feedback at the sediment-water interface and the resulting potential
increase of released phosphorus does not constitute a major feedback in our model. It
thus seems that other processes control the strength of future deoxygenation.

In the third chapter of this thesis, a global biogeochemical ocean model is coupled to a
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particle aggregation model, which, using an appropriate parameterisation, improves the
vertical and lateral representation of OMZs compared to the original model without aggre-
gation. As there are still uncertainties in the parameterisation of the particle aggregation,
a model calibration against an observed particle dataset seems necessary.

In the fourth chapter two new processes influencing particle dynamics, namely particle
breakup (disaggregation of large particles into smaller ones) and mesozooplankton mi-
gration are included in the biogeochemical model, which is optimised against observed
particles, dissolved inorganic tracers and the overlap between modelled and observed
OMZs. This study further improves the representation of OMZs. However, it also shows
that the model is not able to represent shallow and deep particles realistically at the same
time, which indicates that important processes that enhance particle export flux are still

unknown and thus not considered in the model parameterisation.
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Zusammenfassung

Die marine biologische Pumpe beeinflusst nicht nur die Aufnahme von atmosphérischem
CO; sondern triagt auch zu der Regulierung von geldsten Sauerstoffkonzentrationen im
Ozean bei. Der Grad der Sauerstoffzufuhr unterlag in der Erdgeschichte starken Schwan-
kungen. Nach einigen Phasen in der Erdgeschichte, in denen geringe Sauerstoffkonzen-
trationen nachgewiesen wurden, weist der Ozean aktuell vergleichsweise hohe Konzen-
trationen auf. Dennoch zeigen aktuelle Messungen, dass der Ozean in den letzten 50
Jahren Sauerstoffverluste von 2% zu verzeichnen hatte. Es wird angenommen, dass
dieser Trend unter zukiinftigen Bedingungen des globalen Wandels weiter anhilt, was
das Habitatvolumen von pelagischen Spezies, welche empfindlich gegeniiber Sauerstoff-
mangel sind, reduziert. Auch wenn der Zusammenhang zwischen Sauerstoffzufuhr durch
Ozeanzirkulation und dessen Verbrauch durch biogeochemische Prozesse grundsitzlich
bekannt ist, ist weiterhin unklar, in welcher Groenordnung beide Prozesse die glob-
ale marine Sauerstoffverteilung unter aktuellen Bedingungen beeinflussen. Daher legt
diese Arbeit einen Schwerpunkt auf Komponenten der biologischen Pumpe, welche die
marine Sauerstoffverteilung beeinflussen konnen. Dariiber hinaus ist ein korrektes Ver-
standnis der Prozesse, welche die Sauerstoffverteilung aktuell beeinflussen, wichtig, um
Abschitzungen fiir mogliche zukiinftige Verdnderungen treffen zu konnen.

Globale Modelle sind ein wichtiges Werkzeug, um einen tieferen Einblick in bestim-
mende Prozesse fiir die Sauerstoffverteilung zu erhalten. In der vorliegenden Arbeit
werden drei verschiedene Ansitze beziiglich der biologischen Pumpe getestet, um das
Verstindnis von Prozessen, welche die Sauerstoffverteilung bestimmen, zu verbessern.
Dies wiederum bewirkt moglicherweise ein Verstindnis von sich ausdehnenden Sauer-

stoffminiumzonen unter Szenarien des globalen Wandels:

In dem zweiten Kapitel dieser Arbeit werden zwei gegensitzliche Riickkopplungen, wel-
che zukiinftige Sauerstoffkonzentrationen beeinflussen, in dem Erdsystemmodell mit-
tlerer Komplexitidt der Universitidt von Victoria (UVic ESCM) getestet. Diese Studie

zeigt, dass die durch Wirme hervorgerufene Phosphor-Sauerstoff Riickkopplung an der
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Sediment-Wasser-Grenzschicht und der dadurch mogliche Anstieg von freigesetztem Phos-
phor in dem Modell keine vorrangige Riickkopplung darstellt. Es ist anzunehmen, dass
andere Prozesse die Stirke des zukiinftigen Sauerstoffverlustes bestimmen.

Fiir das dritte Kapitel dieser Arbeit wird ein globales biogeochemisches Modell mit einem
Partikel-Aggregationsmodul gekoppelt. Dieses fiihrt unter Verwendung einer passenden
Parametrisierung zu einer verbesserten vertikalen und lateralen Darstellung von Sauerstoff-
minimumzonen im Vergleich zu einem Modell ohne Aggregation. Da weiterhin Unsicher-
heiten beziiglich der Parametrisierung der Partikelaggregation vorherrschen, scheint eine
Modellkalibrierung gegen einen beobachteten Partikeldatensatz notwendig zu sein.

In dem vierten Kapitel werden mit dem Partikelzerfall von groen Partikeln in kleinere
Partikel und der Vertikalwanderung von Mesozooplankton zwei weitere Prozesse, welche
die Partikeldynamiken beeinflussen, in das biogeochemische Modell integriert. Das Mo-
dell wird dariiber hinaus gegen beobachtete Partikeldaten, geloste inorganische Marker
und die Uberlappung von modellierten und beobachteten Sauerstoffminimumzonen op-
timiert. Diese Studie zeigt, dass hierdurch eine weitere Verbesserung der Darstellung
von Sauerstoffminimumzonen ermoglicht wird, weist jedoch darauf hin, dass eine re-
alistische Reprisentation von Partikeln in flachen und tiefen Wasserschichten zur sel-
ben Zeit nicht moglich ist. Dies fiihrt zu der Annahme, dass weitere wichtige Prozesse,
welche den Export von Partikeln verstirken, noch unbekannt sind und daher in der Mo-

dellparametrisierung nicht enthalten sind.
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1 Introduction

1.1 Motivation

The marine biological pump not only buffers atmospheric CO; but also helps to regulate
marine biogeochemical cycles as well as marine oxygenation. A substantial fraction of
the atmospheric CO; is taken up into the euphotic zone of the ocean. Carbon dioxide in
combination with nutrients is transformed into organic matter, which is transported into
the deep ocean and sequestered on long timescales [Sarmiento and Orr, [1991]]. This, in
turn, impacts the global carbon cycle and thus the climate.

Both, physical and biological, processes play a substantial role in regulating marine oxy-
gen conditions. In general, marine oxygen concentrations are determined by the balance
of ocean circulation (as an oxygen source) and oxygen-consuming biogeochemical pro-
cesses [Karstensen et al., [2008]. The particle flux profile, which depends on the rela-
tive rates of particle sinking and remineralisation, which consumes oxygen [Jokulsdottir,
2011]], has an increasingly dominant role in regulating oxygen concentration with increas-
ing depth. Therefore, oxygen is a sensitive tracer for physical and biological changes in
the ocean [Solomon et al., 2007].

In regions where oxygen concentration is lowest, the productivity and thus the fishing
rate is highest [[Chavez and Messi€, 2009]. As those oxygen-depleted regions are ex-
pected to expand [Schmidtko et al.l 2017] in the future and in combination with other
stressors like acidification [Miller et al., [2016], this could lead to a potential habitat loss
and thus a decrease in fish harvests in terms of number [Hughes et al., 2015]] and size
[Breitburg, 2002]. Fish provides 15% of the average animal protein uptake per capita for
4.5 billion people. Fishing-based revenues also indirectly provide food security for 10%
of the human population [Béné et al., 2015[]. This underlines the vulnerability of human
well-being to declines in ocean oxygen and the expansion of OMZs. Ocean productiv-
ity, marine diversity and biogeochemical cycling are strongly affected by reduced oxygen
concentrations [Stramma et al., 2011} Cooley, |2012]]. Thus, understanding processes that
determine low oxygen concentrations in the ocean and identifying feedbacks that are re-
sponsible for the expansion of regions with low oxygen conditions are important in the
anthropocene.

Biogeochemical models serve as a necessary tool to understand potential processes and
feedbacks leading to low oxygen conditions. However, global models exhibit different
parameterisations regarding the biogeochemistry as well as physics [Cabré et al., 2015]]
leading to large disagreements in the representation of oxygen depleted regions [Cocco
et al., 2013} Bopp et al., 2013]]. Bopp et al. [2013]] showed in their study that, depending
on the model, the volume of low-oxygen-waters varies over a wide range (see their Table
2). Even for a quite high criterion of 80 mmol m~3 the water volume with concentrations
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lower than the given criterion ranges between 24.1x10'3 m? and 363x10'> m?, while the
observed volume is 126x10'> m? [Bopp et al., 2013]. Global models therefore exhibit
high uncertainties in estimating the lateral and vertical extent of low-oxygen waters under
current and future conditions [[Cabré et al.| [2015]]. |Kriest and Oschlies| [2015]] show that
the suboxic volume is strongly linked to particle flux, i.e. an increasing sinking speed re-
duces water column particle remineralisation, decreases the suboxic volume and enhances
the burial in the sediment on long time-scales and vice versa. The challenge thus consists
in improving our understanding of essential processes such as particle dynamics, which
can than enhance the representation of marine biogeochemical interactions under steady
state conditions. This, in turn, potentially allows us to predict more reliably the expansion
of oxygen depleted waters and to identify driving factors and responsible feedbacks for
the future.

This thesis targets understanding biological processes that affect the oxygen distribution
under current conditions and feedbacks that potentially lead to an expansion of oxygen-
depleted regions under global change conditions using global models.

1.2 Marine oxygen distribution

Sediment records of black shales suggest that several periods of large-scale anoxia pre-
vailed throughout earth’s history [Schlanger and Jenkyns, |1976]. Holland| [2006] finds
that 3.85 billion years ago the ocean was mostly anoxic, followed by a mild oxygenation
0.54 billion years ago and relatively high oxygen levels in the present.

In the past 50 years, the global mean oxygen content decreased by 2% (i. e. 96 Tmol
yr~!) and oxygen-deficient layers in the water column, called oxygen minimum zones
(OMZs) [Paulmier and Ruiz-Pinol 2009], quadrupled [[Schmidtko et al.,|2017]. However,
the oxygen trend in a depth level of 300 dbar over the past 50 years strongly depends on
the considered region: In the tropics between 20°N and 20°S, the oxygen concentration
has decreased by 0.83 umol kg~ ! yr~!, whereas in the subtropics and some subpolar re-
gions the distribution is balanced, i.e. there are regions with decreasing and increasing
oxygen concentrations. Contrary to the negative global trend, the extratropics even ex-
hibit an increase in the oxygen concentration from 1960 to 2010 of 0.68 mol kg~ ! yr~!
(see Fig. [I.1]b) [Stramma et al., 2012].

As shown in Fig. a, global recent oxygen concentrations exhibit a decreasing trend
at the western continental boundaries spreading from the equator polewards mostly in a
depth between 100 m and 900 m [Karstensen et al., 2008]]. This pattern is depicted very
clearly by the Pacific but also by the Atlantic basin and the Arabian Sea [Stramma et al.,
2012]].

Water masses are roughly grouped into three categories depending on oxygen concentra-
tion: anoxic, suboxic and oxic. Anoxic waters exhibit no measurable dissolved oxygen
and a high amount of sulfide is released into the water [Karstensen et al., 2008], as e.g.
the Black Sea [Murray et al., 2005]. Suboxic waters are widely defined by oxygen levels
ranging between 2 to 10 mmol m—> [Bianchi et al., 2012] up to 50 mmol m~3 [Cabré
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2015]], whereas oxic describes water masses with higher oxygen concentrations. As
there is no common definition of OMZs existent in the literature, the choice of the OMZ-
criterion depends on two factors: As different species need different oxygen levels to
survive 2011]], the OMZ-citerion depends on the selected species. Moreover, the
Atlantic basin, for example, has a considerably higher oxygen threshold than the Pacific
basin, which, in turn, implies that using one criterion for both basins under- or overesti-
mates one of both OMZ-volumes. Thus, the estimated global OMZ-volume also strongly
depends on the defined threshold [Paulmier and Ruiz-Pinol 2009].

80°N

40°N

(a) 50°E 150°E 110°wW 10°wW (b)50°E 150°E 110°W 10°W

Fig. 1.1: Global mean oxygen concentration in umol kg~ (a) and changes in the oxygen
concentration in umol kg~ yr=! between 1960 and 2010 (b) both at 300 dbar. Figure is taken

from|Stramma et al. []201 ?]].

The marine oxygen concentration is generally based on the interplay of circulation, which
provides the ocean interior with oxygen, and oxygen-consuming biogeochemical pro-
cesses [Karstensen et al., 2008]]. For example in the tropics, the circulation in the *shadow
zones’ [Karstensen et al., [2008] is reduced and the productivity is very high, which in
combination leads to very low oxygen concentrations in this area (see Fig. [I.Ta). The
importance of both processes is still not completely understood and quantified.

1.3 Ocean deoxygenation

Likely reasons for the decreasing trend of oxygen concentrations over the past 50 years
consist in eutrophication in coastal areas [Rabalais et al., 2014]], which, in turn, consumes
oxygen, and moreover on global scale changing climate conditions since the preindustrial
due to increasing anthropogenic carbon emissions [Limburg et al., 2020]. It is expected
that the emissions will increase even further in the future, which, in turn, potentially leads
to a further decrease in the marine oxygen concentrations.
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This trend is confirmed by global models, which consistently show a decrease in the ma-
rine oxygen inventory of 2% to 4% between 1990 to 2090 - depending on the chosen
global change scenario [Matear and Hirst, 2003} Bopp et al., 2002} Oschlies et al., | 2008;
Cocco et al., 2013} Bopp et al., [2013]. Although the global mean oxygen concentration
and the size of OMZs are not necessarily correlated, it is expected that the volume of
OMZs will expand even further in the future.

Previous studies show that under global change conditions three main drivers for ocean
deoxygenation can be identified: (1) Changes in circulation, convective mixing and strat-
ification [Sarmiento et al., [1998], (2) decreased oxygen solubility due to higher ocean
surface temperature [Bopp et al., 2002] and (3) the effect of warming on biological pro-
duction, respiration and remineralisation [Bopp et al., 2002; Oschlies et al., 2008; Hof-
mann and Schellnhuber, 2010].

It is still unclear, which processes govern marine oxygen concentrations under current
conditions and deoxygenation under potential future global change conditions. This thesis
focusses in the following on two aspects regarding the biological pump: The particulate
flux determining remineralisation under current conditions as well as potential benthic
feedbacks from the sediment under future global warming conditions.

1.4 Biological pump

The biological pump [Volk and Hoffert, |1985] describes the uptake of dissolved and
photosynthetically produced particulate matter in the euphotic zone (0 down to ~100 m
depth), its vertical transport through the mesopelagic (~100 down to ~1000 m depth) and
potential remineralisation in the water column, and its deposition in the deep ocean or at
the sediment. The interaction between vertical flux of organic matter as well as biologi-
cal and physical processes leads to a gradient of marine nutrients, oxygen and carbon in
the water column [Meyer et al., 2016] as described below. The biological pump can be
divided into three steps: (1) The production of organic matter in the euphotic zone, (2) its
flux divergence and remineralisation in the water column, and finally (3) its deposition in
the deep ocean and on the sea floor [Le Moigne et al.| [2013] (see Fig. [I.2).

1.4.1 Production

The ocean absorbs CO, from the atmosphere via air-sea gas exchange and receives in-
organic nutrients via river runoff and atmospheric deposition. Moreover, the primary
production in the epipelagic open ocean is fuelled by upwelled recycled nutrients. The
uptake of inorganic carbon and nutrients enables phytoplankton to produce organic mat-
ter through photosynthesis in the euphotic zone. The produced organic matter is either
remineralized under oxygen consumption by microbes or metazoan consumers, or sinks
out of the euphotic zone through the mesopelagic into the deep ocean.
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1.4.2 Flux divergence and remineralisation in the water column

The transport from the euphotic zone through the mesopelagic takes place through phys-
ical transport of dissolved organic matter and particulate organic matter as well as mi-
grating zooplankton and gravitational sinking of particulate organic matter
2012]. The particulate organic matter sinking into the ocean interior is not only
a food source for deep organisms [Stukel et al.|, 2019]], but is also important for regu-
lating air-sea gas exchange [Sarmiento and Toggweiler [1984; [Kwon et al., 2009] and
the volume of OMZs through remineralisation [Kriest and Oschlies, 2015]. The dual
processes that regulate export, the rate of particle sinking and the rate of particle rem-
ineralisation [Jokulsdottir, 2011]], are both strongly linked to environmental conditions,
ecosystem structure and particle characteristics [Stemmann et al., 2004].

Marine aggregates consist of living organisms, organic matter, zooplankton and nekton
fecal pellets, transparent exopolymer particles (TEP) as well as minerals of biogenic and
terrestrial origin [McDonnell, 2011]]. Their size ranges from submicron (colloidal) to
macroscopic size (marine snow) [Wells and Goldberg),[1992; Burd and Jackson, 2009, i.e.
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a size of millimetres to centimetres [Alldredge and Gotschalk, 1988} Burd and Jackson,
2009|]. Aggregates are formed by particles sticking together, which increases the likeli-
hood they reach the deep ocean. [Alldredge et al., | 1990]. Previous studies describe re-
lationships between aggregate size and mass [Stemmann et al., [2004; McDonnell, 201 1],
carbon and nitrogen content [Alldredgel |1998], settling speed [Alldredge and Gotschalk],
1988]], coagulation rate [Jackson and Lochmann, |1992] and the extent of colonization of
microbes and zooplankton [Kigrboe, |2003|]. However, many of those relationships are
limited to the euphotic zone and it is still unclear if these relationships can be extrapo-
lated to the mesopelagic [McDonnell, 2011]].

The described size spectrum is linked via processes that affect the size, i.e. particle aggre-
gation and its breakup [Burd and Jackson, [2009]]. Large aggregates are formed by smaller
particles sticking together [Alldredge et al., |[1990; |Burd and Jackson, |2009]]. This process
is characterised by physical interactions, namely the diffusion of particles towards each
other (Brownian motion), movement of particles through turbulent shear and differential
settling [McCavel (1984} Jackson and Burd, 2015]]. Particle size, mass and concentration,
in turn, determine the collision rate and thus also the aggregation rate. Although some
studies do not consider aggregation to be an important process determining the entire flux
from the euphotic zone through the mesopelagic to the deep ocean interior [Burd and
Jackson, 2009], several studies show that aggregation and thus its transformation from
small particles into larger and faster aggregates is a necessary process to prevent them
from remineralisation and to carry them into the deep ocean [McCave, |1975; |[Fowler and
Knauer, 1986; Alldredge and McGillivary, |1991]]. However, the presence of small par-
ticles in the deep ocean [Kiko et al.l [2017] suggests that the breakup of particles can
introduce smaller particle size fractions to the deep ocean [Ruiz and Izquierdo, |1997;
Dilling and Alldredgel 2000; Burd and Jackson, 2009]. The breakup of aggregates into
their primary components, without losing mass, and can be caused, for example, by phys-
ically induced particle shear [Stemmann et al., 2004; Turner, |[2015].

However, aggregates are not only passively affected by gravitational sinking [Volk and
Hoftert, 1985]] and breakup/shedding, but also by active biological processes [Stemmann
et al., 2004; [Steinberg et al., 2002]]. Sloppy feeding by zooplankton and microbial degra-
dation are responsible for a loss of mass and number of aggregates [Dilling and Alldredge,
2000; Stemmann et al., | 2004] and for changing aggregate characteristics over the full wa-
ter column. Particle attached bacteria degrade aggregates through the release of exoen-
zymes [Biddanda and Pomeroy, |1988]]. Based on their observations, Ploug and Grossart
[2000] estimated the microbial degradation on aggregates at a rate of 0.083 d !,

For a realistic representation of the particulate flux, a closer look at zooplankton diurnal
vertical migration (DVM) is necessary [Aumont et al., [2018; |Archibald et al., 2019]. Zoo-
plankton graze aggregates and phytoplankton in the euphotic zone during the night. To
hide from predators during daytime, several zooplankton species migrate into the deeper
ocean, i.e. 300 to 600 m depth [Kiko et al., 2017], where they egest their gut content
as dense and fast sinking faecal pellets [Longhurst et al., [1990; |Steinberg et al., |2002;
Archibald et al., 2019]. The contribution of active flux by migrating zooplankton to total
particulate flux is not well constrained and ranges in literature between 18% and 84%
[Kiko et al., 2020; |[Kelly et al., [2019; Hernandez-Leon et al., 2019]]. Zooplankton thus
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serves as an aggregate shuttle from the surface to the deeper ocean and has an important
impact on the overall particle flux [Kiko et al., 2020].

Remineralisation of organic matter depends on four factors: The first is temperature,
which increases remineralisation [Segschneider and Bendtsen, [2013;|Marsay et al., [2015]].
Moreover, oxygen, as the final electron acceptor, directly determines respiration rate of
microbes [Ploug, 2001} |Iversen and Ploug, 2013]] and metazoans [Seibel, [201 1; Kiko and
Hauss, 2019]. An increasing aggregate age during settling through the water column
increases the density and thus the sinking speed [Guidi et al., 2008|]. Ballast, which de-
scribes the amount of biominerals in the aggregates, enhances the sinking speed and thus
reduces remineralisation [Ploug et al., 2008; Bach et al., 2016].

In conclusion, food web dynamics [Boyd et al., [1999; [Wilson et al.| |2008]], aggregation
and shedding processes [Burd and Jackson, 2009] oxygen availability [Devol and Hart-
nett, 2001}; (Guidi et al., 2015]] and temperature [Marsay et al., 2015] thus directly deter-
mine sinking and remineralisation, and finally the overall particulate export and flux from
the euphotic through the mesopelagic into the deep ocean.

1.4.3 Benthic processes

For a correct representation of biogeochemical tracers as well as OMZs in the global
ocean it is necessary to include benthic processes [Maier-Reimer, [1993; DeVries et al.,
2014; Kriest and Oschlies, [2013]].

After particle sinking through the water column, a fraction of the exported organic matter
is buried in sediments on long timescales. Another fraction is released by remineralisation
processes back into the water column. Thus, nutrients are released and again bioavailable
for marine organisms. Both processes, burial and release, are highly dependent on the
availability of electron acceptors in the sediments, such as oxygen. Under suboxic condi-
tions, the increased benthic release of phosphate and iron from the sediments stimulates
biological production in the sunlit surface layer, further intensifying the oxygen depletion
in the underlying water column [Ingall and Jahnkel [1994; Wallmann, [2010], while oxic
conditions increase the phosphate burial in the sediment on long timescales.

It can be concluded that changing conditions from the surface ocean layer through the
water column down to the sediment can have an important impact on particles and thus
marine nutrient and oxygen concentrations, as well as on features such as OMZs.

1.4.4 Potential feedbacks of the biological pump on long timescales

The biological pump exhibits potential feedback loops on long timescales. This section
focusses on the description of a potential negative feedback loop of the biological pump
to atmospheric CO; as well as a positive feedback loop to marine OMZs (see Fig. [1.3).
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Fig. 1.3: Potential feedback loops of the biological pump on long timescales. Illustration is based
on the references cited in the text.

The negative feedback on long timescales, i.e. timescales of 10000 to 100000 years, arises
through the assumption of increasing air temperature under global change conditions due
to enhanced anthropogenic carbon dioxide emissions. Higher temperatures are assumed
to be linked to enhanced weathering rates on land 11992], e.g. apatite, which
increases the phosphorus flux into the marine environment by river input. This, in turn,
strengthens primary production in the euphotic zone and the export in the mesopelagic
as described by Tsandev and Slomp| [2009]. Export production, deep remineralisation
as well as burial potentially enhance the marine uptake of atmospheric CO,
[1991]], on short up to millennial timescales. Although it is assumed that the link
between export and deep remineralisation strongly depends on the flux profile, the link
between deep remineralisation and benthic burial still remains unclear. The carbon se-
questration, in turn, potentially reduces CO; concentration in the atmosphere and the air
temperature, limits the weathering on land and thus constitutes a negative feedback loop
on long timescales (see Fig. [I.3).
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The positive feedback is generally induced by increasing export into the mesopelagic and
deep remineralisation, which is strongly linked to enhanced oxygen consumption [Wall-
mann, |2010] and increasing OMZ volume. This, in turn, is assumed to fuel benthic release
and preferential reminalisation, which constitutes a positive feedback to the marine P in-

ventory (see Fig. [I.3).

1.5 Particle dynamics in models

As shown above, particle characteristics and dynamics are complex and controlling fac-
tors are not yet completely understood. As the high number of model parameters more-
over impedes the model parametrisation, an appropriate model assessment is necessary
[Arhonditsis et al., [2004]]. In the following, two different approaches of modelling parti-
cle dynamics will be described in detail and afterwards it will be focussed on how such
models can be assessed against observations.

1.5.1 Approaches of modelling particle dynamics

Three approaches are suggested in the literature when modelling particle dynamics: (1)
suggesting a ballast effect on the remineralisation length (2) describing the particle flux
implicitly with depth, called the implicit approach, (3) or using explicit assumptions about
the sinking speed for each individual particle size class, called the explicit approach here-
after.

The ballast approach suggests that minerals of biogenic and lithogenic origin increase
the density and thus the sinking speed of particles [Armstrong et al., 2009]. As the re-
lationship between particle sinking speed and the mineral component of particles is not
yet understood [Lee et al., 2009], this study does not go into detail regarding models that
include the ballast effect, which are described e.g. in|Bach et al.|[2016] for a 1D-model
and in|Gehlen et al.| [2006] for a global biogeochemical model.

The simplest method is to prescribe the particle flux implicitly. As it describes the particle
flux directly, it is a rather distinct and pragmatic approach. This section focusses on three
attempts with varying complexity within the implicit approach to describe the particle
flux profile.

The simplest approach assumes a number of particles at the surface with equal particle
mass. The sinking speed and decay rate of every single particle is assumed to be uniform
[Kriest and Oschliesl 2008]], leading to the following equation:

F(z) = F(0)-¢~"/w (%) (1.1)

In this equation, F(z) describes the particle flux at a specific depth, z, r is the constant
decay rate of particles and w the constant sinking speed. The particle flux decreases with
depth (see also in Fig. [I.4] left panel, green line). For example Bacastow et al|[1991] use
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this approach in a carbon cycle model and find that including only particulate organic car-
bon (POC) leads to a strong oxygen depletion of deep water, which is caused by nutrients
that are trapped in the deep ocean. However, including POC and DOM, dissolved organic
matter, in the model solves the problem of nutrients trapped in the deep ocean and thus
reduces the model-data misfit [Bacastow et al., [1991].

0 | O I | | | |
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2000 - 2000 - L
3000 - - 3000 - -
4000 A 4000 4———T—T 71T T 1

107" 10° 10! 0. 40. 80. 120. 160.
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Fig. 1.4: Modelled particle dynamics using the implicit approach focussing on the particle flux
(left panel, green line: remineralisation and sinking speed are constant, red line: power-law
function, black line: ensemble of particles with specific sinking speed) and the explicit approach
with a focus on the average sinking speed of the particles (right panel, green line: vertically
constant sinking speed, red line: depth-dependent sinking speed, black line: depth-dependent
sinking speed and detritus concentration). Figure is taken from Kriest and Oschlies| [2008]].

More frequently, the particle flux from the surface to the ocean interior is described by an
empirically parametrised power-law function [Martin et al.,[1987] (see also in Fig. [1.4]
left panel, red line):

F(z) =F(0)-(z/20)"" (1.2)

The so called ’Martin curve’ is a simplified representation of the particle flux, where F
is the particle flux, z defines the depth in metres and b is the exponent that describes the
particle flux attenuation. This equation is based on in situ deep-moored and free-floating
sediment traps off Peru and California [Martin et al.l |1987] and exhibits a decreasing
particle flux with depth, which is either linked to depth-dependent remineralisation or
sinking speed [Kriest and Oschlies, |2008]. Based on these observations, the power b is
set to a value of 0.858 [Martin et al., 1987]]. Najjar et al.|[2007] implement this power-law-
function-approach in a global model utilising a b-value of 0.9 and find, as in the previous
approach using constant remineralisation and sinking speed [Bacastow et al., |1991], an
accumulation of nutrients in the ocean interior, namely nutrient trapping, although depth-
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dependent remineralisation is included [Najjar et al., 2007]. Due to global variations
in physical and biological factors several recent studies figure out that b-values range
between 0.36 and 1.6 - a broad range which is applied and examined for small-scale
observations [Martin et al., 1987 Berelson, [2002; |[Buesseler et al., 2007|] and modelling
studies with globally constant b-values [Kwon and Primeau, 2006} |[Kriest and Oschlies),
2008; Kriest et al. 2012; Kwon et al., 2009]]. It is thus suggested that the empirically
parametrised power law function neglects changes and variability in this highly complex
system.

A more complex approach assumes a particle ensemble at the surface. In this particle
ensemble each particle has its characteristic sinking speed depending on size. The decay
rate is constant. As it is moreover assumed that the sinking speed of the particles increases
with the particle size, this would result in a high remineralisation of small particles in the
upper ocean and large particles reaching the deeper ocean. This, in turn, implies that the
particle size and thus the sinking speed is increasing with depth [Kriest and Oschlies,
2008]| (see also in Fig. [I.4] left panel, black line). To describe the particle flux from an
ensemble of particles the following equation is used:

F o< f(z,€) (1.3)

In this equation, z is again the depth and € is the log-log slope of a particle size distri-
bution, i.e. between particle size and particle number. A high € thus corresponds with a
high amount of small particles, while an decreasing € is linked to an increasing amount
of larger particles. DeVries et al.| [2014]] implement this approach into a global model
and find that the model is not able to fit to both observed datasets, nutrient distributions
and sediment traps. However, integrating benthic processes including a burial component,
which removes organic matter on long timescales in the sediment, combined with a low
decay rate of particles solve this problem.

While the previous implicit approach describes the overall particle flux directly, the ex-
plicit approach prescribes sinking speed and remineralisation for groups of particles. Tak-
ing into consideration the number of particles and their specific sinking speed enables the
calculation of the particle flux. Under the umbrella of the explicit approach, again three
methods of different complexity can be distinguished to determine the particle flux, which
will be described in the following.

The simplest approach to describe the particle flux explicitly consists in assuming a con-
stant sinking speed for each particle over the full water column

F(z)=w-C(z), (1.4)

where F' is again the overall particle flux, w the constant sinking speed and C describes
the detritus concentration, which is dependent on depth (see also in Fig. [[.4] right panel,
green line). In this approach the sinking speed is assumed to be vertically constant. This
approach is used in [Schmittner et al.| [2005]] in a global model. They show that a high
sinking speed reduces the probability that nutrients are trapped in the deep ocean. More-
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over, they find that particles at the surface layer in the eastern tropical Pacific exhibit a
high sensitivity to particle sinking speed. Although a sinking speed of 5 m d~! exhibits
the best fit between model and observations, a constant sinking speed and remineralisa-
tion rate over the water column results in an underestimation of the POC-flux in the deep
ocean interior [Schmittner et al., [2005]].

Thus, a more complex approach is developed assuming an increasing sinking speed with
depth calculated by:

F(z)=a-z-C(2). (1.5)

In this equation, a is the rate of increase of sinking speed with depth, z, and C describes
again the detritus concentration, which is depth-dependent. In fact, the sinking speed in
this approach is linearly increasing with depth, which is based on the assumption that
the mean particle size is increasing with depth, which, in turn, affects the sinking speed
(see also in Fig. right panel, red line). |Keller et al. [2012] modify the approach by
Schmittner et al. [2008]] of using a constant detritus sinking below 1000 m depth in the
University of Victoria Earth System Climate Model (UVic). However, Keller et al.|[2012]]
assume a sinking speed of 14 m d~! at the surface, which increases linearly with depth
over the full water column, and find that the model tends to underestimate the particle flux
compared to the observed dataset by Honjo et al. [2008] based on sediment traps. Finally,
different model parameterisations induce a broad range of model dynamics and thus also
exhibit different representations of the particle flux.

The most complex approach of the three described approaches assumes particles of differ-
ent size at the surface. Each particle has its characteristic sinking speed, which increases
with particle size. Together with a constant (size-independent) remineralisation rate, this
approach implies an enhanced sinking speed with depth, as only large particles sink to the
deeper ocean before being remineralised. To calculate the particle flux for discrete size
classes, the following equation is defined:

F(z)= Zwi(z) -Ci(2) (1.6)

The depth-dependent particle flux F(z) is calculated by the product of the sinking speed,
w, and the detritus concentration C, both dependent on depth, z, which are summed up
over all particle size classes, i. Within this approach a distinction can be drawn between
models using one small and one large particle size class [Aumont and Bopp, 2006; Au-
mont et al., 2015, 2017; Yool et al., [2011]] and models that include an infinite number of
particle size classes [Oschlies and Kéhler, [2004; Maier-Reimer et al., [2005; Gehlen et al.,
2006]] within a given particle size spectrum.

Gehlen et al.| [2006] find in their study that including a parameterisation of an infinite
number of particle size classes improves the ratio of particle export to primary production
compared to observations. Although the model is not able to reproduce the strong de-
crease of the particle flux with depth, the authors assume that the formation of aggregates
is important to increase the turnover of the biological pump [Gehlen et al., 2006].
Finally, as in a model, which includes discrete particle size classes, a definition of the size
spectrum is not necessary, this approach is more flexible compared to an infinte number
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of particle size classes. However, this approach also requires higher computing time lead-
ing to the assumption that implementing a particle size spectrum is more convenient using
global or large-scale models. Thus, in the global biogeochemical model MOPS (Model of
Oceanic Pelagic Stoichiometry), which is used in two of the following studies, the particle
size distribution is described by the spectral slope between number and mass of particles
[Kriest and Evans, 2000]. Size-dependent aggregation, sinking and particle breakup en-
able a changing slope of the particle size distribution. The described approach using a
similar parameterisation has already been applied by Gehlen et al.| [2006], (Oschlies and
Kahler| [2004] and [Schwinger et al.|[2016]].

1.5.2 Model assessment and calibration

As described above, a large number of model parameters have a decisive impact on model
dynamics. For a good fit between model and observations an appropriate model choice
is necessary. A highly complex system in combination with limited computing power
as well as a limited number of observations thus impedes model calibration and makes
model assessment against observed datasets necessary. In the optimal case, an appropriate
parametrisation leads to model results that fit observed datasets and thus exhibit the low-
est possible misfit between model results and observations [Schartau et al., 2017]]. To find
the best possible model fit, ’conventional modelling procedures’ are developed [Arhon-
ditsis et al., 2004]]. This thesis focusses on a sensitivity study, a subjective, unsystematic
parameter adjustment and an objective parameter optimisation.

The first step, the sensitivity analysis, explores the model’s sensitivity towards circulation
and forcing as well as selected biogeochemical model parameters. It is essential to select
an appropriate model complexity and structure as well as to estimate parameters as good
as possible [Arhonditsis et al., 2004]. As a higher model complexity does not necessarily
improve the model fit to observations, an appropriate parameterisation is equally impor-
tant. This, in turn, implies that a poor model performance can also be induced by an
inappropriate parameter choice [Kriest et al., 2010].

In the model calibration, most of the models are adjusted following the range of observed
or literature findings. However, this step does not necessarily ensure the best possible
model fit as the parameter choice or model structure could be inappropriate [Arhondit-
sis et al., 2004]. Thus, finding the optimal parameter set is only possible after a very
detailed investigation of the full parameter space for multiple parameters [Kriest et al.,
2012; Arhonditsis et al., 2004]. Model optimisation thus reduces the defined cost func-
tion aiming at minimising the misfit between model and observations [Arhonditsis et al.,
2004]]. Most of the modelling studies neglect this step [Arhonditsis et al., 2004] possibly
due to high computational demand. Moreover, Kriest et al.| [2017] show in their study,
that a single-objective optimisation against observed climatological nitrate, phosphate and
oxygen concentrations can enhance the model fit in terms of dissolved inorganic tracers
but also of independent diagnostics. But even when the model exhibits the best fit to a
given variable, this does not necessarily ensure the best fit to another variable due to po-
tential contrary processes included in the variables [Moore and Doneyl [2007; |[Kriest and
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Oschlies, 2013 [Sauerland et al., [2019]].

A multi-objective optimisation is potentially able to overcome this problem by finding a
compromise solution for both objectives, i.e. an ensemble of parameter sets, which con-
stitutes an approximation of the Pareto Front (see Fig. [I.5) [Sauerland et al.,[2019].. In this
case, one objective function, i.e. the model-data misfit with respect to certain target ob-
servations, ranges between zero and one, where zero represents the best possible fit. The
squared minimum distance between coordinate origin and possible solutions represents
the minimum misfit for the equally weighted combination of both objectives (called the
"knee’ of the Pareto Front). Depending on the research question, it is possible to choose
a solution with varying weightings between both objectives, e.g. the downright corner of
the Pareto Front represents an overweighting regarding the second objective, f>, and the
top left an overweighting of the first objective, fi (see Fig. [I.5)).
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Fig. 1.5: The Pareto Front shows potential best solutions of the weighted deviation normalised by
global mean observations between two objectives (f| and f,) for a given parameter space. The
squared minimum distance between coordinate origin and possible solutions represents the best
solution for the equally weighted combination of both objectives. Figure is taken from|Sauerland

et al{[2019].

In conclusion, model optimisation provides a very systematic approach to calibrate mod-
els targeting observed datasets. Moreover, the approach of multi-objective optimisation
offers a broad range of solutions, which enables to answer several questions with different
foci combined in one optimisation.

For this thesis, the multi-objective optimisation offers an opportunity of finding a param-
eterisation that constitutes the best possible representation of the vertical and horizontal
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extent of OMZs, the number and size of marine particles and dissolved inorganic tracers
compared to observations.

1.6 Thesis overview

As emphasised in section representing current OMZs and estimating their future ex-
pansion is highly uncertain - under steady state conditions as well as under future global
change conditions. This thesis therefore aims at understanding processes and interac-
tions regarding the biological pump that are of relevance for an improved representation
of OMZs over space and time. The first study focusses on feedback loops between ben-
thic processes and the marine oxygen inventory under future climate change conditions
(RCP8.5 scenario), while the second and third studies both investigate export processes
with a global model that includes detailed particle dynamics such as aggregation, thereby
potentially improving the representation of OMZs under steady state conditions.

This thesis therefore addresses the following questions:

1. Under a business as usual global change scenario, which is the dominant feedback
determining the expansion of OMZs - the positive feedback between benthic release
of phosphorus and marine biological production or the negative one between marine
uptake of CO; and air temperature (Chapter 2)?

2. Does a global biogeochemical model that includes particle dynamics improve the
representation of OMZs under steady state conditions (Chapter 3)?

3. Does calibration against observed particle abundance and size help to improve
simulated oxygen distribution, and are additional model processes besides aggrega-
tion necessary to improve the model fit? (Chapter 4)?

In the following, the chapters are summarised.

Chapter 2 studies two different feedback loops based on increasing phosphorus weath-
ering under a RCP 8.5 scenario. On the one hand, a positive feedback loop involving
increased remineralisation may extend OMZs, which, in turn, enhances the release of
benthic phosphorus and therefore the global phosphorus inventory. On the other hand a
negative feedback arises by an increased marine uptake of atmospheric CO; leading to
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decreasing air temperature and therefore to a decline of phosphorus weathering, which
reduces the marine phosphorus inventory. This study shows that the benthic release from
the sediment is not a main factor for the expansion of OMZs. Instead, the study turned out
that the negative feedback involving enhanced weathering, an increased marine uptake of
CO; and thus a limited warming of the surface air temperature, which, in turn, potentially
counteract the expansion of OMZs, is the more significant effect.

This chapter is based on the publication: Niemeyer D., Kemena T. P., Meissner K. J.,
Oschlies A. (2017), A model study of warming-induced phosphorus—oxygen feedbacks in
open-ocean oxygen minimum zones on millennial timescales, Earth Syst. Dyn., 8, 357-
367. doi: 10.5194/esd-8-357-2017.

AO, KIM and TPK initiated, conceived and designed the experiments. TPK performed
the experiments. DN analysed the data and wrote the manuscript with contributions from
AO, KIM and TPK.

Chapter 3 presents a parameter sensitivity study of a global biogeochemical model in-
cluding a particle aggregation module and its impact on simulated dissolved inorganic
tracers and OMZs under steady state conditions. This study shows that including an ag-
gregation module improves the representation of OMZs. Moreover, a good model fit is
tightly linked to a high model resolution, porous particles, an intermediate-to-high sinking
speed and a moderate-to-high stickiness. Calibrating against nutrients and oxygen seems
to be not sufficient for global model calibration and optimisation against an observed par-
ticle dataset is necessary to improve the representation of OMZs.

This chapter is based on the publication: Niemeyer D., Kriest 1., Oschlies A. (2019), The
effect of marine aggregate parameterisations on nutrients and oxygen minimum zones in a
global biogeochemical model, Biogeosciences, 16, 3095-3111, doi: 10.5194/bg-16-3095-
2019.

DN, IK and AO conceived the study. DN performed and analysed the simulations. DN
wrote the manuscript with contributions from all co-authors.

In Chapter 4, a global biogeochemical model is optimised and compared towards a global
observed dataset of marine particles, dissolved inorganic tracers and the vertical and hori-
zontal extent of OMZs. Moreover, two new processes are added in the model, namely par-
ticle breakup, which reduces the size of the particles, and zooplankton migration, which
transports the particles into the ocean interior. The simulations show that an increasing
number of processes influencing the particle dynamics improves the representation of
OMZs. Despite this improvement, some processes seem to be not captured yet as there
is a trade-off between modelled and observed particles. Integrating more processes that
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enhance particle flux could further improve the representation of OMZs.

This chapter is a manuscript in preparation by Niemeyer, D., Kriest, 1., Kiko, R., and
Oschlies, A. and with potential contributions by Guidi, L., Hauss, H., McDonnell, A.,
Picheral, M., Rogge, A., Sauerland, V., Stemmann, L. and Waite, A.

DN, IK and AO initiated and conceived the study. DN performed the experiments, anal-
ysed the data and wrote the manuscript with contributions from all co-authors. The ob-
served UVP 5 dataset has been compiled by DN and RK.
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2 A model study of warming-induced phosphorus-oxygen
feedbacks in open-ocean oxygen minimum zZones on
millennial timescales

This chapter is based on the paper A model study of warming-induced phosphorus-
oxygen feedbacks in open-ocean oxygen minimum zones on millennial timescales’ pub-
lished in Earth System Dynamics.

Citation: Niemeyer, D., Kemena, T. P., Meissner, K. J., and Oschlies, A.: A model study of
warming-induced phosphorus—oxygen feedbacks in open-ocean oxygen minimum zones
on millennial timescales, Earth Syst. Dynam., 8, 357-367, https://doi.org/10.5194/esd-8-
357-2017, 2017.
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Abstract. Observations indicate an expansion of oxygen minimum zones (OMZs) over the past 50 years, likely
related to ongoing deoxygenation caused by reduced oxygen solubility, changes in stratification and circulation,
and a potential acceleration of organic matter turnover in a warming climate. The overall area of ocean sediments
that are in direct contact with low-oxygen bottom waters also increases with expanding OMZs. This leads to a re-
lease of phosphorus from ocean sediments. If anthropogenic carbon dioxide emissions continue unabated, higher
temperatures will cause enhanced weathering on land, which, in turn, will increase the phosphorus and alkalinity
fluxes into the ocean and therefore raise the ocean’s phosphorus inventory even further. A higher availability of
phosphorus enhances biological production, remineralisation and oxygen consumption, and might therefore lead
to further expansions of OMZs, representing a positive feedback. A negative feedback arises from the enhanced
productivity-induced drawdown of carbon and also increased uptake of CO; due to weathering-induced alkalin-
ity input. This feedback leads to a decrease in atmospheric CO, and weathering rates. Here, we quantify these
two competing feedbacks on millennial timescales for a high CO, emission scenario. Using the University of
Victoria (UVic) Earth System Climate Model of intermediate complexity, our model results suggest that the pos-
itive benthic phosphorus release feedback has only a minor impact on the size of OMZs in the next 1000 years.
The increase in the marine phosphorus inventory under assumed business-as-usual global warming conditions
originates, on millennial timescales, almost exclusively (>80 %) from the input via terrestrial weathering and

causes a 4- to 5-fold expansion of the suboxic water volume in the model.

1 Introduction

Oxygen minimum zones (OMZs) have more than quadru-
pled over the past 50 years and it has been suggested that
this expansion is related to recent climate change (Stramma
et al., 2008; Schmidtko et al., 2017). However, current CO;
emission-forced models are challenged to reproduce this ex-
pansion in detail (Stramma et al., 2012; Cabré et al., 2015).
There are at least three different processes that can have an
impact on the size of OMZs in a warming climate: ocean
warming and its impact on solubility of O; in the ocean
(Bopp et al., 2002), changes in ocean dynamics, e.g. strat-

ification, convective mixing and circulation (Manabe and
Stouffer, 1993; Sarmiento et al., 1998), biological production
effects (Bopp et al., 2002) including possible CO,-driven
changes in stoichiometry (Oschlies et al., 2008) and CO,-
induced changes in ballasting particle export (Hofmann and
Schellnhuber, 2010). Here, we investigate how changes in bi-
ological production and subsequent remineralisation can af-
fect OMZs in addition to the above-mentioned thermal and
dynamic effects. We focus on changes in the phosphorus
(P) cycle. P is the main limiting nutrient on long timescales
(Tyrell, 1999; Palastanga et al., 2011) and we examine possi-
ble effects of changes in the P cycle on millennial timescales.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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The major source of P for the ocean is river input (Fil-
ippelli, 2008; Payton and McLoughlin, 2007; Follmi, 1996;
Palastanga et al., 2011; Froelich et al., 1982), which is deter-
mined by terrestrial weathering of apatite (Filippelli, 2002;
Follmi, 1996). The main factors controlling terrestrial weath-
ering are temperature, precipitation and vegetation. Higher
temperatures are generally associated with enhanced precip-
itation and occur in many places with higher terrestrial net
primary productivity (Monteiro et al., 2012), which all tend
to increase weathering rates (Berner, 1991).

It is difficult to determine how much of the globally weath-
ered P enters the ocean in a bioavailable form. Today, about
0.09-0.15Tmola~! of prehuman, potentially bioavailable
P is transported globally by rivers including dissolved or-
ganic and inorganic P, particulate organic P and iron-bound
P (Compton et al., 2000). About 25 % of this potentially
bioavailable P is trapped in coastal estuaries and will not en-
ter the open ocean (Compton et al., 2000). Ruttenberg (2004)
estimated a bioavailable P flux under pre-industrial condi-
tions including dissolved P and bioavailable particulate P
(35 % of total particulate P) of 0.24—-0.29 Tmol P a1 exclud-
ing the atmospheric input (Ruttenberg, 2004). Marine organ-
isms take up P most easily as dissolved inorganic P (DIP).
Riverine measurements suggest that only a small fraction of
the total P (0.012 to 0.032 Tmol a—!) enters the ocean as DIP
(Filippelli, 2002; Harrison et al., 2005; Compton et al., 2000;
Wallmann, 2010; Palastanga et al., 2011; Ruttenberg, 2004).
However, passing through estuaries can increase the fraction
of DIP by 50 % (Froelich, 1984) to 80 % (Berner and Rao,
1994).

After taking up the bioavailable P for photosynthetic pro-
duction of biomass, a large fraction of the newly produced
organic matter is exported out of the euphotic zone as detri-
tus (6.42 Tmol Pa~!, according to the model study by Palas-
tanga et al., 2011) and the vast majority of this exported or-
ganic matter is remineralised in the deeper ocean by bac-
teria (6.26 TmolPa™!; Palastanga et al., 2011), which is
an oxygen consuming process. A small fraction of the ex-
ported organic matter is deposited at the sediment surface
(0.16 Tmol P a1 Palastanga et al., 2011), about 20 % of the
deposited P is buried in the sediments on long timescales
(0.032 Tmol P a~l; Palastanga et al., 2011) and the remaining
80% (0.13TmolPa~!; Palastanga et al., 2011) is released
back into the water column as DIP, where it is again avail-
able for the uptake of marine primary producers (Palastanga
et al., 2011; Wallmann, 2010).

The processes of burial and release of P are redox depen-
dent. Under oxic conditions the burial rate is high, while un-
der suboxic conditions the benthic release of P is elevated
(Ingall and Jahnke, 1994; Kraal et al., 2012; Wallmann, 2010;
Slomp and Van Cappellen, 2007; Floegel et al., 2011; Lenton
and Watson, 2000; Tsandev and Slomp, 2009). The redox-
dependent release of P into the water column and the de-
crease in marine oxygen due to remineralisation therefore
represent a positive feedback loop on marine biological pro-
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Figure 1. Possible feedbacks in the global phosphorus cycle under
climate warming conditions.

duction (see Fig. 1). Although the feedbacks between ocean
and atmosphere are complex (Sabine et al., 2004), we as-
sume that an enhanced detritus export into the ocean interior
results in an increased marine uptake of atmospheric CO;
(Sarmiento and Orr, 1991). Consequently, surface air tem-
peratures decrease with decreasing atmospheric CO; concen-
trations, which, in turn, leads to lower weathering rates (see
Fig. 1).

These redox-dependent benthic P fluxes have been inves-
tigated in a previous study with the HAMOCC global ocean
biogeochemistry model by Palastanga et al. (2011). Palas-
tanga et al. (2011) show that doubling the input of dissolved
P from rivers results in an increased benthic release of P.
This leads to a rise in primary production as well as in oxy-
gen consumption, which in turn affects the oxygen availabil-
ity in sediments. The benthic release of P acts therefore as
a positive feedback on expanding oxygen minimum zones
on timescales of 10000 to 100000 years (Palastanga et al.,
2011).

Other studies on marine oxygen deficiency focused on
the geological past, especially the mid-Cretaceous warm pe-
riod (120-80 Ma) (Tsandev and Slomp, 2009; Handoh and
Lenton, 2003; Bjerrum et al., 2006; Follmi et al., 1996). Sev-
eral periods of oceanic oxygen depletion have been inferred
from sediment data of black shales (Schlanger and Jenkyns,
1976), for example, for the Cretaceous oceanic anoxic event
2 (OAE) at the Cenomanian—Turonian boundary (93.5 Myr).
Whether processes such as surface warming, sea-level rise
(Handoh and Lenton, 2003), and possibly a slow-down of the
ocean overturning circulation and vertical mixing (Monteiro
et al., 2012; Tsandev and Slomp, 2009; Ruvalcaba Baroni
et al., 2014) — as assumed for the Cretaceous — will lead to
widespread oxygen depletion in the future is a reason of con-
cern. Consequently, a better understanding of biogeochem-
ical processes associated with Cretaceous OAE might help
assess the risk of possible future events of low marine oxy-
gen concentrations (Tsandev and Slomp, 2009).
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In contrast to previous studies that focus on the geologi-
cal past, we investigate possible future changes over the next
1000 years using an Earth System Climate Model of interme-
diate complexity to investigate the feedbacks between the P
cycle and OMZs under the extended Representative Concen-
tration Pathways Scenario 8.5 (RCP8.5) of the Intergovern-
mental Panel on Climate Change (IPCC) ARS report. The
RCP8.5 scenario is characterised by an increase in atmo-
spheric CO; concentrations and associated with an increase
in radiative forcing of up to 8.5 W m~2 by year 2100 (in com-
parison to pre-industrial conditions) and is also known as the
“business as usual” scenario (Riahi et al., 2011).

2 Methods

2.1 UVic model

The University of Victoria Earth System Climate model
(UVic ESCM) version 2.9 (Weaver et al.,, 2001; Eby et
al., 2009) is a model of intermediate complexity and con-
sists of a terrestrial model based on TRIFFID and MOSES
(Meissner et al., 2003) including weathering (Meissner et al.,
2012), an atmospheric energy—moisture balance model (Fan-
ning and Weaver, 1996), a CaCOs3-sediment model (Archer,
1996), a sea-ice model (Semtner, 1976; Hibler, 1979; Hunke
and Dukowicz, 1997) and a three-dimensional ocean circula-
tion model (MOM2) (Pacanowski, 1995). The ocean model
includes a marine ecosystem model based on a nutrient—
phytoplankton—zooplankton—detritus model (Keller et al.,
2012). The horizontal resolution of all model components is
1.8° latitude x 3.6° longitude. The ocean model has 19 layers
with layer thicknesses ranging from 50 m at the sea surface to
500 m in the deep ocean. We use a sub-grid-scale bathymetry
as described in Somes et al. (2013) to simulate benthic fluxes
of phosphorus. The sub-grid bathymetry is inferred from the
ETOPO2v2! and represents global spatial distributions of
continental shelves, slopes and other topographical features
(1/5°). For the topography used here, the shelf (0-200m)
covers 6.5 %, the slope (200-2000m) 11.7 % and the deep
sea (>2000m) 81.9 % of the global ocean. Downward fluxes
of organic matter are intercepted by the sub-grid bathymetry
related to the fractional sediment cover for each ocean grid
box, and benthic fluxes of phosphorus are calculated based
on the transfer functions described in the following section.

2.2 Phosphorus cycle in UVic model

Earlier applications of the UVic ESCM assumed a fixed ma-
rine P inventory. We included a representation of the dy-
namic P cycle for this study. It consists of a modified terres-
trial weathering module (Meissner et al., 2012) and a redox-
sensitive transfer function for burial and benthic release of P
(Floegel et al., 2011; Wallmann, 2010).

1 https://www.ngdc.noaa.gov/mgg/global/etopo2.html
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The continental weathering module developed earlier for
fluxes of dissolved inorganic carbon (DIC) and alkalinity
(Meissner et al., 2012; Lenton and Britton, 2006) is based
on the following equations:

Foicw = F Fsit fea- (PP (1)
DIC,w = £'DIC,w,0 Si Ca NPP()

-(140.087 - (SAT — SATO))J = Fpic.w.0 - f (NPP, SAT)

NPP

Faiw =F, A=
Alk,w Alk,w,0 (NPPO

) ‘ LfSi -(140.038) )

- (SAT — SATy) -0.65%% . (SAT — SATO)J
+ fca- (14 0.087 - (SAT — SATy)),

where Fpic,w and Fax w represent the globally integrated
flux of DIC and alkalinity via river runoff; fsi and fc, stand
for the fraction of silicate (0.25) and carbonate (0.75) weath-
ering; and NPP and SAT are the global mean net primary
production on land and global mean surface air temperature
over land (in degrees Celsius). The index O stands for pre-
industrial values.

We added the following flux to account for P weathering
(Fpp,w) with the same dependencies on globally and annu-
ally averaged net primary production (NPP) and surface air
temperature (SAT) as those for DIC:

Fpp,w = Fpp,o - f (NPP, SAT). 3

The global river input of DIP is the only continental source
for P in the model. The global DIP input is distributed over
all coastal points of discharge scaled according to their indi-
vidual volume discharge. The pre-industrial DIP input to the
ocean (Fpp,p) is assumed to be in steady state and in equi-
librium with the total globally integrated pre-industrial net
burial of P (BURp):

Fppo =BURp. 4

We use an empirical transfer function for BURp and for
the benthic release of DIP (BENpp) derived from obser-
vations across bottom-water oxygen gradients (Wallmann,
2010; Flogel et al., 2011). The release of dissolved inorganic
P (BENpjp) is calculated as follows:

BENpic

BENpp = (@)

T'reg

Benthic release of dissolved inorganic carbon (BENpjc) is
calculated from an empirical transfer function (Fig. 2 in
Flogel et al., 2011) to determine BENpp fluxes at the bot-
tom of the ocean. In our model configuration, particulate or-
ganic carbon (POC) is remineralised completely at the ocean
bottom and no ocean-to-sediment fluxes of POCs occur, i.e.
BENDpc is equivalent to RRpoc, where RRpoc denotes the
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Figure 2. Global and annual mean time series of (a) surface air temperature in degree Celsius (solid lines), CO, emissions in PgCO, a~ !
(black solid line — for both simulations) and CO; concentration in ppm (dashed lines); (b) global mean phosphorus concentration in
mmol Pm—3 (solid lines) and export rate in TmolPa~! at 130m depth (dashed lines); (¢) anomalies of phosphorus input via sediment in
TmolPa~! (solid line) and anomalies of phosphorus weathering input in TmolPa~! (dashed line); (d) suboxic volume (< 0.005 mol m*3)
of the ocean in km3 (solid lines) and surface of ocean bottom layer with O, concentrations below 0.005 mol m~3 in km? (dashed lines). The
control simulation (REF) is shown in green; the second simulation (WB) is in blue.

rain rate of particulate organic carbon to the sediment. Wall-
mann (2010) calculated rre¢ by a regression of observational
data to bottom-water oxygen concentrations:

= Yp—i—A-exp(LOZ]).
r

The regeneration ratio is calculated by dividing the depth-
integrated rate of organic matter degradation in surface sedi-
ments (RRpoc) by the benthic flux of dissolved inorganic P
into the bottom water (BENpp). Parameters are defined as
Yrp=123+£24, A=—112+24 and r =32+ 19, and O, is
in umol L~! (Wallmann, 2010). Under oxic conditions Ireg 18
higher than the Redfield ratio (106; Redfield et al., 1963) and
under oxygen-depleted conditions ree reduces to 10 (Wall-
mann, 2010).

The rain rate of POP (RRpop) is calculated by the rain rate
of POC (RRpoc) divided by the Redfield ratio. As a result
BURp can be calculated as follows:

RRpoc

_— 6
BENpp ©

Treg =

BURp = RRpop — BENpyp. (7

The burial of P (BURp) in the sediment is equal to the rain
rate of particulate organic P (RRpop) minus BENpyp (Floegel
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et al., 2011). If the benthic release overcomes the rain rate of
POP at depths below 1000 m, the burial is set to zero. Follow-
ing Floegel et al. (2011), this condition is not applied to shal-
lower sediments because these deposits receive both marine
particles and high fluxes of riverine particulate phosphorus.

2.3 Model simulations

Two model simulations were performed. Our control simula-
tion, called simulation REF hereafter, includes neither weath-
ering, benthic release nor burial of P. The global amount of
P in the ocean is therefore conserved in this simulation over
time. The second simulation, called WB, includes P weather-
ing as well as benthic burial and release of P but excludes ad-
ditional anthropogenic input. The spin-up was performed by
computing the burial and benthic release according to Eq. (6).
The weathering fluxes were set to a value to compensate the
burial rate (Eq. 4) during the spin-up but not thereafter.
After a spin-up of 20 000 years under pre-industrial bound-
ary conditions, we forced the model with anthropogenic
CO» concentrations following the RCP8.5 scenario of the
IPCC ARS assessment (Meinshausen et al., 2011; Riahi et
al., 2011). The CO; emissions in the UVic ESCM reach
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A MODEL STUDY OF WARMING-INDUCED PHOSPHORUS-OXYGEN FEEDBACKS IN
OPEN-OCEAN OXYGEN MINIMUM ZONES ON MILLENNIAL TIMESCALES

D. Niemeyer et al.: A model study of warming-induced phosphorus—oxygen feedbacks 361

105.6PgCOsa~" in year 2100. Between years 2100 and
2150, the models are forced with constant CO, emissions
(105PgCOya~ "), followed by a linear decline until year
2250 to a level of 11.5PgCO, a~! and then linearly to zero
emissions in year 3005 (see Fig. 2a). Simulated atmospheric
CO, concentrations peak in year 2250 with 2148.6 ppmv and
equal 1835.8 ppmv in year 3005 (see Fig. 2a).

2.4 Simulated pre-industrial equilibrium

The UVic ESCM has been validated under present-day and
pre-industrial conditions in numerous studies (Eby et al.,
2009; Weaver et al., 2001). In particular, Keller et al. (2012)
recently compared results of its ocean biogeochemical com-
ponent to observations and previous model formulations. We
therefore concentrate our validation on the new model com-
ponent in this study, the P cycle.

Estimates of pre-industrial burial rates vary over a
wide range in the literature. The comprehensive re-
view by Slomp (2011) reported a burial rate of 0.032—
0.35Tmol Pa~! for the total ocean, while Baturin (2007)
suggests a burial rate of 0.419 TmolPa~! based on obser-
vational data described in detail by Wallmann (2010). The
burial rate diagnosed by the UVic ESCM in simulation WB
for the total ocean under pre-industrial boundary condi-
tions (0.38 Tmol Pa—!) is within range of these earlier es-
timates. The burial at the continental margin (0-200 m) ac-
counts for 50-84 % of total burial corresponding to 0.016—
0.175Tmol Pa~! calculated in Slomp (2011). Ruttenberg
(2004) estimated a burial rate at continental margins of 0.15—
0.22 TmolPa*I, while the UVic ESCM calculated a burial
rate of 0.33Tmol Pa~! for the continental margins in year
1775. The open-ocean burial contributes only a minor part to
total burial (0.04-0.13 TmolPa~!; Ruttenberg, 2004; in the
UVic it is 0.046 Tmol Pa™!).

To conserve marine P during long model spin-ups, the dis-
solved weathering flux of P under pre-industrial conditions
is set equal to the diagnosed total burial rate during the spin-
up: 0.38 Tmol Pa~!. Following the method of calculating the
reactive P flux (defined in Ruttenberg, 2004 as the sum of
> 50 % of total dissolved P (i.e. dissolved organic P) plus 25—
40 % of particulate P flux), our result fits well with estimates
summarised by Slomp (2011) ranging from 0.13 Tmol Pa~!
(natural P flux) to 0.36 Tmol Pa~! (modern P flux) and Rut-
tenberg (2004) (0.16-0.32 Tmol Pa™").

Global values for benthic release under pre-industrial con-
ditions equal 0.78 TmolPa~! in the UVic ESCM (simu-
lation WB), while Ruttenberg (2004) described a range
from 0.51 to 0.84 Tmol Pa~! based on pore water measure-
ments (Colmann and Holland, 2000) for coastal regions.
For the deep sea, Colmann and Holland (2000) specified
the benthic release value with 0.41 Tmol Pa~!. In the UVic
ESCM, the benthic release for continental margins was cal-
culated as 0.4816 TmolPa~! and for the open ocean as
0.2951 TmolPa~!.
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3 Results

3.1 Simulated climate

The global mean atmospheric surface temperature, as sim-
ulated by the WB run, increases until year 2835 and peaks
at 23.1°C, i.e. 9.9 °C above pre-industrial levels. Simulation
REF shows similar changes in temperature with an increase
until year 2855 and a peak at 23.3 °C (see Fig. 2a). Both sim-
ulations show a slight recovery in temperatures after the peak
(REF: 23.2°C; WB: 23.1 °C; year 3005). Atmospheric tem-
peratures in the WB simulation are slightly lower than in the
reference simulation, due to slightly lower carbon dioxide
concentrations in the atmosphere, caused by increased global
ocean alkalinity (REF: 2.498 mol m~3; WB: 2.481 mol m~>;
both for year 3005), the enhanced biological pump and a rise
in detritus export rate (see Sect. 3.2) and therefore increased
marine uptake of atmospheric CO,. The impact of the nega-
tive feedback via enhanced biotically and chemically induced
marine uptake of atmospheric CO; on surface air tempera-
tures is thus small compared to the CO,-induced warming in
a high-emission scenario.

Given that the response in temperature is similar for both
simulations compared to considerable differences in biolog-
ical productivity (see below), differences in oxygen con-
centration mainly originate from biogeochemical changes,
which will be discussed in Sect. 3.3.

3.2 Phosphorus dynamics

The weathering rate (see Fig. 3b) and associated flux of P
into the ocean via river discharge more than doubles relative
to the pre-industrial situation in our WB simulation and leads
to an enhancement in global mean oceanic P concentrations
by 27 % over 1000 years (see Fig. 2b). At the same time,
benthic burial acts as the only P sink in our model (see the
Supplement, Fig. S1), mitigating the total increase in marine
P. The P concentration remains constant in the control run
REF.

The weathering input in the WB simulation is largest north
of 30° N (0.338 Tmol Pa~! in year 3005; see Fig. 3a), while
south of 30° S (0.138 Tmol P a~!) and in the low-latitude Pa-
cific Ocean the input is lowest (0.117 Tmol P a—1). Weather-
ing fluxes into the low-latitude Indian and Atlantic oceans
equal 0.187 and 0.267 Tmol Pa~!, respectively.

Increasing P concentrations as well as climate warm-
ing result in an increase in net primary production in
the ocean (ONPP). Globally integrated ONPP ranges be-
tween 43.8 Tmol Pa~! (REF) and 44.1 Tmol P a! (WB) un-
der pre-industrial conditions and 65 TmolPa~! (REF) and
116.4TmolPa~! (WB) in year 3005 (see Fig. S1). The main
areas of ONPP increase are located in the tropical ocean,
where higher temperatures favour net primary production in
the model (results not shown).
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Figure 3. (a) Phosphorus weathering input (in Tmol a~ 1) into the
tropical Pacific Ocean (middle), tropical Atlantic Ocean (right, mid-
dle), tropical Indian Ocean (left, middle), northern oceans (oceans
north of 30° N; upper middle) and Southern Ocean (ocean south
of 30° S; lower middle) in 1775 (black bars) and 3005 (red bars).
(b) Annual mean averaged phosphorus weathering input (global
sum) of 1775 until year 3005.

Due to enhanced P inventory and enhanced ONPP, the
WB simulation also has a higher export rate (8.6 Tmol Pa~!,
computed at 130m depth; see Fig. 2b) when compared
to the reference run (5.5 TmolPa~!) in year 3005. In the
REF simulation, the export rate declines until year 2175
(4.8 TmolPa~1) in response to enhanced stratification, asso-
ciated declining nutrient supply and stronger nutrient recy-
cling in the upper layers (Schmittner et al., 2008; Steinacher
et al., 2010; Bopp et al., 2013; Moore et al., 2013; Yool et
al., 2013; Kvale et al., 2015). The export rate recovers to
reach 5.5 Tmol Pa~! at the end of the simulation in exper-
iment REF.

The globally integrated remineralisation rate in the aphotic
zone (results not shown) ranges between 5.1 TmolPa~!
(WB) and 5.2TmolPa~! (REF) in year 1775. Simulation
WB is characterised by a strong increase in remineralisation
until 3005 with a maximum of 8.1 TmolPa~! (in year 3005),
while in the reference run the remineralisation rate first de-
creases, followed by a moderate increase to 5.3 TmolPa~!.
Regions with highest remineralisation are located on the con-
tinental margins, especially in the Indian Ocean.

The P burial in the WB simulation equals 0.38 Tmol Pa™!
in year 1775 and decreases by 44.3% to 0.2 TmolPa~!
in year 3005 (see Fig. S1). One reason for this decrease is
the redox state of the bottom water. The strong expansion of
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the area of ocean bottom waters with O, concentrations be-
low 0.005 mol m—3 (see Fig. 2d) in the WB simulation leads
to a decrease in benthic burial of P despite an increase in the
rain rate of particulate organic P, RRpop. In general, burial
rates are largest along the coastal margins, where 87.9 % of
the total flux is buried in 1775. Highest increases in burial
rates between years 1775 and 3005 are located in the Arctic
Ocean (see Fig. 4a), whereas burial rates decrease in the Bay
of Bengal and the Gulf of Mexico where low-oxygen bottom
waters expand (see Fig. 5).

The benthic P release in the WB simulation increases by
119 % until year 3005 to 1.7 TmolPa~! (see Fig. S1). As
mentioned above, the benthic release is a redox-dependent
process, which commonly takes place at the coastal margins
(Wallmann, 2010; in our model, under pre-industrial condi-
tions, 62 % of total release is from coastal margins). This
means that an increase in suboxic bottom water area (see
Fig. 2d) leads to an enhanced release of benthic P in WB.
A rapid increase between years 1775 and 3005 can be found
in the Bay of Bengal, the Gulf of Mexico and in the Arctic
Ocean (see Fig. 4b).

In our model simulations, both the weathering-induced
P flux into the ocean (see Fig. 2¢) as well as the net P released
from the sediments (see Fig. 2c) show a strong increase un-
der continued global warming, which explains the increase
in the marine P inventory in the WB simulation (see Fig. 2b).
However, the simulated increase in the weathering input has
a much stronger (about 4 times larger) impact on the P bud-
get and therefore on the expansion of OMZs than the benthic
release feedback (see Fig. 2c). We note that even at the end
of the 1000-year simulation, the P cycle has not yet reached
a new steady state in experiment WB. Weathering rates are
high in the warm climate and burial of P has not increased to
counteract the supply by weathering (see Figs. 3b and S1).
The release of P from sediments also adds to this imbalance.
As a result, the marine P inventory is still increasing almost
linearly at the end of our simulation. Extending the simu-
lation until year 10000 reveals that the ocean — as well as
the coastal regions — does not become anoxic despite a more
than 3-fold increase in oceanic P inventory (see Sect. 3.3 and
Fig. S2) while the P cycle still exhibits a strong imbalance
between sources and sinks.

3.3 Oxygen response

The black contours in Fig. 5 indicate the lateral extent of
OMZs for a depth of 300m (see Fig. S3 for a depth of
900 m). In year 1775, the suboxic volume, defined here as
waters with oxygen concentrations of less than 5 mmol m~3,
equals 3.9 x 10°km>® in both simulations (see Fig. 2d).
An observational estimate of today’s suboxic water vol-
ume equals 102 x 10° 15 x 10°km?® for oxygen concen-
trations less than 20 mmol m—3 (Paulmier and Ruiz-Pino,
2009), which is considerably larger than the volume of O,
concentrations less than 20 mmol m~3 in our WB simula-
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Figure 4. Difference (year 3005 minus year 1775) in (a) burial and (b) benthic release flux in mmol P m~2a~! for simulation WB.
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Figure 5. Oxygen concentration in mol O m~3 at300m depth simulated by the (a) control simulation in year 1775 (representative for both
REF and WB model runs in year 1775), (b) the World Ocean Atlas in 2009, (c) the control simulation in year 3005 and (d) simulation WB
in year 3005. The black contour lines at 0.005 mol m—3 highlight the oxygen minimum zones (OMZs).

tion (WBg0s5 = 15.8 x 10° km?). However, in consideration
of the studies of Bianchi et al. (2012) and their calculated
OMZ volume of 2.28-2.78 x 10°km?, as well as the World
Ocean Atlas (WOAs =4.12 x 10> km?), it can be con-
cluded that estimations of the volume of OMZs vary over a
wide range and that our results are within this range. Compar-
ing our results with observational data from the WOA, a gen-
erally good agreement can be found with regard to the spatial
distribution of low-oxygen waters (see Fig. 5). The suboxic
areas are located in the upwelling regions of the tropical east-
ern Pacific and eastern Atlantic as well as in the Indian Ocean
(see Fig. 5; representative for both simulations in 1775).
During our transient simulations, we find a considerable
expansion of OMZs until year 3005 in both simulations
(see Figs. 2d and 5). The expansion of the suboxic volume
between 300 and 900 m is particularly pronounced in the
WB simulation where the OMZs account for 4.85 x 107 km?
in year 3005, i.e. an increase by a factor of 12.4. The con-
trol simulation (REF) shows a much smaller increase in the
volume of OMZs (1.12 x 107 km? between 300 and 900 m
depth). As both simulations display similar climates (see
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Fig. 2a), the difference in the oxygen fields is largely due
to the differences in the simulated P cycle.

The sea-floor area in contact with suboxic bot-
tom waters, which directly impacts the redox-sensitive
benthic burial and P release, shows an increase by
more than a factor of 19 (WBj775 =3.59 x 105 km?;
WB3005 =6.95 x 10km?) in the WB simulation (see
Fig. 2d) compared to a factor of 4 increase in the REF simula-
tion (REF}775 =2.79 x 10° km?; REF3005 = 1.2 x 10 km?).
Our present-day results (WB2gps = 3.8 x 10° kmz) compare
well with data of the WOA (WOAg95 =2.48 x 10° kmz).

Somewhat unexpectedly, in our study, an increase in con-
tinental weathering does not result in an anoxic ocean under
current topography and seawater chemistry — at least not un-
til year 10 000. At the pre-industrial state (year 1775), 0.12 %
of all coastal margins are characterised by oxygen concentra-
tions below 0.005 mol m~3. While this portion increases by
about a factor of 50 to 5.57 % by year 3005, this is too low
for the generation of widespread coastal anoxia. Conversely,
the global mean oxygen concentration starts to increase again
in year 3415 when it has reached a minimum of about two-
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thirds of the pre-industrial oxygen inventory in the WB sim-
ulation (see Fig. S1). This suggests that the positive feedback
between the release of benthic P and marine net primary pro-
duction is — in this study, for present-day bathymetry and ge-
ography — not the decisive factor for a rapid transition into an
anoxic ocean.

4 Uncertainties

Although the model’s subcomponents for weathering, burial
and benthic release rates are highly simplified in this study,
the simulated global P fluxes fall within the range suggested
by earlier studies and observational estimates (Palastanga et
al., 2011; Filippelli, 2002; Baturin, 2007; Wallmann, 2010).
The weathering fluxes are calibrated against global mean
burial rates under an implicit steady-state assumption, al-
though it is unclear whether the pre-industrial P cycle in the
ocean was in equilibrium (Wallmann, 2010). The relatively
high P weathering fluxes as well as the assumed indefinite P
reservoir in the shelf sediments in our simulations might lead
to an overestimation of the effects on the P cycle and OMZs.
In our model, the increase in the P inventory results in
a strong increase in ONPP. Contrary to other studies, e.g.
Gregg et al. (2005) or Boyce et al. (2010), in our study the
temperature effect overcompensates the stratification effect
as described by Sarmiento et al. (2004), Taucher and Os-
chlies (2011) and Kvale et al. (2015), and thus leads to an
increase in ONPP also in the reference run. While the net ef-
fect of warming on ONPP is not well constrained and differs
considerably among models, the impact of changing envi-
ronmental conditions on export production appears to be bet-
ter constrained (Taucher and Oschlies, 2011). In agreement
with simulations by other models, experiment REF shows
a stratification-induced decline in export production, while
the increase in P induces an increase in export production in
WB. Although we use a coarse-resolution model, the applied
sub-grid-scale bathymetry allows the calculation of more ac-
curate benthic burial and release fluxes than otherwise pos-
sible with such a model. It should also be noted that the
benthic release feedback on OMZs might have been more
efficient under Cretaceous boundary conditions because the
shelf area was considerably larger due to higher sea levels
(late Cretaceous shelf area: 46 x 10°km?; present-day shelf
area: 26 x 10° km?2; Bjerrum et al., 2006). Cretaceous topog-
raphy might therefore have induced a stronger benthic re-
lease feedback, as shown in Tsandev and Slomp (2009).
Filippelli (2002) showed in his study that due to the an-
thropogenic activities the global, total present-day river in-
put of P has doubled in the last 150 years. In our study, the
direct anthropogenic influence, such as agricultural input of
P into the system, is excluded and should be considered in
future studies even though the human impact is projected to
decrease until year 3500 (Filippelli, 2008). Filippelli (2008)
and Harrison et al. (2005) estimated a rate of 0.03 Tmol Pa~!
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and 0.7 TgPa~! (0.023 Tmol Pa~!), respectively, for anthro-
pogenic P delivered to the ocean as a result of fertilisation,
deforestation and soil loss as well as sewage in year 3000.
In comparison to our simulated maximum weathering value
of 1.09 Tmol Pa~! until year 3005, the direct anthropogenic
impact seems to be small.

5 Conclusions

This study constitutes a first approach to estimate the poten-
tial impact of changes in the marine P cycle on the expan-
sion of global ocean OMZs under global warming on millen-
nial timescales. Model simulations show that the warming-
induced increase in terrestrial weathering (see Fig. 3b) leads
to an increase in marine P inventory (see Fig. 2b) resulting in
an intensification of the biological pump, corroborating the
findings by Tsandev and Slomp (2009). As a consequence,
oxygen consumption as well as the volume of OMZs increase
in our simulations by a factor of 12 over the next millennium
(see Figs. 2d and 5).

The positive feedback involving redox-sensitive benthic
P fluxes — where the expansion of OMZs leads to an increase
in benthic release of P (see Figs. 2c and S1), which in turn
enhances biological production and subsequent oxygen con-
sumption (Wallmann, 2010) — has only limited relevance for
the expansion of OMZs in this study. Instead, a negative feed-
back dominates, which involves enhanced weathering and
P supply to the ocean, an intensification of the biological
carbon pump and associated marine uptake of atmospheric
CO;. The atmospheric CO, impacts the surface air temper-
ature through a negative feedback loop, which limits the
warming and weathering and, eventually, the expansion of
the OMZs. We can therefore conclude that, based on the pa-
rameterisations used in this study, the P weathering and bio-
logical pump feedback outcompetes the redox-sensitive ben-
thic P-release feedback on millennial timescales. Although
the ocean does not become anoxic in our simulations, the
benthic P-release feedback may have played a role in past
oceanic anoxic events. An increase in shelf areas due to
higher sea levels, such as during the Cretaceous, would have
led to a more powerful benthic P-release feedback as a much
larger sediment area could have been in contact with low-
oxygen bottom waters. Whether this different bathymetry
alone could result in a more dominant benthic P-release feed-
back needs to be investigated in future studies.

Code availability. The model data and model code are available at
http://data.geomar.de/thredds/catalog/open_access/niemeyer-et-al_
2016/catalog.html.

The Supplement related to this article is available online
at doi:10.5194/esd-8-357-2017-supplement.
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Introduction

The supplement provides one figure showing the global and annual mean phosphorus fluxes (benthic burial & benthic
release), the oxygen concentration and the ocean net primary production. Figure S2 illustrates the oxygen concentration in

year 10,000 for a depth of 300 m and 900 m, while the last figure shows the oxygen concentration in a depth of 900 m.
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Figure S1: Global mean and annual mean time series of phosphorus burial (blue solid line; left), phosphorus release (blue dashed
line; left), oxygen (blue solid line; middle) and ONPP (blue solid line; right) for simulation WB until year 10,000.
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Figure S2: Oxygen concentration in mol O, m™ at year 10,000 simulated by the (a) control simulation at 300m depth, (b) and 900m
depth, (c) simulation WB at 300m depth and (d) simulation WB at 900 m depth. The black contour lines at 0.005 mol m? highlight

the oxygen minimum zones (OMZs).
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Figure S3: Oxygen concentration in mol O, m? at 900m depth simulated by the (a) control simulation at year 1775 (representative
for both REF and WB model runs in year 1775), (b) the World Ocean Atlas in 2009, (c) the control simulation at year 3005 and (d)
simulation WB at year 3005. The black contour lines at 0.005 mol m? highlight the oxygen minimum zones (OMZs).
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In the paper “A model study of warming-induced
phosphorus-oxygen feedbacks in open-ocean oxygen mini-
mum zones (OMZs) on millennial timescales” in Sect. 3.3
“Oxygen response”, the authors draw a comparison between
their model results and the observational estimate of Paul-
mier and Ruiz-Pino (2009) regarding the global OMZ vol-
ume for a 20mmolm~3 criterion. Unfortunately, an incor-
rect value was taken from the Paulmier and Ruiz-Pino (2009)
study in our original study. The correct comparison results
in a much improved agreement between the observed OMZ
core volume of 10.3 x 109km? (instead of the previously
used OMZ volume of 102 x 10° km?; Paulmier and Ruiz-
Pino, 2009) and our modelled OMZ core volume of 15.8 x
106 km?, further strengthening the results of our study.
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3 The effect of marine aggregate parameterisations on
nutrients and oxygen minimum zones in a global
biogeochemical model
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Abstract. Particle aggregation determines the particle flux
length scale and affects the marine oxygen concentration and
thus the volume of oxygen minimum zones (OMZs) that are
of special relevance for ocean nutrient cycles and marine
ecosystems and that have been found to expand faster than
can be explained by current state-of-the-art models. To in-
vestigate the impact of particle aggregation on global model
performance, we carried out a sensitivity study with differ-
ent parameterisations of marine aggregates and two different
model resolutions. Model performance was investigated with
respect to global nutrient and oxygen concentrations, as well
as extent and location of OMZs. Results show that including
an aggregation model improves the representation of OMZs.
Moreover, we found that besides a fine spatial resolution
of the model grid, the consideration of porous particles, an
intermediate-to-high particle sinking speed and a moderate-
to-high stickiness improve the model fit to both global distri-
butions of dissolved inorganic tracers and regional patterns of
OMZs, compared to a model without aggregation. Our model
results therefore suggest that improvements not only in the
model physics but also in the description of particle aggre-
gation processes can play a substantial role in improving the
representation of dissolved inorganic tracers and OMZs on
a global scale. However, dissolved inorganic tracers are ap-
parently not sufficient for a global model calibration, which
could necessitate global model calibration against a global
observational dataset of marine organic particles.

1 Introduction

Oxygen is — beside light and nutrients — fundamental for ma-
rine organisms, such as bacteria, zooplankton, and fish. Only
few specialised groups can tolerate regions of low oxygen,
commonly referred to as oxygen minimum zones (OMZs).
These regions are located in the tropical upwelling regions,
where nutrient-rich water enhances primary production and
subsequent transport of organic matter to deeper waters,
which triggers respiration and consumes oxygen. Together
with weak ventilation (which supplies oxygen), this results
in oxygen concentrations well below 100 mmol m~3. Global
models that are used to reproduce OMZ’s volume and loca-
tion, and their evolution under climate change, differ with re-
spect to the biogeochemical parameterisations as well as with
respect to physics (Cabré et al., 2015), resulting in disagree-
ments between projected OMZ extent (Cocco et al., 2013).
To date, it is not clear whether these differences can be at-
tributed to the differences in the model’s biogeochemistry or
the physical models.

One potential parameter affecting distributions of dis-
solved oxygen and thereby the volume and location of OMZs
is the biological carbon pump (Volk and Hoffert, 1985).
Global ocean model studies show that the biological pump
is important for the distribution of dissolved inorganic trac-
ers in the ocean (Kwon and Primeau, 2006, 2008) as well as
atmospheric pCO; (Kwon et al., 2009; Roth et al., 2014).
It further affects the feeding of deep sea organisms (Kiko et
al., 2017) as well as the OMZ volume (Kriest and Oschlies,
2015). The biological carbon pump can be subdivided into
three components: production of organic matter and biomin-
erals in the euphotic surface layer, particle export into the
ocean interior, and finally their decomposition in the water
column and on the sea floor (Le Moigne et al., 2013). Esti-
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mates of the export of organic carbon out of the surface layer
range from 5 to 20 Gt C yr~!, with the large uncertainty illus-
trating the gap in our understanding of this process (Henson
et al., 2011; Honjo et al., 2008; Keller et al., 2012; Laws
et al., 2000; Oschlies, 2001). Further uncertainties are asso-
ciated with the exact shape of the particle flux profile (e.g.
exponential function vs. power law; Banse, 1990; Berelson,
2002; Boyd and Trull, 2007; Buesseler et al., 2007; Lutz et
al., 2002; Martin et al., 1987) and its possible variations in
space and time. Recent studies suggest conflicting evidence
with regard to the spatial variation of the particle flux length
scale (Guidi et al., 2015; Marsay et al., 2015), which may
again be influenced by the methodology of estimating the
particle flux profile and thus the potential sensitivity to the
considered depth (Marsay et al., 2015). Also, the underlying
mechanisms for a potential spatio-temporal variation remain
unclear: some studies attribute this to variations in tempera-
ture and associated temperature-dependent variation in rem-
ineralisation (Marsay et al., 2015), while other studies derive
this from variations in particle size distributions (Guidi et al.,
2015).

One mechanism that leads to a variation in particle size
distribution consists in the formation of marine aggregates,
which exhibit variable sinking speeds. For example, All-
dredge and Gotschalk (1988) and Nowald et al. (2009)
found sinking rates for aggregates ranging between 10 and
386 md~!. Particle sinking speed, and thus the particle flux
profile, depends on mineral ballast (Armstrong et al., 2002;
Ploug et al., 2008), porosity and particle size (Alldredge and
Gotschalk, 1988; Kriest, 2002; Smayda, 1970). Large parti-
cles are associated with high sinking speed and fast passage
through the water column, resulting in low remineralisation
and thus a small OMZ volume and vice versa. It can therefore
be expected that particle aggregation favouring fast sinking
speeds can alter the volume of OMZs compared to small par-
ticles with low sinking speeds (Kriest and Oschlies, 2015).

However, there are still some gaps in our understanding
of the parameters that control the aggregation rate as well
as the particle’s sinking behaviour. For example, in situ mea-
surements show almost no dependency between diameter and
sinking speed (Alldredge and Gotschalk, 1988), whereas ag-
gregates produced on a roller table show a noticeable re-
lationship (Engel and Schartau, 1999). Furthermore, values
for stickiness, which defines the probability that after col-
lision two particles stick together, vary over a wide range.
Stickiness depends on the chemistry of the particle’s surface
(Metcalfe et al., 2006) and the particle type (e.g. Hansen and
Kigrboe, 1997) and ranges between almost 0 and 1 (e.g. All-
dredge and McGillivary, 1991; Kigrboe et al., 1990). Thus,
aggregation as one process that induces variations in parti-
cle size, and thus sinking speed, is only loosely constrained
through its parameters.

To explore these relationships further and to examine
whether a spatially variable sinking speed improves the fit of
a global biogeochemical model to global distributions of dis-
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solved inorganic tracers and regional patterns of OMZs, this
study uses the three-dimensional Model of Oceanic Pelagic
Stoichiometry (Kriest and Oschlies, 2015), coupled with a
module for particle aggregation and size-dependent sinking
(Kriest, 2002). Given the large uncertainty associated with
parameterisations of marine aggregates, we carried out 36
sensitivity experiments in which we varied parameters rel-
evant for particle aggregation and sinking. As in previous
studies, the model’s fitness is evaluated by the root mean
square error (RMSE) against observational data of dissolved
inorganic tracers, namely PO4, NO3 and O, (Kriest et al.,
2017). This study additionally determines the model fitness
with respect to extent and location of OMZs, following the
approach by Cabré et al. (2015).

To examine the above-mentioned questions, and explore
the effects and uncertainties of a model that simulates particle
dynamics on a global scale for a seasonally cycling stationary
ocean circulation, our main questions are as follows:

1. Does a model that includes explicit particle dynamics
improve the representation of observed POy, NO3z and
0,?

2. Does a model that includes explicit particle dynamics
improve the representation of observed OMZs, and do
the “best” parameters with respect to this metric agree
with those constrained by dissolved inorganic tracers?

3. What are the effects of uncertainties in the parameteri-
sation of organic aggregates on model results?

4. Can the assumptions inherent in the model confirm ei-
ther of the spatial particle flux length scale maps pro-
posed by Marsay et al. (2015) or Henson et al. (2015)
and Guidi et al. (2015)?

This paper is organised as follows: we first describe the
model and its assessment with regard to dissolved inorganic
tracers and OMZs, including the sensitivity experiments car-
ried out with the model. We then present the outcome of the
sensitivity experiments, with special focus on the metrics de-
fined above. We finally examine and discuss derived maps of
particle flux length scales against the background of maps de-
rived from observed quantities (Henson et al., 2015; Marsay
et al., 2015; Guidi et al., 2015).

2 Model description and methods
2.1 Oceanic transport

In this study, we used the “transport matrix method” (TMM)
(Khatiwala et al., 2005; Khatiwala, 2007, 2018), as an effi-
cient offline method to simulate biogeochemical tracer trans-
port with monthly mean transport matrices (TMs). Addi-
tional fields of monthly mean wind, temperature and salinity
extracted from the underlying circulation model are used to
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simulate air—sea gas exchange of oxygen and to parameterise
temperature-dependent growth of phytoplankton. For our ex-
periments, we used two different types of TMs and forc-
ing fields: one set derived from a coarser-resolution (here-
after called MIT2.8) and one from a finer-resolution version,
based on a data-assimilated circulation (ECCO1.0) (Stam-
mer et al., 2004). The MIT2.8 forcing and transport repre-
sent a resolution of 2.8° x 2.8° and 15 depth layers with a
thickness ranging between 50 and 690 m. ECCO1.0 TMs and
forcing are based on a resolution of 1° x 1° and 23 depth lay-
ers, with a thickness ranging between 10 and 500 m. Further
details about the two setups can be found in Kriest and Os-
chlies (2013).

In general, we used a time step length of 1/2 d for physical
transport and a time step length of 1/16 d for biogeochemical
interactions in the coarse resolution, MIT2.8. Because some
parameter configurations allow a very large particle sinking
speed, which may exceed more than one box per time step, in
MIT2.8 we used a biogeochemical time step length of 1/70d
for all simulations with n = 1.17 (see Table 1), in the finer
resolution, ECCO1.0, we used in all experiments a time step
of 1/80d (see Table 1) but with the exception of three ex-
periments, where we used a length of 1/160d (these are the
experiments for a strong increase of sinking speed with par-
ticle size, given by parameter n = 1.17; see Table 1). Each
model was integrated for 3000 years until tracers approached
steady state. The last year is used for analysis as well as mis-
fit calculations.

2.2 The biogeochemical model

2.2.1 Model of Oceanic Pelagic Stoichiometry

The Model of Oceanic Pelagic Stoichiometry, called MOPS
(Kriest and Oschlies, 2015), is based on phosphorus and
simulates phosphate, phytoplankton, zooplankton, dissolved
organic phosphorus (DOP) and detritus. The unit of each
tracer is given in millimoles of phosphate per cubic metre
(mmol Pm~3). In addition, MOPS simulates oxygen and ni-
trate. The P cycle is coupled to oxygen by using a fixed sto-
ichiometry of R_o,.p = 171.739 and to nitrogen by Rp.Ny =
16.

The stoichiometry of anaerobic and aerobic remineralisa-
tion is parameterised following Paulmier et al. (2009). Rem-
ineralisation of detritus and dissolved organic matter is fixed
to a constant nominal remineralisation rate r and is depen-
dent on oxygen but independent of temperature. If oxygen
concentrations decrease, denitrification replaces aerobic res-
piration, consuming nitrate. If neither oxygen nor nitrate is
sufficiently available, remineralisation stops as the model
does not account for other electron acceptors such as sulfate.
As both forms of remineralisation follow a saturation curve
(Monod type), the realised remineralisation rate may diverge
from the constant nominal remineralisation rate.
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On long timescales, the loss of fixed nitrogen through den-
itrification is balanced by temperature-dependent nitrogen
fixation. Therefore, it should be noted that while phospho-
rus is conserved, the inventory of fixed nitrogen as well as
oxygen is variable and dependent on ocean circulation and
biogeochemistry (Kriest and Oschlies, 2015).

In the basic model without aggregation the sinking speed
of detritus increases linearly with depth. With constant rem-
ineralisation rate r, the particle flux can thus be described
by F(z) «cz~? with b = ~ (Kriest and Oschlies, 2008) and
is therefore (for constant r, e.g. in a fully oxic water col-
umn) comparable to the common power-law description of
observed particle fluxes (Martin et al., 1987). The fraction
of detritus reaching the seafloor follows two pathways: one
fraction is re-suspended back into the deepest box of the wa-
ter column, and the other one is buried into the sediment and
therefore responsible for P removal. However, the P budget
remains annually unchanged by the resupply of buried P via
river runoff.

2.2.2 Model for particle aggregation and
size-dependent sinking

Different approaches have been applied to simulate particle
aggregation in the marine environment. A detailed represen-
tation of the particle size spectrum can be accomplished by
explicitly simulating many different size classes, which in-
teract with each other via collision-based aggregation, parti-
cle sinking, remineralisation and breakup (Burd, 2013; Jack-
son, 1990). This flexible approach captures the details of the
size spectrum and its spatio-temporal variation in a very de-
tailed way. However, it is computationally expensive and thus
prohibitive to be applied to large spatial and long temporal
scales.

The aggregation module applied in MOPS parameterises
a continuous log—log-linear size distribution of particles via
the spectral slope ¢ calculated from number and mass of
particles (Kriest and Evans, 2000). The particle size distri-
bution is influenced by size-dependent particle aggregation
and sinking (Kriest, 2002; Kriest and Evans, 2000). Because
aggregation reduces particle numbers (but not mass), and
sinking preferentially removes large particles, number and
mass change independently. By assuming a log—log-linear
size spectrum, the slope ¢ of this spectrum can, at each time
step and grid point, be computed from the particle number
and total particle mass.

The model requires parameters for the power-law relation-
ships between particle diameter, d, and mass, m (m = Cd £y,
and between particle diameter and sinking speed, w (w =
Bd"), to be specified. In our model experiments, we assign
fixed values for the minimum diameter and mass of a primary
particle of size of d; = 0.002 cm and m; = 0.00075 nmol P.
The exponent for the relationship between size and mass is
set to ¢ = 1.62, as proposed for marine aggregates in Kri-
est (2002), which is in line with more recent findings (Burd

Biogeosciences, 16, 3095-3111, 2019
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Table 1. Model runs of sensitivity study, their parameter combinations and the calculated misfit of tracers (Jryvsg) and OMZs (Jomz) for
MIT2.8 and the ECCO1.0 configurations. The 25 % best simulations with regard to Jrmsg and Jomz are highlighted in yellow and the
worst 25 % in red (relative to RMSEECCOL0* 554 oMZECCO1.0% ). The simulations in between are coloured in two orange gradations (bright
orange is medium good and dark orange is medium bad). The best simulation of each resolution with regard to Jrysg and Jowmz is bold.
OMZ is defined as 50 mmol m™3. Parameter n denotes the exponent for size-dependent sinking, « the stickiness, w; the minimum sinking
speed, Dp, the maximum diameter for size-dependent sinking and aggregation, and wmax the maximum sinking velocity in the spectral
computations.

Jrase JrassE Jonz Toaz
MIT2.8 ECCOLO0 MIT2.8 ECCOL.0

Run n « Wy Dy Winax
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and Jackson, 2009; Jouandet et al., 2014). For the relation-
ship between size and sinking speed we test two alternative
values for 1, namely 7 = 0.62 and n = 1.17 for the exponent,
and w; between 0.7 and 2.8 md~! for the minimum sinking
speed (see below). Assuming a constant degradation rate, the
average sinking speed of all particles combined would in-
crease with depth due to higher sinking speed of large par-
ticles and their higher proportion in the deeper ocean in-
terior. To prevent instabilities at very large sinking speeds
(very flat size distributions), as in Kriest and Evans (2000)
and Kriest (2002), we restrict the size dependency of sinking
and aggregation to a maximum diameter of Dy.. Beyond Dy,
these processes do not vary with particle size any more. In
our model experiments, we let this parameter vary between
1,2 and 4 cm.

Changes in the number of marine particles are dependent
on particle aggregation, described by the collision rate, and
the probability that two particles stick together, «. In our
model experiments we vary o between 0.2 and 0.8. The col-
lision rate depends on turbulent shear and differential sinking
and is parameterised as in Kriest (2002). We assume that the
turbulent shear is high in the euphotic layers and O in the
deeper ocean layers.

To avoid complications and non-linear feedbacks, in the
experiments presented here, we assume that plankton mor-
tality and zooplankton egestion as well as quadratic zoo-
plankton mortality produce new detritus particles but do not
change the size spectrum.

By using this setup, the module is similar to parameterisa-
tions of particle size applied in other large-scale or global
models (Gehlen et al., 2006; Oschlies and Kéhler, 2004;
Schwinger et al., 2016).

2.3 Model simulations and experiments

2.3.1 MOPS without aggregation

As a reference scenario, we used MOPS as described by
Kriest and Oschlies (2015). The model has been imple-
mented in both global configurations MIT2.8 (hereafter
called noAggM™?8) and in the finer resolution, ECCO1.0
(HOAggECCOl'O).

2.3.2 Adjustment of biogeochemical model parameters

Introducing aggregates and a dynamic particle flux profile
to the global model MOPS has a strong impact on biogeo-
chemical model dynamics. Starting from parameter values
of the calibrated model setup (without aggregation) of Kri-
est (2017), we calibrated parameters relevant for phytoplank-
ton and zooplankton growth and turnover as described in Kri-
est et al. (2017) against observed global distributions of nu-
trients and oxygen.

Parameters to be calibrated for this new model were the
light and nutrient affinities of phytoplankton, zooplankton
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quadratic mortality, detritus remineralisation rate, particle
stickiness and the exponent 7 that relates particle sinking
speed to particle size (see Table 2). After introduction of
particle aggregation, the calibrated nutrient affinity of phy-
toplankton is now much higher, with a half-saturation con-
stant for phosphate of Kppy = 0.11 mmol POy4 m~3 instead
of 0.5 mmol PO4 m~2 in Kriest et al. (2017), very likely be-
cause the optimisation compensates for the higher export
(and lower recycling) of phosphorus and nitrogen. Possibly
for the same reason, detritus remineralisation rate in the opti-
mised model is increased from 0.05 to 0.25d~!. Light affin-
ity of phytoplankton deviates less from the value in the model
without particle aggregation, but the quadratic mortality of
zooplankton is strongly reduced (1.6 (mmolPm~3)~! in-
stead of 4.55 (mmol P m*3)*1); the latter might be regarded
as an attempt of the optimisation to reduce the export of or-
ganic matter from the euphotic zone. The two parameters
that affect aggregation and particle sinking remained at mod-
erate values of « =0.42 and n =0.72, i.e. close to those
applied in earlier model experiments with aggregation (e.g.
Kriest, 2002). The residual cost function Jrmsg of this pre-
calibrated model with aggregation was 0.472, i.e. lower than
noAgng'8 (JrMse = 0.529), but somewhat higher than
achieved with a model version optimised against nutrient and
oxygen concentrations (Kriest et al., 2017), which resulted in
a misfit of Jrmsg = 0.439. In the sensitivity experiment de-
scribed below we will examine whether this remaining misfit
can be reduced even further and evaluate the model sensi-
tivity to changes in the parameters of this highly complex
module.

2.3.3 Sensitivity experiments at coarse resolution
(MIT2.8)

In the coarser model configuration of MOPS, MIT2.8, a first
sensitivity study of 36 model simulations with different ag-
gregation parameters was performed (see Table 1). We varied
the values of four aggregation parameters, which control the
rate of aggregation and the sinking behaviour of particles.
The first parameter is the stickiness «, i.e. the probability
that after collision two particles stick together, which was
set to values of 0.2, 0.5 and 0.8, respectively. The second pa-
rameter is the maximum particle diameter for size-dependent
aggregation and sinking, Dy, set to values of 1, 2 and 4 cm.
A small value of Dy, reduces the maximum possible sinking
speed of the detrital pool and vice versa. Parameter w; de-
scribes the sinking speed of a primary particle with values of
0.7, 1.4 and 2.8 md—. One effect of a small value of w; is
that it reduces the loss of organic matter from surface layers,
and thus it has a direct effect on the recycling of nutrients at
the surface. At the same time, it also affects the maximum
possible sinking speed of the entire detritus pool. Finally, the
exponent that relates particle sinking to diameter, 7, is set to
values of either 0.62 and 1.17. A high 7 represents dense par-
ticles and a fast increase of particle sinking speed with size; a
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Table 2. Model adjustment of biogeochemistry with aggregates compared to Kriest et al. (2017) and new parameters in this study.

Parameters that Kriest et al. (2017)  This study  Unit Description

remain fixed

ro2ut 171.7 171.7  mol Oy : mol P Redfield ratio

Subdin 15.8 15.8  mmol NOj3 m—3 no denitrification below this level

Nfix 1.19 1.19 pmolNm—3d~! N fixation

ACkbaco2 1.00 1.00  mmol Oy m—3 half-saturation constant for oxic degra-
dation

ACkbacdin 31.97 31.97 mmolNOj m3 half-saturation constant for suboxic
degradation

ACmuzoo 1.89 189 147! maximum grazing rate

Parameters that

changed compared to

Kriest et al. (2017)

ACik 9.65 652 Wm 2 light half-saturation constant

ACkpo4 0.5 0.106 mmolPm™3 half-saturation constant for PO,4 uptake

AComniz 4.55 1.6 m3 (mmol Pd)~! quadratic zooplankton mortality

detlambda 0.05 025 147! detritus remineralisation rate

New parameters for the

aggregation model (further

modified in this study)

SinkExp - 0.7164 exponent that relates particle sinking
speed to diameter

Stick - 0.4162 stickiness for interparticle collisions

low value stands for more porous particles, which show only
a weak relationship between size and sinking speed (Kriest,
2002).

2.3.4 Sensitivity experiments at fine resolution
(ECCO1.0)

The occurrence of aggregates, and their transport to the
ocean interior, can furthermore depend on physical dynam-
ics (e.g. Kiko et al., 2017). Therefore, in a second step, we
repeated some of the experiments presented above in the
finer-resolution version ECCO1.0 to investigate possible im-
provements at higher resolution. In particular, we repeated
all MIT2.8 simulations with 7 = 0.62 in this finer-resolution
configuration. Additionally, we carried out three more sim-
ulations with n = 1.17 but with the smallest D;, = 1 cm to
prevent particles from sinking through more than one box
per time step (see Table 1). All simulations together lead
to 30 model runs in the finer-resolution configuration. To
compare the ECCO1.0 simulations directly with results from
MIT2.8, we re-gridded the result from ECCO1.0 simulations
onto the coarser MIT2.8 grid.

2.4 Model assessment and diagnostics

Because observational data of particle flux are either limited
with regard to space and time (e.g. Gehlen et al., 2006) or
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are combined with assumptions that yield no clear patterns
(Gehlen et al., 2006; Henson et al., 2012; McDonnell and
Buesseler, 2010), this study restricts the model assessment
to observations of nutrients and oxygen, in combination with
the model fit to volume and location of oxygen minimum
zones.

24.1 Root mean squared error of tracers

After a spinup of 3000 years into a seasonally cycling equi-
librium state, the model results are evaluated in terms of an-
nual means of oxygen, phosphate and nitrate. As in previous
studies (e.g. Kriest et al., 2017) the misfit is calculated by the
deviation between simulated results, m, and observed prop-
erties taken from the World Ocean Atlas (WOA), o (Garcia
et al., 2006). The deviations are weighted by volume of each
grid box V;, expressed as the fraction of the total ocean vol-
ume Vr. The sum of the weighted deviations is normalised
by the observed global mean concentration of each tracer:

3 .
JRMSE = Z/:l J ()

3 1 N V.
:Zj_l(,j\/z,-_l (mi-.i_oi,j)2*7;. 1)

In this equation, j =1, 2, 3 describes the respective tracer
(i.e. PO4, NOj3 and Oj). N is the total number of model
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grid boxes and o; is the global average observed concentra-
tion of each tracer (Kriest et al., 2017). Thus, a low misfit
value represents a good agreement between model and ob-
servations (Jrmsg = 0 would be a perfect fit), which enables
a prediction about the model accuracy with regard to these
tracers. The model runs with the lowest Jrmsg in the coarse
and the fine resolution are hereafter called RMSEMIT28" and
RMSEECCOLO", respectively.

2.4.2 Fit to oxygen minimum zones

To evaluate the extent and location of OMZs, we follow the
approach of Cabré et al. (2015) by calculating the overlap
between modelled and observed (Garcia et al., 2006; here-
after referred to as “WOA”) OMZs. As several marine pro-
cesses are oxygen-dependent but have heterogeneous criteria
for their minimum oxygen threshold, in this study, the OMZs
are calculated for different oxygen threshold concentrations,
C. Therefore, low-oxygen waters are characterised as O><c,
with ¢ ranging from 0 to 100 mmol O, m~3. To calculate the
overlap between simulated and observed OMZs, we use the
following equation (Sauerland et al., 2019):

Vo) V()
T Vo) VM) + Vo(e)— V()

@

In this equation, V" (¢) is the volume of overlap of sub-
oxic waters between model and observations, with regard to
the defined oxygen threshold concentration c. This overlap
is divided by the union (total volume of low-oxygen waters
occupied in the model or in the observations) and results in
a value between 0, equal to zero overlap between model and
observations, and 1, which represents an optimal overlap. To
adjust the scale to Jrmsg, we calculated the following:

Jomz=1-C. 3)

In this equation, Jomz varies between 0 and 1. Conse-
quently, the scale of Jomz is equivalent to the scale of JRMSE,
which implies that a low misfit corresponds to a good agree-
ment between model and observational data and vice versa.
The model simulations with regard to the lowest Jomz are
called OMZMIT28" and OMZECCO10" hereafter. In calculat-
ing the overlap, we distinguish between the global ocean and
the Pacific as well as the Atlantic Ocean.

2.4.3 Estimation of particle flux length scale b

To investigate, if, and how, the model reproduced observed
maps of the particle flux length scale, b, that relates parti-
cle flux and depth via F (z) o z~? and derived from data
by Marsay et al. (2015) and Guidi et al. (2015), we log-
transformed F'(z), the simulated annual average flux of par-
ticulate organic matter as a function of depth, and carried out
a linear regression of these values. The highest b values cor-
respond to short particle flux length scale, i.e. many small
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particles, and thus a low sinking speed, shallow reminerali-
sation and high oxygen consumption in shallow waters. For
the reference models without aggregation these global maps
should, in areas with shallow mixed layers, show spatially
uniform values, as imposed by the model’s prerequisites. De-
viations from uniform values can be ascribed either to oxi-
dant limitation of remineralisation (see above model descrip-
tion) or to physical processes such as mixing or upwelling,
which can result in an additional vertical transport of parti-
cles.

The parameterisation of the aggregation model assumes a
constant sinking speed for an upper size limit Dy (see above),
and therefore average particle sinking speed will remain con-
stant below some depth. Also, the assumption of a particle
size spectrum, size-dependent sinking and constant reminer-
alisation will result in particle flux profiles that do not fully
agree with those predicted by a power law (see Kriest and
Oschlies, 2008). Thus, because the aggregation model’s pre-
requisites do not fully agree with a continuous increase of
sinking speed with depth, we confine the regression of log-
transformed particle flux to a vertical range between 100 and
1000 m, where the aggregation model still shows an increase
of average sinking speed with depth (see also Kriest and Os-
chlies, 2008).

3 Results

3.1 Global patterns of particle flux profiles

As could be expected, noAggECCO1-0 shows almost no spa-
tial pattern of b, with values around the prescribed nomi-
nal value of b =0.858 (global mean: 0.64; Fig. 1a; please
note the different scaling in a and d) indicating long par-
ticle flux length scales and deep remineralisation. Regions
with particularly low diagnosed b values (<0.2) result either
from decreased remineralisation in OMZs (e.g. eastern trop-
ical Pacific OMZ) or are found in areas of deep mixing (in
the model mainly high latitudes or western boundary cur-
rents), where vertical mixing increases the inferred particle
flux length scales. However, for the best simulation with re-
gard to the sum of Jrmsg and Jomz of the aggregation model
(called ECCO1.0* hereafter) we find the highest b values,
corresponding to short particle flux length scales, or shal-
low remineralisation, in the oligotrophic subtropical gyres.
In contrast, b is the smallest in the equatorial upwelling and
in the shelf regions (Fig. 1d and g). This pattern is in accor-
dance with the observed spatial pattern derived by Marsay et
al. (2015). In our model, this very deep flux penetration (b
close to 0) in the equatorial upwelling can be explained with
low oxygen concentrations, which reduce the remineralisa-
tion rate. In contrast, when deriving the particle flux length
scale from a similar model but with oxygen-independent
remineralisation (Kriest and Oschlies, 2013), we find a b
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close to the prescribed b value of 0.858 (Fig. S1 in the Sup-
plement).

In the subtropical and the equatorial region, the spatial
variance (marked transparent red; Fig. 1g) of model-derived
b values is quite high, which is caused by spatial varia-
tions in the physical environment, i.e. permanently stratified
subtropical gyres and upwelling regions with low oxygen
and reduced remineralisation. However, besides ECCO1.0*
the four best model simulations with respect to the sum of
JrMsE and Jomz (simulation nos. 14, 17, 28 and 29; Table 1)
show essentially the same pattern of b (Fig. S2), although
these four simulations include quite different parameterisa-
tions (see Table 1).

Regions with high b values are characterised by a high
spectral slope of the size distribution and therefore a high
abundance of small particles, leading to slow sinking speeds
(Fig. 7) and low export rates in ECCO1.0* (Fig. 1f).
ECCOL1.0* simulates the highest export rates at high lati-
tudes and in the upwelling region and the lowest export rates
in the subtropical gyres (Fig. 1f and i). Although the spatial
pattern of export rates is similar for both model simulations
with and without aggregation, ECCO1.0* shows a 1.6-fold
higher global mean export rate (10.1 mmol Pm~2a~') than
noAggCCO10 (6.1 mmolPm~2a~"). In ECCO1.0* export
rates show a higher regional variability than in noAggECc01.0
(Fig. 1c, f and i), which is due to blooms in the high lati-
tudes during summer season accelerating the size-dependent
aggregation and thus the export signal.

The oxygen concentration at a depth of 100 m shows the
same global pattern in both simulations, with high oxygen
concentrations at high latitudes and decreasing concentra-
tions towards the Equator (Fig. 1b and e). However, the
oxygen concentration at high latitudes is slightly higher in
noAggECCOL0 than in ECCO1.0* (Fig. 1h). Moreover, the
global suboxic volume (for a criterion ¢ = 50 mmol m~3) in
ECCO1.0* (7.3 x 10'®m?) is larger than in noAggPCCO10
(3.7 x 10'°m?). Comparing our model results with the
dataset of Garcia et al. (2006), which yields a volume of
5.6x 10'° m3, we find an underestimation of the suboxic vol-
ume for noAggFCCO1-0 by 349 and an overestimation for
ECCO1.0* by 30 %.

3.2 Representation of oxygen minimum zones

The finer-resolution and data-assimilated circulation of
ECCO1.0 in general improves the representation of OMZs in
comparison to MIT2.8 with regard to the overlap of OMZs
for a criterion of 50 mmol m—3 (Fig. 2). Both simulations
without explicit particle dynamics, namely noAggM™?8 and
noAggECCOL0  clearly underestimate the extent of the OMZ
at a depth of 500 and 1000m for an OMZ criterion of
50 mmol m—3 in the Pacific basin (Fig. 2). The simulations
including particle dynamics that are the best with respect to
the OMZ metric, OMZMT28" and OMZECCO10" | exhibit a
larger OMZ area for both resolutions (Fig. 2). Despite the
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improved representation of OMZs, all models including the
particle aggregation module still tend to merge the OMZs
of the Northern Hemisphere (NH) and the Southern Hemi-
sphere (SH) at a depth of 500 m, which does not agree with
the well-separated northern and southern OMZ shown by the
observations (Figs. 2 and S3 in the Supplement). As reflected
in a plot that shows the extent of OMZ in the NH and SH,
similar to Fig. 1a and 1b of Cabré et al. (2015), all models
fail to represent the double structure of OMZ north and south
of the Equator. However, in our model the northern Pacific
OMZ is fitted quite well (Figs. 2 and S3).

Aggregation improves the representation of OMZs with
respect to a criterion of ¢ =50mmolm™ compared to
the simulations without aggregation for both resolutions
in the NH, but not in the SH (Fig. 3). In noAggBECCO1.0
the OMZ simulated in the NH is too small and too shal-
low (Fig. 3a). Even though OMZECCOLO™ tends to under-
estimate the suboxic area between ~ 700 and 1300m, it
shows a considerably higher overlap of model results and ob-
servations compared to noAggECCOL0 (Fig. 3b). However,
in the SH noAggPCO10 represents the OMZs better than
OMZECCOL0" \which tends to overestimate the suboxic area
in this hemisphere. In addition to differences caused by par-
ticle dynamics, circulation affects the performance in the two
hemispheres: OMZECCOL.0* represents the highest overlap
between ~ 100 and 500 m depth in the SH, but this is sur-
passed by OMZMIT28" petween 500 and 900 m depth. In the
NH, OMZECCoL0* outcompetes OMZMIT28" petween 300
and 900 m depth as far as overlap is concerned (Fig. 3b).

However, the improvement of the representation of OMZs
in the simulations with aggregation depends on the criterion
for OMZs. As could be expected, a higher oxygen thresh-
old for the OMZ criterion enhances the overlap between
model simulations and observational data (Fig. 4). As for the
fixed criterion of 50 mmol m~3, globally and in the Pacific
the better circulation and finer resolution of ECCO1.0 im-
proves the overlap for varying OMZ criteria in comparison
to MIT2.8 (Fig. 4a and ¢). While the OMZECCOL0™ gimy-
lation reaches globally a maximum overlap of 65.9 % (for
¢ =100 mmol m~3), OMZMIT28" cylminates only in a max-
imum of 58.7 % for the same criterion.

In the Pacific basin OMZECCOL0" reaches an agree-
ment with observations of 19.9 % overlap for a criterion of
20 mmol m~3 (Fig. 4c). The overlap then increases strongly
until the 100 mmolm™ criterion (68.2%). It is notewor-
thy that globally and in the Pacific area noAggEcCO! 0 out-
performs all models for a criterion of 20 mmolm—3, where
it shows an agreement of almost 31 %. The Atlantic basin
shows an inverse trend (Fig. 4b): here, OMZMIT2.8" repre-
sents the OMZ better than OMZECCOL.0* (26 % and 12.2 %,
respectively, for a criterion of 70 mmol m_3). Further, in this
region, the ECCO1.0 model that performs best with respect
to RMSE (RMSEECCOI'O*) outperforms OMZECCOLO™ qyer
the full range of criteria (Fig. 4b). Thus, there are large re-
gional differences in the model’s response to different circu-
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Figure 1. Global maps of b (a, d), Oy at 100 m (mmolmfz, b, e) and export at 100 m (mmolef2 a~l ¢, f) for noAgg

ECCOL1.0 (a, b, ¢

and for the best aggregation model with regard to the sum of Jrypsg and Jonz (simulation no. 26; d, e, f). The black line indicates the OMZ
for a criterion of 50 mmol m~3. Lower panels: Global mean (dotted line) and standard deviation (transparent shaded) of b (g), O, (h) and
export (i) of noAggECCOl‘0 (black) and the best aggregation model with regard to the sum of Jrysg and Jomz (simulation no. 26; red).

Please note the different scaling for b values (a, d).

Table 3. Number of simulations with different parameters for Dy,
o and w for the porous (n = 0.62) and dense (n = 1.17) particles
which outperform the corresponding other size. The numbers are
given with respect to two different criteria, Jrvsg and Jomz-

n=0.62 n=1.17 Resolution
JRMSE 6 3 MIT2.8
Jomz 8 1 MIT2.8
JRMSE 2 1 ECCO1.0
Jomz 2 0 ECCOL1.0

lations and particle dynamics. Because the dataset of obser-
vations used for comparison does not contain any concentra-
tions below 30 mmol m~3 in the Atlantic, all models show no
overlap at all in this basin.

In summary, the improvement of model fit with regard to
Jomz depends not only on particle dynamics but also on the
definition of OMZs (i.e. the OMZ criterion c), the model res-
olution as well as the region considered (Figs. 2, 3, 4).
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3.3 Sensitivity of nutrient and oxygen distributions to
aggregation parameters

Table 3 shows that in six cases out of nine (MIT2.8), a model
that represents porous particles (7 = 0.62) outperforms the
corresponding model with a sinking speed that describes
rather dense, cell-like particles (n = 1.17). The same applies
for the higher resolution (ECCO1.0), where in two cases out
of three a porous parameterisation improves the fit with re-
gard to Jrumsg (see Table 1). Also, both Jrmsg and Jomz of
the “dense” parameterisations are never among the best five
models with respect to either metric (see Table 1). Thus, in
the following we focus on model simulations with 7 = 0.62.

Among the sensitivity experiments performed, the best
model with respect to Jrmsg (hereafter referred to as
RMSEMIT28%) is characterised by an intermediate stickiness
a of 0.5, the largest diameter for size-dependent aggrega-
tion and sinking, Dy, of 4cm and a minimum particle sink-
ing speed w; of 2.8 md~!, representing a rather fast or-
ganic matter transport to the ocean interior. However, many
other models with medium stickiness perform about equally
well (Fig. 5b). Models with lower stickiness perform best
with slow minimum sinking speed w; and a large maximum
size Dp, =4 cm for size-dependent sinking and aggregation

Biogeosciences, 16, 3095-3111, 2019
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Figure 2. Comparison of Pacific Ocean OMZ (O, < 50 mmol m_3) between model simulations and observations. Panels (a) and (b) show
the OMZ at a depth of 500 and 1000 m for the coarse resolution, MIT2.8, and panels (¢) and (d) for the fine resolution, ECCO1.0.

(Fig. 5a). In contrast, a large stickiness (which facilitates
the formation of aggregates in surface layers) requires either
small wy or D, which reduces the export of particles out of
the euphotic zone, and into the ocean interior.

Oxygen concentrations contribute most to the global
Jrmsg (Kriest et al., 2017). The influence of oxygen on
global tracer misfit is dominated by the deep concentrations
(Fig. S4) and thus to a large extent by the large-scale cir-
culation. The OMZs, because of their small regional extent,
contribute less to the global misfit (Kriest et al., 2017). This
is confirmed by Fig. S4d, e and f, showing that, in the eastern
tropical Pacific region, deep (>300 m) mesopelagic and deep
oxygen concentrations scatter strongly among the different
models (Fig. S4a), despite their good global match in shal-
low waters. Likewise, although global mean profiles of nu-
trients are quite similar among the different circulations, and
agree quite well with observations, their concentrations scat-
ter strongly in the eastern tropical Pacific. Most of the simu-
lations tend to underestimate the oxygen and nitrate concen-
tration in this region (Fig. S4a and c). Oxygen concentrations
that are too low lead to denitrification that is too high and
thus widespread nitrate depletion in the eastern tropical Pa-
cific region, which explains the simultaneous underestimate
of oxidants in this region.

To sum up, a moderate stickiness enhances the chance of a
good model fit to nutrients and oxygen (JrMsEg), but there is
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no unique trend for the parameters or combination of param-
eters, with the exception of the exponent that relates particle
sinking speed to its size: here, we find an advantage of a pa-
rameterisation characteristic for porous marine aggregates.
In the optimal scenario, the misfit is less than that of a model
without aggregates, when this is simulated with fixed refer-
ence parameters (noAggMT28). Because of the small spatial
extent of OMZs, the model fit to nutrient and oxygen con-
centrations is mainly caused by the large-scale tracer distri-
bution, even if some models show a considerable mismatch
to these tracers in OMZs.

The pattern for Jrmsg does not change very much
when applying a different, more highly resolved and data-
assimilated circulation (see Table 1 and Fig. 6). Now, the
optimal model (RMSEECCOL0%) improved with respect
to Jrmsg by about 13 %, but many other almost equally
good solutions can be found with moderate to high sticki-
ness. Introducing aggregates in this coupled model system
does not improve the model fit to nutrient and tracer concen-
trations, as evident from the comparison of RMSEECCO1.0*
(Jrmsg = 0.431) against a model without aggregate dynam-
ics (Jrmsg = 0.426; Table 1). The lack of improvement can
likely be explained by the fact that the biogeochemical pa-
rameters of MOPS with particle dynamics were adjusted in
the circulation of MIT2.8, and thus they are not optimal
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for the model when simulated in the physical dynamics of
ECCOL1.0.

The sensitivity to the metric for OMZs differs from the
sensitivity to the metric for nutrients and oxygen. Now, for
the fit to oxygen minimum zones (Jomz), a large stickiness
(a), in combination with Dy of 2 cm and slow-to-moderate
minimum sinking speed wj, is of advantage (Figs. 5 and
6). Thus, a high rate of aggregation, and a maximum sink-
ing speed of about 50-100md~!, improves the model with
respect to OMZs. This is also evident from comparison
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of the optimal models (OMZMIT28" and OMZECCO1.0%)
to models without aggregate dynamics (noAggM28 and
noAggFCCO10) shown in Figs. 3 and 4 and Sect. 3.2. Nev-
ertheless, even the models that perform best with respect
to Jomz underestimate mesopelagic oxygen when averaged
over the eastern tropical Pacific (Fig. S4a).

The sensitivity patterns with regard to Joyz among both
configurations MIT2.8 and ECCO1.0 diverge considerably
from each other, which is in contrast to the patterns for Jrmsg
noted above (compare Fig. 5 with Fig. 6). Thus, model per-
formance with respect to Jomz seems to depend much more
on circulation and physical details than the large-scale dy-
namics reflected in JrRMSE-

4 Discussion

In our sensitivity study, we used a similar parameterisation of
particle aggregation as Oschlies and Kéhler (2004) applied
in their biogeochemical-circulation model for the North At-
lantic Ocean. The difference compared to our model consists
in aggregates, which are composed of phytoplankton and de-
tritus, the parameterisation, which is based on dense particles
(dSAM, Kiriest, 2002) and a biogeochemical model, which
is different. We found high values for the spectral slope of
the size distribution (i.e. high abundance of small particles)
and thus a low particle sinking speed in the subtropical gyres
(Fig. 7), which corresponds with the findings by Oschlies and
Kaihler (2004) and Dutay et al. (2015). This, in turn, leads to
the highest b values in the oligotrophic subtropical gyres and
the lowest ones in the high latitudes and the upwelling re-
gion, in agreement with the pattern as shown in Marsay et
al. (2015). These findings imply that such a b pattern can re-
sult not only from temperature-dependent remineralisation —
as suggested by Marsay et al. (2015) — but also from parti-
cle dynamics and temperature-independent remineralisation.
However, if temperature-dependent remineralisation, as sug-
gested by Marsay et al. (2015) or Iversen and Ploug (2013),
was also included in our model, this would likely enhance
horizontal variations in the particle flux profile, with even
deeper flux penetration in the cold waters of the high latitudes
and upwelling areas. Besides particle dynamics, the low b
values in upwelling regions found in our study (Fig. 1d) are
also caused by the suboxic conditions, which suppress rem-
ineralisation in subsurface waters. Such a tight link between
suboxia and deep flux penetration is supported by the ob-
servations reported by Devol and Hartnett (2001) and Van
Mooy et al. (2002). Therefore, two different processes — par-
ticle aggregation and/or temperature-dependent reminerali-
sation — suggest low b values and deep flux penetration in
the very productive areas of high latitudes. A third process,
which consists in oxygen-dependent remineralisation, is su-
perimposed on these in OMZs, causing the steepest particle
profiles in these areas.

Biogeosciences, 16, 3095-3111, 2019
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However, it should be noted that although the maximum
sinking speed of our best simulations (101 (no. 17) and
51md~! (no. 26), see Table 1) agrees with observations (All-
dredge and Gotschalk, 1988; Nowald et al., 2009; Jouandet et
al., 2011), the range of b values in our model is almost twice
as large as suggested by most empirical studies (Berelson,
2001; Buesseler et al., 2007; Martin et al., 1987; Van Mooy
et al., 2002). However, as there is no common depth range
to determine the particle flux length scale b, the depth range
spreads over a wide range in various studies and thus im-
pedes the comparability (Marsay et al., 2015), which might
explain some divergence between observations and model re-
sults. In particular, our model simulates too large a fraction
of small particles and therefore too steep a particle size spec-
trum in the subtropical gyres, which causes b values that are
too high in these areas. Other processes that modify the size
spectrum, like grazing by zooplankton, and the subsequent
egestion of large fecal pellets, might also play a role in these
regions. Additionally, the model tends to underestimate the
number of large particles (size range 0.14 to 16.88 mm) in the
surface of the tropical Atlantic Ocean (23° W), compared to
observations (Kiko et al., 2017; Fig. S6). On the other hand,
a first, direct comparison to the UVP 5 dataset (Kiko et al.,
2017, their Fig. 1) exhibits a correct magnitude regarding the
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number of particles within this size range (0.14 to 16.88 mm)
in our model (Fig. S5) along the 151° W section. One possi-
ble explanation for the mismatch at 23° W could consist in
a not sufficiently resolved equatorial current system, which
also will be discussed below. Also, additional biological pro-
cesses, such as the downward transport of organic matter
through vertically migrating zooplankton (Kiko et al., 2017)
or particle breakup of aged, fragile particles at depth (e.g.
Biddanda et al., 1988), could improve the model. However,
introducing this additional complexity is beyond the scope
of this paper. In future studies, consideration of these pro-
cesses, in conjunction with a comprehensive model calibra-
tion against observed particle abundances and size spectra
(e.g. Stemmann et al., 2002), may help not only to improve
the representation of OMZs but also to better constrain the
contributions of individual processes such as aggregation,
vertical migration and temperature-dependent remineralisa-
tion, as well as to validate simulated particle dynamics.
However, model calibration against observed particle dy-
namics has to account for characteristics and limitations of
observations. For example, the size spectrum assumed in our
model is of infinite upper size and also contains particles with
a diameter larger than, for example, 4 cm (the upper limit
for size dependency of aggregation and sinking). While these
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Figure 6. As Fig. 5 but for simulations with ECCO1.0.
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Figure 7. Zonal mean sinking speed of detritus (m d~!; dotted line)
and its standard deviation (shaded) of ECCO1.0* for a depth of
100 m (a) and for a depth of 500 m (b).

particles exist (e.g. Bochdansky and Herndl, 1992), they are
very rare (in the model, and likely also in the observations)
and might not be observed with standard methods, which
usually rely on a sample size of a few litres. The rare occur-
rence of large particles (and the limited sample size) has, for
example, consequences for estimated size spectra parameters
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(Blanco et al., 1994). Thus, any model calibration against ob-
servations of particle abundance and size has to account for
a proper match between simulated and observed quantities.
As we used on the one hand two different model grid res-
olutions and on the other hand varied model parameterisa-
tions with regard to particle aggregation, changes in the lo-
cation and extension of OMZs and the distribution of tracers
within each resolution are exclusively driven by the aggre-
gation parameters. A good parameterisation of particle ag-
gregation parameters can therefore have a major influence
on the representation of OMZs. Furthermore, a higher model
resolution improves the depiction of equatorial currents and
therefore the oxygen transport (Cabré et al., 2015; Duteil
et al.,, 2014), which, in turn, results in an improved rep-
resentation of OMZs in the finer-resolution configuration,
ECCO1.0, compared to the coarser resolution, MIT2.8. How-
ever, as physical processes at smaller scales affect the simu-
lated shallow to mesopelagic oxygen and nutrient concen-
trations for the eastern tropical Pacific (Getzlaft and Dietze,
2013), the finer (1° x 1°) resolution of ECCO1.0 is not suf-
ficient to resolve the details of the equatorial current system
(Duteil et al., 2014). This can explain the still high residual
misfit of these simulations and the missing double structure
of OMZs in the eastern tropical Pacific. We therefore suggest
that the difference in improving the representation of OMZs
between NH and SH is more affected by physics than by bi-

ology.
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Furthermore, the results of our sensitivity study confirm
that dense particles do not constitute a realistic representa-
tion of particles, as indicated by Karakas et al. (2009) and
Kiriest (2002). Porous particles seem to constitute a more ap-
propriate parameterisation for good model fit with regard to
Jrumsk and Jomz (Table 1). Although the observed stickiness
ranges between almost 0 and 1 (e.g. Alldredge and McGilli-
vary, 1991; Kigrboe et al., 1990), in our study a moderate
stickiness, o, between 0.5 and 0.8 leads the model towards a
good fit to observed nutrients, oxygen and OMZs.

In summary, our study supports the results of Schwinger
et al. (2016), who found an improved representation of nu-
trient distribution and OMZs when switching from constant
particle sinking to either a power law or particle dynamics,
similar to those presented here. However, the difference be-
tween the two latter schemes in that study were only small. A
more extensive search of the parameter space within a given
circulation may further improve the model. Additionally, we
optimised noAggMT>8 against the same misfit function as
MOPS®P of Kriest et al. (2017) and found that even though
including an aggregation module improves our model, util-
ising an appropriate parameter optimisation would further
enhance our model fit. Thus, without a comprehensive cali-
bration of biogeochemical and aggregation parameters, there
only seems to be a slight advantage when using this more
complex model of particle dynamics.

Finally, we found a steep particle size spectrum in the sub-
tropical oligotrophic region (Fig. 1d), which does not agree
with observational data. Potentially, there are processes tak-
ing place that are not considered in our model, i.e. parti-
cle repackaging and active transport by zooplankton (vertical
migration) (Kiko et al., 2017) based on a modified food web.
Thus, particle aggregation alone so far seems not to be suf-
ficient for a correct representation of the particle size spec-
trum.

5 Conclusion and outlook

Najjar et al (2007) applied different model circulations to
the same biogeochemical model and found that physical pro-
cesses are an important factor for modelling marine biogeo-
chemistry. Our study furthermore showed that also biogeo-
chemical parameterisations — in particular, those related to
particle flux — can have an important impact on the repre-
sentation of dissolved inorganic tracers, in line with earlier
studies (e.g. Kriest et al., 2012; Kwon and Primeau, 2006,
2008). These earlier studies applied and varied a globally
uniform particle flux length scale, whereas it has been sug-
gested that this parameter should vary in space and time (e.g.
Guidi et al., 2015; Marsay et al., 2015). The sensitivity study
presented here constitutes a first approach to systematically
estimate the impact of marine particle aggregation — and thus
a spatially and temporally variable flux length scale — on the
location and extent of OMZs as well as the representation of
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phosphate, nitrate and oxygen under steady-state conditions
in a global three-dimensional biogeochemical ocean model.

We have shown that the assumptions inherent in the model
confirm the general pattern of the spatial map of b values pro-
posed by Marsay et al. (2015) (Fig. 1a and d). This, in turn,
shows that the pattern of Martin’s b can be depicted not only
by a particulate organic carbon flux dependent on tempera-
ture but also by simulating explicit particle dynamics.

We furthermore found that even though there are still a
lot of gaps in understanding several processes (e.g. the vari-
ation of export rates, particle stickiness and particle flux pro-
file over space and time, as well as the link between par-
ticle diameter and sinking speed), the comparisons against
observational data show a trend towards a model improve-
ment by integrating particle dynamics (Table 1). While the
parameterisation of aggregation leads the model towards an
improved fit to OMZs for both model resolutions, this in-
crease in model fit with regard to phosphate, nitrate and oxy-
gen is only detectable in the coarse-resolution MIT2.8, but
not in the finer-resolution and data-assimilated circulation of
ECCO1.0. Moreover, model simulations show that besides
effects of grid resolution, the model fit with regard to JrRMmSE
and Jomz is mainly driven by the particles’ porosity. Our re-
sults indicate that a best fit to both tracers as well as OMZs
(50 mmol O, m~3 criterion) is achieved by parameterising
porous particles in combination with an intermediate-to-large
maximum particle diameter for size-dependent aggregation
and sinking, a moderate-to-high stickiness ranging between
0.5 and 0.8, and an intermediate-to-high initial sinking speed
ranging between 1.4 and 2.8 md~! (Fig. 5). The strong sen-
sitivity of the model fit to aggregation parameters may point
towards the importance of a spatially and temporally varying
flux length scale; however, they also show that the dynamics
of the model depend strongly on the assumptions we make
with respect to particle properties and processes.

Finally, we have shown that uncertainties in the parame-
terisation of particle aggregation remain, leading to the in-
ference that dissolved inorganic tracers offer only insuffi-
cient observational constraints for global particle parameter-
isation. Therefore, for an accurate representation it will be
necessary to calibrate the model not only against observed
phosphate, nitrate, oxygen distributions and volume and lo-
cation of OMZs (Sauerland et al., 2019) but also against
number and size of particles, using comprehensive datasets
of observations (as in Guidi et al., 2015).

Code and data availability. The source code of MOPS including
the aggregation module coupled to TMM as well as the model out-
put are available at: https://data.geomar.de/thredds/catalog/open_
access/niemeyer_et_al_2019_bg/catalog.html (Niemeyer, 2019).
The source code of the TMM is available at: https://github.com/
samarkhatiwala/tmm (Khatiwala, 2019).
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THE EFFECT OF MARINE AGGREGATE PARAMETERISATIONS ON NUTRIENTS AND
OXYGEN MINIMUM ZONES IN A GLOBAL BIOGEOCHEMICAL MODEL

This file provides additional figures to the manuscript ‘The effect of marine aggregate parameterisations on nutrients and

oxygen minimum zones in a global biogeochemical model’. It contains the following figures:

Figure S1: Global maps of b for noAggF‘CCO"O (a) (same as Fig. 1a) and simulation BUR (b) from Kriest and Oschlies (2013),
where remineralisation does not depend on oxygen.

Figure S2: Global map of » for the four best model simulations with regard to the sum of Jzyse and Jopz in ECCOL.0: (a)
simulation #14; (b) simulation #17; (c) simulation #28; (d) simulation #29).

Figure S3: As Fig. 2, but for O, <= 30 mmol m”.

Figure S4: Profiles of average nutrient and oxygen concentrations for the eastern tropical Pacific (upper panels) and globally
(lower panels).

Figure S5: Simulated particle abundance (in # L") in the surface layer (upper), for the 23°W section (lower left) and 151°W
section (lower right) as a depth-profile for a particle size range of 0.14 to 16.88 mm diameter, following Kiko et al. (2017).
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Figure S1: Global maps of b for noAggECCOI'" (a) (same as Fig. 1a) and simulation BUR (b) from Kriest and Oschlies (2013), where
remineralisation does not depend on oxygen.
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Figure S2: Global map of b for the four best model simulations with regard to the sum of Jgysr and Joy, in ECCO1.0: (a)
simulation #14; (b) simulation #17; (c) simulation #28; (d) simulation #29).
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Figure S5: Simulated particle abundance (in # L'l) in the surface layer (upper) and for the 23°W section (lower left) and 151°W
section (lower right) as a depth-profile for a particle size range of 0.14 to 16.88 mm diameter, following Kiko et al. (2017).
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4 Parameter optimisation against observed marine particles,
nutrients and oxygen minimum zones in a global
biogeochemical model

This chapter is a manuscript in preparation entitled Parameter optimisation against ob-
served marine particles, nutrients and oxygen minimum zones in a global biogeochemical
model’ by Niemeyer, D., Kriest, 1., Kiko, R., and Oschlies, A. and with potential contri-
butions by Guidi, L., Hauss, H., McDonnell, A., Picheral, M., Rogge, A., Sauerland, V.,
Stemmann, L. and Waite, A.

Abstract Marine biogenic particles play an important role in the transport of carbon and
other biogeochemical elements from the surface into the ocean interior. They can aggre-
gate into larger particles, breakup into smaller components and also interact with marine
zooplankton that itself can migrate vertically and thereby actively contribute to parti-
cle transport. Here, we integrate explicit descriptions of particle dynamics in a global
biogeochemical model, which is optimised against a global dataset of observed marine
particles as well as dissolved inorganic tracers and the vertical and horizontal extent of
OMZs. The results show that integrating more processes into the optimisation against
marine particles lead the model towards an improved fit to observed particles. However,
a parameterisation that targets on the fit to marine particles deteriorates the representa-
tion of dissolved inorganic tracers, namely phosphate, nitrate and oxygen. Thus, we also
optimise the model against observed particles as well as dissolved inorganic tracers and
find a best compromise solution for both objectives. Nevertheless, the model still tends to
underestimate especially the deep particles. This indicates that another important process
determining marine particle dynamics is still missing in the global biogeochemical model.

4.1 Introduction

Based on the large size of its carbon reservoir, the ocean plays an important role in the
global carbon cycle. The marine biological carbon pump ensures that carbon is efficiently
moved from the sea surface in contact with the atmosphere into the ocean interior. With-
out the action of the biological carbon pump, CO; concentrations in the surface water,
and hence in the atmosphere, would be about twice as high as today [Maier-Reimer et al.,
1996]]. The ocean also plays an important role in the uptake of anthropogenic CO, emis-
sions: So far, the ocean has absorbed about 48% of total cement-manufactured and fossil



PARAMETER OPTIMISATION AGAINST OBSERVED MARINE PARTICLES, NUTRIENTS AND
62 OXYGEN MINIMUM ZONES IN A GLOBAL BIOGEOCHEMICAL MODEL

fuelled emissions [Sabine et al., 2004]. This uptake has been realized predominantly by
the so-called physical solubility pump [Volk and Hoftert, |1985]], while contributions from
a possibly changing biological carbon pump are not well known.

This carbon, which is absorbed at the surface, is consumed by phytoplankton producing
organic matter and biominerals and is transported in the deeper ocean interior as detritus.
These detritus particles are exported either passively by gravitational sinking [[Volk and
Hoffert, [ 1985] or actively by migrating zooplankton [Longhurst et al., [1990; Steinberg
et al., [2002].

On their way downwards by passive gravitational sinking, the sinking speed is determined
by size and density of particles [Engel and Schartau, |1999], the presence of inorganic bal-
last of the particles [Ploug et al., 2008; Bach et al., [2016] and density and viscosity of
seawater, which is determined by temperature and salinity [Bach et al., 2012]. As the
particles are also simultaneously degraded by remineralisation, the passive transport of
particles is a competition between sinking and remineralisation. Ballast [Ploug et al.|
2008; Bach et al., |2016]] and temperature [Segschneider and Bendtsen, |2013}; |Marsay
et al.,[2015; Iversen and Ploug, 2013|] not only determine the sinking of particles, but also
the remineralisation. Moreover, the remineralisation rate is determined by oxygen con-
centrations [Plougl 2001} Tiano et al., 2014} Robinson, [2019].

Active transport into the deeper ocean is caused by diurnal vertical migration (DVM) by
zooplankton and nekton, which feed on particles, phytoplankton and other zooplankton
organisms at the surface during night and descend to depths of several hundred meters
during daytime [Kiko et al., 2017]. Thus, particulate organic carbon (POC) is removed
from the particle sinking pool in near-surface waters. In deeper layers, the zooplankton
defecates the particles during daytime, which provides fresh and dense fecal pellets, pos-
sibly including mineral ballast [Ploug et al., 2008|]. As those particles are dense and heavy,
they reach very high sinking speeds [Ploug et al., 2008] and thus potentially provide an
important amount of particle flux reaching the deep ocean interior [Kelly et al., 2019;
Hernandez-Leon et al., [2019; [Kiko et al., [2020]]. Depending on the geographical location
[Rutherford et al., |1999]] and day- or night-time, the abundance of zooplankton is highly
variable in space and time. As, depending on the species, not all organisms migrate to
deeper ocean layers to hide from predators, the fraction of migrating zooplankton as well
as the migration depth are highly variable and still remain unclear [Archibald et al., 2019].
Kiko et al.| [2017]] showed that zooplankton processes seem to be important for a correct
representation of particle number and size and thus should be integrated into models that
include particle dynamics.

In addition, observations showed that beside large particles also small particles are avail-
able in the deep ocean, which indicates another process, i.e. the particle breakup into
smaller components [Ruiz and Izquierdo, [1997; Dilling and Alldredge| 2000; Burd and
Jackson, 2009]]. This process is assumed to be induced by particle shear and reduces the
particle size but not its mass [Stemmann et al., 2004; [Turner, 2015].

Although there are observed particle datasets available [Guidi et al., [2015}; Kiko et al.,
2017, 2020, these observations are limited in space and time and extrapolations to global
scales are difficult. Global models are therefore a useful tool to investigate the effect of
particle interactions and help to extrapolate these processes on global scale. However,
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there is a large number of parameters to take into account and specify, and the inter-
dependencies of those parameters remain unclear. Thus, in Niemeyer et al.| [2019] we
tested the parameter sensitivity of six model parameters that impact particle dynamics,
and compared the model output to observed distributions of nutrients and oxygen. As this
approach allows only a limited exploration of the parameter space, and did not account
for the model’s fit to observed particle concentrations, in this study we apply objective
parameter optimisation against a dataset of observed particle size distributions. In partic-
ular, we aim to answer the following questions:

1. Does optimisation against observed particle concentrations improves the model fit,
and does it help to constrain the uncertain model parameters?

2. Is the model able to fit particulate organic and dissolved inorganic tracers at the same
time?

3. Does simulation of active particle transport by migrating zooplankton and particle
breakup improve particle dynamics?

4.2 Model description and methods

In this study, we used the Model of Oceanic Pelagic Stoichiometry (MOPS) including
an aggregation module [Niemeyer et al., [2019]] and added two new processes: particle
breakup (shedding) and the effect of particle transport via implicit zooplankton migration
and its fecal pellet egestion in deeper ocean layers (‘gut flux’). The biogeochemical model
was coupled to an offline circulation by applying the Transport Matrix Method (TMM)
[Khatiwala et al., [2005; [ Khatiwala, 2007}, 2018]], which will be described below.

4.2.1 The physical model

We use the ‘Transport Matrix Method’, hereafter called TMM [Khatiwala et al., |2005;
Khatiwala, 2007, 2018]], describing an offline approach to simulate biogeochemical tracer
transport. Advection and mixing are represented by monthly mean transport matrices
(TMs). Additionally, salinity, temperature and wind are used for simulating air-sea gas
exchange of oxygen as well as for the parameterisation of temperature-dependent growth
of phytoplankton.

As the TMs and forcing fields of a circulation model with a higher resolution of 1.0° x
1.0° and 23 depth layers in general improve the model fit [Niemeyer et al., 2019], we fo-
cussed in this study on this data-constrained circulation, called ECCO1.0, and neglected
any coarser resolution. For physical transport, we used a time step length of 1/2 day and
for biogeochemical interaction 1/40 day.
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4.2.2 The biogeochemical model

We build upon the coupled model setup presented by Niemeyer et al. [2019]], experi-
ment ECCO1.0, and describe the biogeochemical and particle aggregation model only
briefly here, with focus on the parameters to be optimised. In particular, we apply the
phosphorus-based Model of Oceanic Pelagic Stoichiometry, called MOPS, [Kriest and
Oschlies, [2015]], which represents eight tracers: phosphate, dissolved organic matter,
oxygen, phytoplankton, zooplankton, detritus, nitrate and the number of detrital parti-
cles. The P-, N- and O;-cycles are coupled via constant stoichiometric ratios, following
Paulmier and Ruiz-Pino [2009]]. In the model, detritus is produced through linear phy-
toplankton and quadratic zooplankton mortality. Additionally, the amount of food not
ingested by zooplankton, €,,,, feeds into the detritus pool. Detritus sinks with a sinking
speed determined by particle dynamics, and remineralises with a constant rate, r. How-
ever, remineralisation of particulate and dissolved organic matter depends on oxygen, and
ceases when oxygen becomes too low. With decreasing oxygen nitrate is used as electron
acceptor for denitrification. If neither oxygen nor nitrate is available, remineralisation
does not occur any more. On a global scale, the loss of fixed nitrogen via denitrification is
compensated via temperature-dependent nitrogen fixation. A fraction of sinking detritus
that reaches the seafloor is resuspended back into the water column, and the other fraction
is buried into the sediment. Buried P and N are resupplied via river runoff, and the P bud-
get is thus globally stable, while N and O, adjust to the biogeochemical parameters and
boundary conditions (nitrogen fixation and air-sea gas exchange, respectively; see Kriest
and Oschlies| [2015]]). The biogeochemical model is complemented by a model for par-
ticle aggregation and size-dependent sinking as described in Niemeyer et al.| [2019] (see
section 4.2.2.1). In addition, we also included parameterisations for aggregate breakup
(section 4.2.2.2) and the effect of zooplankton vertical migration and egestion at depth
(‘gut flux’, section 4.2.2.3).

4.2.2.1 Particle aggregation and size dependent sinking

As in |Niemeyer et al. [2019], the aggregation module simulates size-dependent proper-
ties of detritus particles by assuming power-law relationships between particle diameter,
d, and mass, m, (m = Cd® ) and between particle diameter and sinking speed, w (w =
Bd). The minimum diameter and mass of a primary particle is set to d; = 0.002 and m;
= 0.00075 mmol P, respectively. Following Kriest [2002] and Niemeyer et al.|[2019]], we
set the relationship between size and mass, {, to 1.62. To enable very fast sinking speeds,
we set an upper limit for size dependent processes and aggregation of Dy = 20 cm, i.e.
particles larger than Dj exhibit no increase in sinking speed anymore. The model cal-
culates the time- and space-varying spectral slope € of the particle size distribution from
the number N and mass M of particles for each time step [Kriest and Evans, 2000], via
N=A/[,7d %dd and M = AC [,;7d° £dd. This log-log-linear particle size distribution
is affected by particle aggregation processes and sinking
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4.2.2.2 Particle breakup

Kiko et al.|[2017] found in their observations lots of small particles in the deep ocean sup-
ported by the findings by Cavan et al.|[2017]. In addition, Bianchi et al.|[2018]] showed
in their modelling study an improvement by integrating particle breakup. Thus, a new
component in our model consists in particle breakup, p, and is described as the particle
breakup into smaller particles (given in d~!). We assume that aggregates with at least
twice the mass of a primary particle (of diameter d), given by d,= d|2 1/¢ disaggregate
into primary particles with a rate p (d~1). Thus, the number of particles breaking up, by
(numbers cm~—> d~ 1), over the size range from d> to infinity is given by

—£

0 1
by = pA dtdd = pN2 4.1)
dp

where N (numbers cm™?) is the total number of particles, defined by

N=A|[ d&dd 4.2)
d

(see |Kriest and Evans| [1999]). This process decreases the number of particles larger than

d,, while it increases the number of primary particles of size mass m;. The mass gain of
small primary particles is then computed from the mass of particles that breakup, by, , via

&0 1—¢
by = PAC / 45 ¢dd = p2m2 T (4.3)
dp

where M (mmol P m~3) is the total mass of aggregates defined by

M=AC | d°¢dd (4.4)
d

(see Kriest and Evans|[1999]). These particles resulting from the breakup of a large par-
ticle into primary particles will all have a mass of m1; thus, the total change in numbers is
given by
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AN=""2—by=p2 ¢ |=——N|. (4.5)
nmi mi

(4.6)

According to this formulation the gain of particles due to aggregate breakup is largest
when the size distribution is “flat” (small €), i.e. when there is a high proportion of large
aggregates (equivalently: when the ratio of mass to numbers is large). Theoretically,
the particle breakup rate p can range between zero and one, whereas zero represents no
breakup at all and one describes such a high breakup that every particle is disintegrated
into its primary compounds. Consequently, aggregate breakup, p, is a process, which
possibly enables small particles to be available in deep ocean layers.

4.2.2.3 Zooplankton vertical migration

We take into account the effects of vertically migrating zooplankton, which feeds during
night at the surface and migrates to the mesopelagic during daytime to hide from preda-
tors. Instead of explicitly including this diurnal vertical migration, we parameterise the
effect of this migration and the egestion of faecal pellets in the mesopelagic, as follows:
we assume that zooplankton migration has two controlling factors, namely the migration
depth of the zooplankton, which is set in our study to 400 m [Kiko et al., 2017} Bianchi
et al.,[2013|], and the fraction of zooplankton that migrates and evacuates its gut at depth.
The egestion at depth thus creates a ‘gut flux’ to 400 m.

As described in Kriest and Oschlies| [2015]], the amount of detritus produced by grazing
G and subsequent egestion E is described by

E= (1 - O-DOP)(1 - gzoo)G 4.7)

where G pop is the fraction of the flux that is routed to dissolved organic matter, and €zp0
is the ingestion efficiency of zooplankton. We assume that for every layer in the euphotic
zone (the upper 100 m, from depth layer k=1 to k=6) a fraction of this flux, 0 is not re-
leased as detritus in the local depth layer, but is immediately shifted to the detritus pool at
400 m depth (k=11). We further assume that the size distribution of this flux is the same
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as in the depth layer of the origin, implying that zooplankton and their feces in the origi-
nating layer track the size distribution of aggregates, i.e. when there are large aggregates
there is also large zooplankton (as in Kriest|[2002]). Thus, the rate of change of aggregate
mass and numbers due to this implicit gut flux at 400 m (i.e. depth layer kg,,) is given by

AM (kgur) = me Zﬁj E(k) A z(k) (4.8)
AN (kgur) = m 0y CE(k) % Az(k). 4.9)

The fraction of migrating zooplankton, 6, might - again - theoretically range between
zero and one, where zero describes no zooplankton migration at all and one defines that
all zooplankton organisms migrate to deeper layers during daytime.

4.2.3 Observations

The observed particle dataset is collected with the Underwater Vision Profiler (UVP 5),
which enables the in situ quantification of marine particles with diameter > 0.06 mm in a
water volume of 0.93 L per image [Picheral et al., 2010]. After recording, all thumbnails
are extracted via ImageJ [Gorsky et al., 2010] and grouped into the size classes by equiv-
alent spherical diameter (ESD).

The global dataset used in this study has a range in particle diameter between 0.16 mm
and 26.00 mm, i.e. 22 particle size classes. The observed dataset is gridded onto the 1°
model resolution by calculating the mean number of particles per size class and gridpoint.
Afterwards, the particles are separated into MiPs, small microscopic particles (0.16-0.51
mm), and MaPs, large macroscopic particles (0.51-26.00 mm).

4.2.4 Optimisation

Most of the biogeochemical model parameters remain fixed at the values of configuration
ECCO1.0 described in Niemeyer et al.| [2019]. However, based on preceding tests and
experiments in the configuration presented here we set wy, the minimum sinking speed of
a primary particle, to 0.33 m d~! and the maximum diameter for size-dependent sinking
and aggregation, Dy, to 20 cm (see Tab. [4.1)) to enable very high sinking speeds. In addi-
tion to/Niemeyer et al.|[2019]], this model configuration includes three more parameters as
described above: the migration depth of zooplankton, the fraction of migrating zooplank-
ton, 0, and particle breakup rate, p. As shown in Tab. {.T] we fixed the migration depth of
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zooplankton to a value of 400 m, which is thus independent from oxygen concentrations,
and optimised the other two additional parameters as detailed below.

4.2.4.1 Optimised parameters

In this study, we carried out six different model optimisations, which differ with respect
to the number of objectives to be optimised and the number of optimised parameters.
As shown in Niemeyer et al. [2019]], «, the probability that two particles stick together,
and 1, the exponent that relates particle sinking to diameter influence the particle size
spectrum, the sinking speed and thus the overall particle flux. Based on these findings,
these parameters are subject to optimisation. A large value of these parameters may lead
to a high export of particles, and thus cause nutrient depletion especially in the surface
layer. The detritus remineralisation rate, r, affects the nutrient turnover and decreases the
particle abundance at the same time. Therefore this parameter was also subject to optimi-

sation.
Parameters that are Niemeyer et al.
this study unit description
fixed (2019)
wy 0.7 0.33 md’ minimum sinking speed of a
primary particle
Dy, 2.0 20.0 cm diameter for size-dependent
aggregation and sinking
zmigrate - 400 m zooplankton migration depth

Range of optimised

parameters
a - 0.5-0.9 stickiness for interparticle collision
n - 0.5-1.8 exponent that relates particle
sinking speed to diameter

Eoo - 0.5-1.0 zooplankton ingestion efficiency
r - 0.001-0.2 14" detritus remineralisation rate

0 - 0.01-0.9 md’ fraction of migrating zooplankton
P - 0.001 -0.1 1d’ break-up rate of particles

Tab. 4.1: Model adjustments and new parameters used in this study compared to|Niemeyer et al.
[2019] and range of optimised parameters. Please note, that in the simulation Base;Y"?, where r
is not included in the optimisation algorithm, this parameter is fixed to 0.05 d~".
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As noted above, Kiko et al. [2017] found in their observations a large number of small
particles in the deep ocean, pointing towards processes that reduce the particle size in the
ocean interior. To examine the impact of this process regarding the model fit to observa-
tions, we also optimised breakup rates of particles, p. As Kiko et al. [2017] and /Aumont
et al. [2018] stressed the importance of zooplankton, its vertical migration and effect on
particle flux, we furthermore added two zooplankton parameters to the optimisation: the
zooplankton ingestion efficiency, €;,,, which influences the detritus pool and the propor-
tion of migrating zooplankton that egests particles into deeper ocean layers, 6.

By setting an upper and lower limit for the parameters to be optimised we reduce the pa-
rameter space and guide the model towards a good fit to observations, thereby increasing
the efficiency of the - computationally expensive - optimisation. We followed Niemeyer
et al. [2019] who found that the model fit to dissolved inorganic tracers is best with an
intermediate to high o and set the boundaries for @, the probability that two particles stick
together, to a range between 0.5 and 0.9 (see Tab. [.1). Although the sensitivity study
exhibited a best fit for a weak increase of sinking speed with aggregate size (correspond-
ing to porous aggregates), i.e. 11 = 0.62, we enable the model to range between 0.5 to
1.8 (see Tab. [4.1)). Remineralisation, r, and particle breakup rate, p, have been assigned
between 0.001 d~! and 0.2 and 0.001 and 0.1 d—!, respectively (see Tab. . To prevent
zooplankton from extinction, the lower limit of &,,, is set to 0.5 and the upper one to the
maximum possible limit of 1.0. As the fraction of migrating zooplankton seems to be an
important shuttle for the particles to reach deeper ocean layers, we set a very broad range,
i.e. 0.01 to 0.9 (see Tab. |.1).

4.2.4.2 Objectives of optimisation

With regard to the objectives, we distinguish between three different types of optimisa-
tions: (1) single-objective optimisation against a global particle dataset assembled from
UVP data (Jyyp), and two types of multi-objective optimisations. The first case of multi-
objective optimisation (2) is against a dataset of the underwater vision profiler, UVP,
Juvp, as the first objective, and the root mean square error, RMSE, of dissolved inor-
ganic tracers (including phosphate, nitrate and oxygen), Jryse, as the second objective.
The second case of multi-objective optimisation consists in an optimisation, where the
UVP-dataset is - again - the first objective and the sum of Jgysg of dissolved inorganic
tracers and the overlap of OMZs, Joyz, between model and observations (following the
approach by (Cabré et al.| [2015]; see also Niemeyer et al.|[2019]) is the second objective

(see Tab. 4.2)).

4.2.4.2.1 Objective 1: Fit to number and size of particles

As the aim consists in improving the particle abundance and size distribution in our model,
we chose the deviation of number and size of particles between model simulations and
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observations as our first objective. As observational reference, we used a dataset of the
UVP 5 [Picheral et al., 2010]], mapped onto our model geometry. Afterwards, we calcu-
lated the deviation for each grid point between simulated and observed mean MiPs, small
micrometric particles ranging in diameter between 0.16 mm and 0.51 mm, and MaPs,
large macroscopic particles ranging between 0.51 mm and 26.0 mm (taking into account
Kiko et al. [2017]; but please note the different boundaries of particle size classes in our
study).

There are many more particles at the sea surface than at greater depths, and any absolute
deviation would therefore focus on shallow waters, and not consider phenomena such as
the ‘marine equatorial snowfall’ [Kiko et al., 2017]]. To avoid such bias, the squared de-
viation of MiPs and MaPs is weighted by the squared number of both observed particle
size classes at the corresponding location, thereby enhancing the mismatch at small con-
centrations at depth:

2 . 2 1 i ml, 017 2
Juvp = Zj:1 J(j) = Zj:] ]VJ Z e (4.10)
i=1 ,J

In this equation, j = 2 represents number of particle size classes, MiPs (small micrometric
particles) and MaPs (large macroscopic particles), and i=1...N describes the number of
ocean grid boxes, where observations of MiPs and MaPs exist. Furthermore, o represents
the observational dataset and m the model results. To force the optimisation to reproduce
small particles in the deeper ocean, the relative deviation has been chosen at this point. In
summary, the lower Jyy p is, the better the model fits the observed particle dataset of the
UVPS5S.

4.2.4.2.2 Objective 2: RMSE to dissolved inorganic tracers

Following Kriest et al. [2017]], the second objective of our model optimisation consists
in the root mean squared error (RMSE) to dissolved inorganic tracers, namely phosphate,
nitrate and oxygen between modelled, m, and observed, o, [Garcia et al., 2006]] (here-
after named WOA) concentrations. We calculate the deviation between modelled, m,
and observed, o, tracer concentration of phosphate, nitrate and oxygen, squared it up and
weighted it by the relative volume of each grid box:

V:

3 . 301 N
Jrmse =Y, J() =), §¢ Yim(mij =01 (4.11)
J

J =3 describes the number of tracers, namely phosphate, nitrate and oxygen and i is again
the number of ocean grid boxes. To emphasize on large deviations in the deep ocean, the
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fit is weighted by the volume fraction as explained in |Kriest et al.| [2017]]. JrassE, mostly
varies between 0.4 and 1.0 (and is usually around 0.5 [Sauerland et al., 2019]]), whereby
a low value corresponds to a good model fit.

4.2.4.2.3 Objective 3: Fit to oxygen minimum zones

Following the approach by (Cabré et al.| [2015]], we calculated the horizontal and vertical
overlap between modelled and observed (WOA) OMZs for the fit to OMZs, Joyz. In
this study, we defined OMZs by waters with oxygen concentrations lower than an oxygen
threshold, ¢, set to 50 mmol m~3. In this equation by [Sauerland et al.| [2019]

C= ( = ) (4.12)

the overlap volume between modelled and observed OMZs, V(¢), is divided by the total
volume, where either model or observations are suboxic, V,(c). This results in a fit rang-
ing between zero, no overlap at all, and one, a perfect fit. We moreover calculated

Jomz=1-C (4.13)

to adjust the scale to JrysE, 1.€. zero is equal to the best fit and a high Jppsz corresponds
with a low overlap between modelled and observed OMZs. However, the fit to oxygen
minimum zones was not treated as an independent third objective. Instead we calculated
the sum of Jrysg and Joprz, which constitutes one combined objective (see also Sauer-
land et al.|[2019], who examined a single-objective optimisation against the sum of Jryrsg
and J OMZ)-

4.2.4.2.4 Best compromise solution between two objectives

Sauerland et al.| [2019] described in their study that the output of a multi-objective opti-
misation is a set of compromise solutions between the considered objectives. In this case,
the misfit between model output and observations on both axes representing the two ob-
jectives ranges between zero, the best possible fit, and one. As the associated parameter
set represents a ‘knee’ of the Pareto Front, the best compromise solution between both
objectives is the minimum distance to the coordinate origin.

Thus, we calculated the minimum Euclidean distance, d, between data points a; and coor-
dinate origin, b;, in a two-dimensional space for the two objectives (1% objective, Jyy p,
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and 2"4 objective, Jryse (+ Jomz)):

d(a,b) = /(a1 —b1)> + (ay — b)2. (4.14)

The minimum distance describes a compromise solution for both equally-weighted ob-
jectives.

4.2.5 Experiments

In this study, we used six different model simulations which vary regarding their number
of optimised parameters and objectives (see Tab. [4.2)):

Base3gVP : three optimised parameters: particle stickiness, ¢, sinking exponent, 1], zoo-

plankton ingestion efficiency, &;,,; single-objective optimisation against Jyyvp (Eq. 4.10)
Bases9V”: as Bases%"”, but adding the remineralisation rate of detritus r to optimised
parameters

UvP. Uvp . .  orat] .
Basesp " ": as Basesp ", but adding the fraction of migrating zooplankton 6 to opti-
mised parameters

ANYVP: as Bases¥ ", but adding the particle breakup rate p to optimised parameters

ANVVPERMSE. a5 A1IVVP but with multi-objective optimisation against UVP and RMSE
(Eq. 4.10 and 4.11, respectively)

ANVVPERMSEFOMZ. 45 AJJUVPERMSE 1yt with multi-objective optimisation against UVP
and RMSE+OMZ (Eq. 4.10 and 4.11 + 4.13)

We limited the optimisations to a maximum of 300 generations, where each generation
includes 10 individuals, i.e. different parameter sets. As the optimisation is computation-
ally expensive, we ran short-term optimisations, where we integrated the model solutions
of each generation over 10 years. This length of simulation was regarded as sufficient
to propagate the parameter information, e.g. enhanced particle aggregation to the ocean
interior via particle sinking. However, after 10 years the model has not yet reached an
equilibrium state with respect to the combined effects of particle production, its flux to
the ocean interior and the effect of the large-scale circulation on the global distribution of
nutrients and oxygen.
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Therefore, after short-term optimisation we took the parameters of the best simulation and
integrated the model over another 3000 years to run the model into equilibrium state. This
allows us to determine the effects of parameterisation on global scale biogeochemistry.

4.3 Results

The optimisation convergence depends on the number of objectives. While the four
single-objective optimisations against a global observed dataset of marine particles con-
verge after 54, 74, 200 and 179 generations, respectively, the multi-objective optimisa-
tions did not converge with the given maximum number of 300 generations. Please note,
that each simulation has been integrated over 3000 years into a steady state after optimi-
sation. This output after 3000 has always been used in the following.

AlIUVP&
BaseyU"" BaseypU"" BasespU"" AlVY? AJIUVP & RMSE iSerOns
fo4 0.9 0.9 0.9 0.9 0.9/0.9/0.9 0.9/0.84/0.67
n 0.92 1.8 0.68 0.91 0.91/1.3/0.5 0.9/0.63/1.33
Ez00 1.0 1.0 0.63 1.0 1.0/1.0/1.0 1.0/1.0/0.89
r 0.001 0.001 0.02 0.02/0.08/0.08 0.02/0.13/0.08
0 0.02 0.38 0.01/0.01/0.19 0.32/0.05/0.74
P 0.001 0.001/0.04/0.04  0.001/0.001/0.06
Juvp 1.67 1.6 1.45 1.29 1.22/1.68/5.0 1.22/1.6/1.8
Jruse 1.56 1.67 2.1 1.08 0.3/0.2/0.18 0.3/0.22/0.2
Jomz 1.0 1.0 1.0 0.95 0.35/0.31/0.35 0.35/0.29/0.29

Tab. 4.2: Model simulations, their optimised parameters and the calculated misfit of particles
(Juvp), dissolved inorganic tracers (Jrysg) and OMZs (Joyz) with regard to the weighted best
simulation of the last generation of each optimisation (please note, that the given fit is after
optimisation and after running the model into steady state). OMZ is defined as 50 mmol m~3.
The first value in the multi-objective optimisations describes the best simulation regarding Jy v p,
the second, bold value is the best compromise solution of both objectives (the associated
parameterisation is used in this study) and the third value constitutes the best fit to the second
objective (i.e. Jruse or Jruse+Jomz). As in Bases8VT the detritus remineralisation is fixed to
0.05 d~', it is depicted in this table in grey.

4.3.1 Model fit to observed particles

Optimising the basic parameters, namely o, 1 and &,,, in our global biogeochemical

model against the UVP 5 dataset, simulation Base#wD , the parameterisation of the last

generation does not lead the model towards a good fit to Jyyp (1.67) compared to the
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following simulations (see Tab. 4.2). As the model parameterisation exhibits a 1) of 0.92
and thus simulates rather porous particles with a low sinking speed of large particles and
moreover a very high &,,, (1.0) leading to no zooplankton egestion feeding into the parti-
cle pool, the model tends to underestimate the number of particles especially in the deeper
ocean (see Fig. .. This also results in a too low POC flux in 2000 m depth (see Fig.
4.2) compared to observations. This pattern is also shown in the equatorial Atlantic along
23°W and in the Pacific along 151°W, where particles in the deep ocean for both particle
size classes, MiPs and MaPs, are underestimated (see Fig. [4.3] and [4.4). Especially in
the equatorial region, i.e. 23°W, the model is not able to reproduce the IPM, intermediate
particle maximum, indicated by observations [Kiko et al., [2017]. However, compared to
the best simulation, ECCO*, from the sensitivity study by Niemeyer et al. [2019], both
particle size classes are improved in both sections as the model now includes a higher
number of particles — especially in shallow waters (see Fig. .3 and {.4).

MiPs MaPs
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Fig. 4.1: MiPs and MaPs (mean particles I~ per model grid box) model vs. observations (from
UVP 5 dataset). The colorbar represents the depth layer from the model (blue=shallow waters,
red=deep ocean).

Including one more parameter in the optimisation, namely the detritus remineralisation

rate, r, slightly improves Jyyp (1.6) in Base4gvp compared to the previous simulation,



75

Baseg,gVP (see Tab. . The probability of two particles sticking together, o, as well
as the zooplankton ingestion efficiency, &, are almost unchanged compared to the pre-
vious simulation. As the exponent between diameter and sinking speed is doubled (1.8)
compared to Bases%"” (see Tab. [4.2), the simulated particles exhibit very high sinking
speeds leading to an improved fit to observed very deep particles and POC flux in 2000 m
depth (see Fig. .1 and 4.2)). However, particles in shallow ocean layers are considerably
overestimated in both particle size classes (see Fig. [§.1)), likely owing to the very low
optimal remineralisation rate r. This particle overestimation is also represented in both
modelled sections, at 23°W and 151°W respectively (see Fig. [4.3] and 4.4).

UVP
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Model [mol C m™?]
o
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g o1
3
S 0.001 §
0.001 10 0.001 0.1 10 0.001 0.1 10
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Fig. 4.2: POC-flux (in mol C m~2) in 2000 m depth model results plotted versus observations
from UVPS dataset (dark grey) and dataset from Honjo et al | [2008] (light grey).

Bases5"”, which moreover includes the fraction of migrating zooplankton in the optimi-

sation (formerly set to zero), further improves the model regarding Jyy p (1.45). Contrary
to the previous simulations, €;,, has an intermediate value of 0.63 and thus zooplankton
contributes to the particle flux by egestion. As the fraction of migrating zooplankton, 0,
is very low (0.02), €,,, has however a very limited impact on particle flux. Moreover, a
low n of 0.68, i.e. corresponding to porous particles and a low sinking speed, leads the
model towards an underestimation of particles — especially in the deeper ocean interior
(see Fig. 4.1)) - and of the particle flux in 2000 m depth (see Fig. i.2)). As shown in Fig.
4.3]and [4.4] the model tends to underestimate the number of particles in both size classes
and both sections; however, the spatial pattern of deep particles in the Pacific basin is
matched quite well by the model.

Including all parameters into the optimisation, i.e. adding the particle breakup into smaller
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components further improves the model regarding Jyv p (1.29) in simulation AIIYV?, Al-
though the fraction of migrating zooplankton is much larger (0.38) than in the previous
simulations, &, is at the upper boundary (1.0) and zooplankton egestion thus does not
feed into the particle pool. The optimal parameters lead the model towards an underesti-
mation of the number of particles in the deep ocean, while particles in the shallow layers
globally fit to observations (see Fig. @.1). Although the model exhibits a pattern of under-
estimating the POC flux in 2000 m depth for a few grid points, the general pattern fits to
observations (see Fig. d.2). As shown in Fig. [4.3]and.4] the model tends to overestimate
the number of particles in shallow waters and underestimates particles in the deep ocean
for both particle size classes and both considered sections.
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Fig. 4.3: Mean MiPs (left), the small particle size class, and MaPs (right), the large particle size
class, of observations and all model simulations at 23°W. ECCO* is the best simulation of the
sensitivity study by|Niemeyer et al. [2019]. White boxes depict very low particle concentrations.

Although the model is not able to find an appropriate parameterisation for particles in
shallow waters (best representation in Basesy"”, Fig. and in the deep ocean inte-
rior (best representation in Base4gVP , Fig. at the same time, an increasing number
of model processes generally improves the fit to particles, Jyyp (see Tab. [|.2] which
decreases from 1.67 to 1.29). However, in most cases optimisation causes the ingestion
efficiency of zooplankton to approach its upper boundary — therefore, production of detri-
tus happens mostly through zooplankton quadratic mortality (and, to a lesser extent, linear
phytoplankton mortality). As a consequence, the parameter for the effect of zooplankton
vertical migration appears only weakly constrained, which might explain its large varia-

tion between Bases4"? and AlIVVY.
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Fig. 4.4: Mean MiPs (left), the small particle size class, and MaPs (right), the large particle size
class, of observations and all model simulations at 151°W. ECCO* is the best simulation of the
sensitivity study by|Niemeyer et al| [2019]. White boxes depict very low particle concentrations.

4.3.2 Model fit to dissolved inorganic tracers and OMZs

As not only particles but also dissolved inorganic tracers, i.e. nutrients and oxygen, and
also the representation of OMZs, may be important to determine the model fit to observa-
tions, this section investigates the fit to observed dissolved inorganic tracers and the over-
lap between modelled and observed OMZs. Both are not included in the single-objective
optimisations and are thus independent from the optimisation.

The parameterisation of Base35"” and Base4¥ " neither leads the model towards a good
fit to particles nor to dissolved inorganic tracers (Jrysg=1.56 and Jrpysg=1.67, respec-
tively) or OMZs (Joprz=1.0 for both simulations) (see Tab. @[) compared to the follow-
ing simulations. This results in an underestimation of nutrients in epi- and mesopelagic
waters and in an overestimation of oxygen concentrations (see Fig. {.5)). Therefore, this
parameterisation does not enable the formation of OMZs for a criterion of 50 mmol m 3
in both simulations (see Fig. 4.5). As shown in Fig. f.5]an optimisation against observed
particles leads the model towards a considerable decline regarding the fit of dissolved
inorganic tracers and OMZs to observations compared to ECCO*, which constitutes the
best simulation regarding Jryse and Jopz by Niemeyer et al.| [2019]].

Simulation Base5gVP moreover exhibit a similar pattern for nutrients (i.e. an underesti-
mation of phosphate and nitrate in epi- and mesopelagic waters; Jrysg=2.1) but shows
an even stronger overestimation of oxygen concentrations between 100 m and 1500 m
(see Fig. compared to Base#vp and Base4gVP . As oxygen concentrations are con-
siderably too high compared to observations, the model is still not able to reproduce the
observed OMZs (see Fig. [4.5), which results in a fit to Joyz of 1.0 (see Tab. {.2). The fi-
nal single-objective optimisation, which includes the full number of parameters, AIIVV?,
represents not only the best fit to particles (see previous section), but also to dissolved
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inorganic tracers and OMZs (Jryse=1.29 and Jppz=0.95, respectively). However, the
model still tends to underestimate the phosphate and nitrate concentrations in epi- and
mesopelagic waters (see Fig. 4.5). Oxygen concentrations are lower than in the previous
simulations, and the model now underestimates the oxygen concentrations >1000 m depth

(see Fig. {4.5).
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Fig. 4.5: Global average depth profiles of phosphate, nitrate, oxygen and the area of OMZ (40°N
to 40°S) following the approach by|Cabré et al.| [2015]. OMZs are defined as O,<50 mmol m™3.
ECCO* constitutes the best simulation regarding Jrysg and Joyz from the sensitivity study by
Niemeyer et al.|[2019)].

Thus, it can be concluded that the model is not able to fit particulate and dissolved tracers
using a single-objective optimisation against observed particles. Based on these findings,
we integrated in the following the fit to Jrysg as well as the sum of Jrysg and Jopsz in
the optimisation algorithm as a second objective.

4.3.3 Model fit to particulate and dissolved tracers

As described in [Sauerland et al.| [2019]], a multi-objective optimisation gives out a set of
(in our case) 10 different parameterisations and model fits, which follows a Pareto Front
between both objectives. As those different parameterisations cover a broad range of fits
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to both objectives, in this study always the best compromise solution between both ob-
jectives has been chosen, i.e. the minimum distance between data points and coordinate
origin.

Adding one more objective, the fit to dissolved inorganic tracers, Jgysg, into the optimi-
sation, simulation AllYVVP&RMSE {escribes the best compromise solution between Jyy p
and Jry sk (see Tab. , calculated as given in Eq. 11. The parameterisation for the best
compromise solution between both objectives reduces the fit to Jyyp (1.67) compared to
the previous single-objective optimisation, AllVY? (see Tab. [4.2). As the parameterisa-
tion exhibits beside a high 1 of 1.3 also a high r (0.08) and 6 (0.04) compared to the
previous simulations, the model tends to overestimate the number of particles in shallow
waters but underestimates the deep ones (see Fig. as well as the POC flux (see Fig.
[.2). This results in no particles at all in the deepest ocean layers (see Fig. [d.1)). How-
ever, the model is now able to improve the representation of particles in both sections,
at 23°W and 151°W, and both particle size classes (see Fig. .3] and [4.4) and moreover
exhibits an improved representation of the IPM compared to the previous simulations (see
Fig. 4.3). Contrary to the previous single-objective optimisations, the parameterisation
of the best compromise solution is now able to fit dissolved inorganic tracers as well as
OMZs (see Fig. [4.5) and constitutes the best representation of dissolved inorganic tracers
compared to the previous simulations. Compared to the ‘hand-tuned’ sensitivity study
by Niemeyer et al. [2019], simulation ECCO¥*, the fit to dissolved inorganic tracers and
OMZs is slightly improved (see Fig. 4.5).

In the final optimisation AllVYP&RMSE+OMZ " yhere the sum of the best compromise
solution of Jryse and Jopz constitutes the second objective, the fit to Jyyp (1.76) is
reduced compared to the previous multi-objective optimisation excluding the overlap be-
tween modelled and observed OMZs. Porous particles and a reduced sinking speed (0.63)
in combination with a doubled r (0.13) leads the model towards a good fit of shallow
particles compared to AlIYVPERMSE = However, the model tends to underestimate deep
particles (see Fig. [A.I) and POC flux at 2000 m depth (see Fig. {.2)). Fig. 4.3]and 4.4
show an underestimation of particles in both size classes and considered sections in shal-
low but also in deep waters. Although the fit to Jyyp (1.76) and Jrysg (0.63) is reduced
compared to AlNVVP&RMSE (he fit to Jomz (0.59) is improved leading, however, to a too
large area of modelled OMZs compared to observations (see Fig. {.5)) as the model un-
derestimates the oxygen concentration from a depth of 400 m, which, in turn, leads to
an overestimation of the OMZ volume (see Fig. [1.5)). It can be concluded that the pa-
rameterisation of the best compromise solution between Jyy p and Jrysg, AllVVPERMSE
represents dissolved inorganic tracers and OMZs best (see Fig. {.5). However, the pa-
rameterisation is not appropriate for a correct representation of particles in the deep ocean
interior.

4.3.4 Model fit to observed zooplankton data and global biogeochemical fluxes

In Base3%"”, the model tends to underestimate the primary production (see Fig.
compared to observations by [Lutz et al.| [2007] due to low global average phosphate and
nitrate concentrations in epi- and mesopelagic waters (see Fig. 4.5). Although zooplank-
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ton is overestimated compared to observations by Moriarty et al. [2013], &,,, is at the
upper boundary and thus zooplankton does not contribute to the particle pool via egestion
leading to an underestimation of the small particles, MiPs (see Fig. .1). However, the
large particles, MaPs, are overestimated leading to a slight overestimation of the particle
flux in 100 m depth and a strong overestimation in 2000 m depth. As remineralisation is
very low, the oxygen concentration over the full water column is very high (see Fig. @.5).
Base4g VP exhibits a lower primary production (see Fig. , which is — again — due to
low nutrient concentrations over the full water column (see Fig. [4.3)), and lower zooplank-
ton grazing compared to the previous simulation (see Fig. 4.6). The remineralisation is
strongly increased, which reduces the export in shallow and also in deep waters, i.e. 100
m and 2000 m depth respectively (see Fig. {.6).

In Base#VP , the model underestimates the primary production compared to observations
leading to a too low number of particles in both size classes (see Fig. 4.1). Although the
zooplankton ingestion efficiency, &;,,, is lower than in the other simulations, 0 is also
very low (0.02) and thus only has a limited impact on particle dynamics (see Tab. [4.2)).
Despite the underestimation of particles in both size classes (see Fig. [.1)), the export in

shallow and also in deep waters is overestimated (see Fig. [4.6).
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Fig. 4.6: Global integral of primary production, zooplankton grazing, export at 100 m and 2000
m depth in Pg P yr~! of all simulations. Dashed lines denote observations (primary production
from|Carr et al.| [2006]; export 100 m from|Lutz et al.|[2007]; export 2000 m from|Honjo et al.
[2008|] and|Guidi et al|[2015]].

Adding the fit to dissolved inorganic tracers in the optimisation, namely AllYYVP&RMSE .

is tripled compared to AllYV”, which leads to an increased availability of nutrients (see
Fig. [4.5)) and thus strongly enhances the primary production and zooplankton grazing (see
Fig. [4.6). The high biological activity, in turn, increases the number of particles in both
size classes (see Fig. {.1)), which is strongly overestimated, leading to a slight overesti-
mation of the export flux in shallow waters (see Fig. 4.6). However, the deep export flux
in 2000 m depth moves towards zero (see Fig. {.6).

As in AIIlVVPERMSE+OMZ 4156 J,117 is included in the optimisation, the model now ex-
hibits the highest r (0.13) compared to the previous simulations (see Tab. 4.2). However,
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the number of particles of the large particle size class targets the observations quite well
(see Fig. [4.1). The export in shallow waters is slightly overestimated by the model com-
pared to observations, the deep flux is underestimated (see Fig. {.6).

4.4 Discussion

In this study, in five out of six optimisations, the zooplankton ingestion efficiency, &;,,,
in our model is at the upper boundary of its parameter space and might be overestimated
compared to observations (61-77% zooplankton ingestion efficiency off South Georgia;
Atkinson et al.| [1996]). Because the particle size distribution is tightly linked to zoo-
plankton mortality and egestion to the particle pool, optimisation might thus neglect the
contribution of zooplankton migration (6) and egestion. One approach to circumvent this
effect could consist in reducing the upper limit of &,,,, which could lead to an enhanced
particle egestion in the deeper ocean by migrating zooplankton.

Although the fraction of migrating zooplankton is in three out of four cases at the lower
boundary of the parameter space (except for simulation AllYY?), it should be noted that
the fraction of vertical migrating zooplankton is strongly dependent on the region [Décima
et al., |2011} Steinberg et al., 2008]] and that the model parameterises a globally con-
stant fraction. Moreover, in the observations very small zooplankton is not represented
— contrary to our model. As zooplankton migration (0) is in most cases very low, it
could potentially be assumed that the model implicitly considers non-migrating micro-
zooplankton. Furthermore, Bianchi et al. [2013]] and Aumont et al. [2018] indicate that
oxygen-dependency plays an important role regarding zooplankton migration. Bianchi
et al. [2013]] shows that especially the subtropics and Southern Ocean exhibit deep mi-
gration to 600 m depth, which could potentially contribute to the deep particle flux.
Thus, implementing oxygen-dependent zooplankton migration could potentially further
improve the representation especially of deep particles. Kiko et al.| [2020] contradict the
hypothesis of oxygen-dependent migration and show that the depth of several migrat-
ing zooplankton species coincide with the depth of OMZs. However, the behaviour of
zooplankton in low oxygen waters, i.e. feeding and egestion, remain unclear. Another
approach could thus consist in the implementation of oxygen-dependent egestion. In con-
clusion, due to the coarse depicted equatorial current system, the seasonality especially in
the higher latitudes, the tight link to the considered region (which also impacts the par-
ticle flux [Romero et al., 2020]) and the limited number of observations, the comparison
between modelled and observed zooplankton, and its impact on particle production and
transformation are highly uncertain and need to be further investigated.

This study indicates that the model is not able to represent the equatorial intermediate
particle maximum, IPM, at 23°W, as shown from observations [Kiko et al., 2017]. As
this is a small-scale feature and limited on a few grid points mainly in the equatorial re-
gion, this effect may have been neglected in the cost function of the optimisation in our
global model. Moreover, as shown in|Cabré et al.| [2015] and |Duteil et al.| [2014], a high
model resolution improves the representation of the equatorial currents, which are not
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sufficiently represented in our global 1° resolution model. Both aspects thus could impact
the representation of marine particles.

It has shown that integrating a high particle breakup rate p as in simulation AllYV YV P&RMSE
improves the representation of the oxygen distribution (see Tab. {.2] and Fig. [@.5). It
seems that different objectives favour different model parameterisations: An optimisation
against the global marine particle dataset targets on high export rates (single-objective
simulations; see Fig. [.6) to prevent particles from remineralisation in shallow wa-
ters, while a model, which is additionally optimised against dissolved inorganic tracers,
ANVVPERMSE " shows higher remineralisation at shallower depths. One possible expla-
nation could consist in the consideration of different depths dependent on the considered
objective: As the model is able to find a good parameterisation for shallow particles (see
Fig. {.1)), the parameterisation seems not appropriate for the deep particles as well. How-
ever, as OMZs are located in the mesopelagic, the optimisation also including e.g. Joyz
potentially concentrates on shallower waters, which possibly leads to neglecting the deep
particles (see Fig. 4.1).

Guidi et al.|[2015]], Marsay et al.|[2015] and |Henson et al.| [2015] found b values ranging
between 0.4 and 1.75, indicating that processes associated with particle flux and reminer-
alisation are highly variable and strongly dependent on the considered region, depth and
season. The model presented here is capable of simulating temporal and spatial variability
of particle flux through aggregation, but it does not represent a simultaneous fit to large
and small particles at the surface and in the deep ocean. One possible explanation could
be a missing representation of particle lability or age. |Aumont et al.| [2017] showed in
their model study that integrating a variable reactivity of particles increases the particle
concentration in the deep ocean interior. Moreover, Stemmann et al. [2004] suggested
that the impact of microbial degradation on particles is increasing with depth, which is
expected to be anti-correlated to zooplankton concentrations as zooplankton gets rare with
increasing depth.

Besides the age, or lability, of particles, other important processes that determine particle
dynamics might be missing in our global biogeochemical model: For example, by apply-
ing a constant exponent for the size dependency of particle sinking speed in this study,
we assume that the particle characteristics (such as porosity or density) are equal over the
full water column from the sea surface down to the sediment, which is likely incorrect. It
remains unclear if the assumption of size-dependent sinking used in this study is sufficient
and applies for the full water column or depth-dependent processes need to be integrated
in future studies.

4.5 Conclusion and Outlook

In this study, we present an objective model optimisation and conduct a comparison with
global observed datasets of marine particles, dissolved inorganic tracers and the vertical
and horizontal extent of OMZs. Comparison of four optimisations with different numbers
of free parameters suggest that including more processes that impact particle dynamics
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improve their representation. However, enhancing the fit to observed marine particles de-
creases the fit to dissolved inorganic tracers in the ocean. Thus, in a second step, we opti-
mised the global biogeochemical model against both objectives and found a compromise
solution improving the representation of surface marine particles as well as nutrients, oxy-
gen concentration and OMZ extent. The best compromise solution however represents an
underestimation of deep particles. Moreover, all considered objectives target on different
depths as e.g. OMZs are located in shallower waters but particles are considered from the
surface down to the sea floor. As multi-objective optimisations constitute a compromise
solution between the considered objectives, we can conclude that the model accuracy is
not only dependent on the considered objective, depth and location but also on the ques-
tion to be answered.

Finally, we showed in our study that an increasing number of processes that determine
particle dynamics improve the representation of marine particles. However, the model
still has problems to represent shallow and deep particles at the same time using the
same parametrisation. One step to overcome this gap could consist in including changing
particle characteristics, e.g. variable particle reactivity, or zooplankton migration charac-
teristics, e.g. oxygen-dependent migration, over the water column.

Acknowledgements

This work has been supported and financed by the Collaborative Research Center 754
“Climate-Biogeochemistry Interactions in the Tropical Ocean”; (www.sfb754.de; grant
no. 27542298 of the German Science Foundation DFG). RK acknowledges support via
a “Make Our Planet Great Again” grant of the French National Research Agency within
the “Programme d’Investissements d’ Avenir”; reference ANR-19-MPGA-0012. Parallel
supercomputing resources have been provided by the North-German Supercomputing Al-
liance (HLRN).






85

5 Conclusion and Outlook

5.1 Summary and Conclusion

This thesis investigates processes of the biological pump that determine the global marine
oxygen distribution. The findings provide the basis to advance our knowledge of potential
driving factors of future ocean deoxygenation. In chapter 2 possible feedback loops be-
tween projected future global change conditions and benthic processes, were investigated.
In chapter 3 and chapter 4 the impact of particle dynamics on oxygen distribution under
preindustrial steady state conditions has been explored.

As outlined in this thesis focusses on the following three questions:

1. Under a business as usual global change scenario, which is the dominant feed-
back determining the expansion of OMZs - the positive feedback between benthic
release of phosphorus and marine biological production or the negative one between
marine uptake of CO, and air temperature?

To answer this question, the potential feedback between low-oxygen water and responding
benthic fluxes under a business-as-usual global change scenario enhancing the phospho-
rus weathering is investigated in chapter 2. This study finds that the negative feedback due
to increased phosphorus weathering on land increases the marine productivity, thereby fa-
cilitating the marine uptake of atmospheric CO,, reducing the air temperature and thus
potentially limiting the expansion of OMZs. This phosphorus-weathering feedback domi-
nates over the assumed feedback between increased export and remineralisation, expand-
ing OMZs and thereby promoting the release of benthic phosphorus. It can therefore
be concluded that enhanced weathering input of phosphorus seems not to trigger a self-
reinforcing runaway process regarding marine deoxygenation on millennial timescales in
the UVic Earth System Climate Model of intermediate complexity.

2. Does a global biogeochemical model that includes particle dynamics improve the
representation of OMZs under steady state conditions?

As shown by |Duteil et al. [2014], the representation of OMZs depends on circulation
and model resolution. Marsay et al.| [2015] and Guidi et al.|[2015]] moreover show in their
studies conflicting patterns of global particle flux profiles and Kriest and Oschlies [2015]]
find a strong dependence between the OMZ volume and the particle flux profile. Thus, in
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chapter 3 two different model resolutions as well as a broad range of model parameteri-
sations regarding the particle export have been tested.

The simulations show that adding an aggregation module into a global marine biogeo-
chemical model enhance the overlap between observed and modelled OMZs compared
to a model without particle aggregation. The representation of OMZs moreover strongly
depends on the given threshold for OMZs. In addition to a fine spatial resolution of the
model physics, a suitable biogeochemical parameterisation of the particle aggregation
module is required for an improved model fit, namely an intermediate-to-high sinking
speed, porous particles and a moderate-to-high particle stickiness. Finally, this study also
find that model calibration against a global observed dataset of marine organic particles
is needed.

3. Does calibration against observed particle abundance and size help to improve
simulated oxygen distribution, and are additional model processes besides aggrega-
tion necessary to improve the model fit?

To answer this question, a systematic calibration against an observed particle dataset was
performed in chapter 4. In addition, the model is optimised against dissolved inorganic
tracers and OMZ distribution patterns and moreover includes two new processes, namely
zooplankton migration and particle breakup. This study demonstrates that an increasing
number of processes regarding particle dynamics is able to improve the representation of
OMZs. Although a model optimisation against the overlap between modelled and ob-
served OMZs improves the fit with increasing model complexity, the particle dynamics
are not correctly represented over the full water column, i.e. the model is not able to find
a good parameterisation for shallow and deep particles at the same time. This indicates
that some processes on the way of organic matter from the surface to the deep ocean is
not well parameterised in the model and could potentially lead to a more realistic repre-
sentation of the OMZs.

In conclusion, this thesis investigates different processes regarding the biological pump
that can impact the representation of OMZs. It is shown that the representation of OMZs
is improved by integrating particle dynamics. However, this improvement is based on
a mismatch between modelled and observed particles. As an improved representation of
particles in the water column can potentially induce a shift in the strength of the feedbacks
investigated in chapter 2, improved particle dynamics can lead to a further understanding
of processes that determine the representation of OMZs.
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5.2 Outlook

The biological pump is highly variable due to complex physical, chemical and biological
interactions and depends on several factors that may alter under global change conditions,
which, in turn, potentially also determines the vertical and lateral extent of OMZs. Even
under current conditions, processes of the biological pump that determine the oxygen dis-
tribution are not well quantified.

Chapter 4 shows that the model especially tends to underestimate the number of parti-
cles of both size classes in the deep ocean leading to the assumption that other processes
that lead to efficient export of both particle size classes to the deep ocean are still miss-
ing. Following this assumption, two aspects that increase the number of particles in the
ocean interior could be implemented in future studies, which are discussed below: imple-
menting additional processes that determine particle characteristics and thus the overall
vertical particle flux, or increasing the complexity of zooplankton dynamics.

Previous studies show a wide range of particle flux profiles indicating high uncertainties
in the associated particle flux profile [|Guidi et al., 2015; Marsay et al., 2015; Henson et al.,
20135]]. It is assumed that the particle flux depends on the considered region, the associated
seasonality as well as depth. As the model is able to simulate regionally variable particle
dynamics, one step towards an improved representation of particles would be to include
depth-dependent particle characteristics over the water column. For example, Aumont
et al.| [2017]] show in their study that including a variable particle reactivity enhances the
particle concentration in the ocean interior. Moreover, the particle density is constant over
the full water column in our modelling study, which might not be the case in observations
[Berelson, 2002]]. Thus, including changes in the particle density and reactivity across
the water column could potentially lead to a more realistic representation of OMZs under
steady state conditions.

Observations of migrating zooplankton and zooplankton-related fluxes are sparse and the
contribution of the active flux by migrating zooplankton to total particulate flux is still
highly uncertain (18% - 84%; [Kiko et al., 2020; Kelly et al., 2019; Hernandez-Leon
et al.,[2019]]). However, zooplankton dynamics could potentially constitute a driving fac-
tor for a more realistic representation of particles and thus oxygen. Existing studies as-
sume that zooplankton migration depends - possibly among others - on the considered
region [Décima et al., 2011} Steinberg et al., 2008]], the zooplankton composition includ-
ing their specific migration and egestion characteristics [Passow and Carlson, 2012]] as
well as mesopelagic oxygen concentrations [Seibel, [2011; Wishner et al., 2018; Kiko and
Hauss, 2019]. Although the fraction of migrating zooplankton is calibrated and enabled
to range between 0.01 and 0.9 in our study, the migration depth is fixed to 400 m and thus
the overall process of zooplankton migration is highly simplified compared to observa-
tional findings.

Moreover, diurnal vertical migration of makrozooplankton and nekton are not considered
in this model. As their implementation could increase the active particle transport into the
ocean interior, this could consist an objective of a future study.

Changes in the oxygen concentrations - as suggested under global change conditions -
can moreover induce shifts in the biomass [Wishner et al., 2018|] and the regional zoo-
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plankton composition [Passow and Carlson, 2012]. As different species influence particle
dynamics by fragmentation or egestion in very different ways [Turner, 2015], changing
oxygen conditions can directly impact the zooplankton composition and thus the future
particle flux profile [Passow and Carlson, 2012], which is, however, beyond the scope of
this thesis.

Oxygen is also suggested to be a primary driver for zooplankton migration [Bianchi et al.,
2013;/Aumont et al., 2018]], although the approach of oxygen-dependent zooplankton mi-
gration is controversially discussed in literature. Thus, another step forward could consist
in the additional implementation of oxygen-dependent zooplankton migration. Although
an oxygen-dependency could lead to shallower zooplankton migration above OMZs, es-
pecially in the subtropical gyres and Southern Ocean deep vertical migration down to 600
m depth as observed by Bianchi et al.|[2013] could be considered by the model. Although
Aumont et al. [2018] investigate in their modelling study relatively low active transport
of carbon by migrating zooplankton in the subtropics, the scarce number of observations
in this region contradict those findings and exhibit an intermediate active transport by mi-
grating zooplankton [Buitenhuis et al., 2013].

Moreover, as the zooplankton migration depth is assumed to be shallower in expanding
OMZs, this could also result in shallower respiration, which potentially constitutes a pos-
itive feedback loop and thus increases the oxygen depletion in those regions [Bianchi
et al., 2013]] under global change conditions. Thus, beside the influence of zooplankton
migration on particle dynamics, the altered zooplankton respiration could also play an
important role in the representation of OMZs in biogeochemical models, which is still
highly uncertain [Cabré et al., 2015].

Controversial to the hypothesis above, Kiko et al.| [2020] show that the daytime depth of
several migrating zooplankton species coincides with the core of the OMZ suggesting that
zooplankton migrates into the OMZ. This indicates that metabolic rates are potentially re-
duced under low oxygen conditions. It remains uncertain if zooplankton feeds and egests
inside the OMZ during daytime, which could directly influence the particle flux into the
deeper ocean [Kiko et al., 2020]. Thus, implementing e.g. oxygen-dependent feeding and
egestion could potentially contribute to an improved representation of deep particles.

In conclusion, it seems that more detailed global observations regarding the transport by
zooplankton and nekton and passive particle dynamics and their sinking on total particle
flux are necessary for future studies. Moreover, integrating even more depth-dependent
particle characteristics and more complex zooplankton dynamics as oxygen-dependent
migration, feeding or gutflux, could potentially further improve the representation of the
marine particle flux profile. As this increases the model complexity and the number of
estimated parameters, a systematic model optimisation is a useful tool for a detailed in-
vestigation of the full parameter space. An improved representation of marine particles,
in turn, could lead to an extended understanding of the oxygen distribution - under steady
state and global change conditions. A recent study by [Bisson et al.| [2020] aims to get
a deeper insight into different export processes via a satellite-based food-web model and
will be published soon.

Finally, this thesis shows that the impact of single processes or a combination of possible
feedbacks regarding the biological pump and its effect on OMZs can to some extent be
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predicted. Nevertheless, it is still unclear if the biological pump will strengthen or weaken
under global change conditions [Passow and Carlson,|[2012] due to the high number of un-
certain processes and feedbacks. An adequate representation of the particle flux from the
euphotic zone into the aphotic is a necessary prerequisite for the representation of the
benthic fluxes at the seafloor. It seems that in particular the transport from the euphotic
to the aphotic zone can be further improved. Thus, the ability to resolve driving factors
of the biological pump that determine the representation of OMZs in global models still
remain limited.
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