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BEYOND KOZENY-CARMAN: PREDICTING THE PERMEABILITY IN POROUS

MEDIA

RAPHAEL SCHULZ, NADJA RAY, SIMON ZECH, ANDREAS RUPP, AND PETER KNABNER

Abstract. Various processes such as heterogeneous reactions or biofilm growth alter a porous medium’s
underlying geometric structure. This significantly affects its hydrodynamic parameters, in particular the
medium’s effective permeability. An accurate, quantitative description of the permeability is, however,
essential for predictive flow and transport modeling. Well-established relations such as the Kozeny-Carman
equation or power law approaches including fitting parameters relate the porous medium’s porosity to a scalar
permeability coefficient. Opposed to this, upscaling methods directly enable calculating the full, potentially
anisotropic, permeability tensor. As input only the geometric information in terms of a representative
elementary volume is needed. To compute the porosity-permeability relations, supplementary cell problems
must be solved numerically on this volume and their solutions must be integrated. We apply this approach to
provide easy to use quantitative porosity-permeability relations that are based on representative single grain,
platy, blocky, prismatic soil structures, porous networks, and real geometries obtained from CT-data. As
a discretization method, we use discontinuous Galerkin method on structured grids. To make the relations
explicit, interpolation of the obtained data is used. We compare the outcome with the well-established
relations and investigate the ranges of the validity. From our investigations, we conclude whether Kozeny-
Carman type or power law type porosity-permeability relations are more reasonable for various prototypic
representative elementary volumes. Finally, we investigate the impact of a microporous solid matrix onto
the permeability.

Keywords: Kozeny Carman, permeability, power law, upscaling

1. Introduction

Flow and transport processes through porous media have an incredible long research history. Nevertheless,
even the basic and most commonly used model equations and their parameters are still under investigation.
Fluid flow through a porous medium is classically described by Darcy’s law

u+ 1
µ
K∇p = f

with Darcy velocity u, pressure p, viscosity µ, effective permeability K, and external force term f [19].
The effective tensor K is the essential input to the model since it contains all the information that is

specific for the considered porous medium. However, it is very difficult to characterize in (natural) porous
media - even if it is assumed to be represented by a scalar K. Consequently, formulae in terms of simple
features of the porous medium, e.g. the porosity, are frequently used.

In the context of diffusion in porous systems, Quintard states that porosity is the essential parameter
for unconsolidated isotropic media [40]. Along this line, porosity-permeability models such as the Kozeny-
Carman equation are often used, even for more general situations. The composition and structure of an
arbitrary porous medium can, however, not be accounted for by porosity variations only. Changes in particle
distribution or grain shape and size modify the tortuosity and connectivity of the pore space and therefore
the bulk response of the medium. Consequently, models including shape factors or fitting parameters are used
and may have very good approximation properties when fitted to experimental data. The main drawback of
this approach is that the model parameters often have no direct connection to the underlying porous medium
structure, have no physical interpretation, or are hard or even impossible to measure. In terms of applica-
bility, explicit porosity-permeability relations without any artificial parameters are most desirable. With our
research we contribute to this point. Based on representative elementary volumes with representative soil
structures, we calculate quantitative porosity-permeability models that are easy to use and are valid in the
whole range of porosity, cf. Section 5.2. From our investigations, we conclude whether Kozeny-Carman type
or power law type porosity-permeability relations are more reasonable for various prototypic representative
elementary volumes.
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In this paper, we first review well-established relations for the scalar permeability in terms of porosity,
cf. Section 2. Secondly, we state standard results from upscaling theory potentially including the impact
of a microporous solid matrix to the permeability, cf. Section 3. Integrating the solutions of auxiliary cell
problems allows calculating the full, potentially anisotropic, permeability tensor. In Section 4, we introduce
the numerical methods and the representative geometries. We numerically evaluate the permeability in terms
of porosity in Section 5.1 and 5.2 for a real porous media from CT images and the representative geometries,
respectively. Additionally, explicit functional relations are derived via interpolation of the obtained data. We
compare the outcome with the well-established relations and investigate the ranges of the validity. Ultimately,
the impact of a microporous solid matrix to the permeability is investigated in Section 5.3. This illustrates
that even the full geometrical information may be insufficient to deduce the effective permeability tensor of
the medium.

2. Well-established functional relations between permeability and porosity

Finding suitable functional relations between the porosity θ (ratio of pore space to total volume) and the
effective permeability tensor K or rather its scalar representative K has been the topic of research for several
decades. A recent review is found in [26]. The most commonly used porosity-permeability relations are the
Kozeny-Carman equation (1) and power laws (4). Kozeny [30] originally proposed

K =
c0
σ2
1

θ3

as a functional dependence between the porosity and the permeability for a porous medium consisting of
straight tubes. The so-called Kozeny’s constant c0 depends slightly on the geometrical cross-section of the
tubes and in [5] values of c0 are reported for a circle c0 = 0.5, a square c0 = 0.562, a triangle c0 = 0.597, and
a strip c0 = 0.667. σ1 denotes the specific surface per unit bulk volume.

Carman [10] reformulated the Kozeny equation as

K =
c0
σ2

θ3

(1− θ)2
(1)

by replacing σ1 with the specific surface σ with respect to the unit volume of the solid matrix, i.e. it
holds σ1 = (1− θ)σ [5, (2.6.3)]. Furthermore, Carman 1939 (cf. [15]) tried to take into account that porous
media generally do not consist of straight tubes but of irregularly shaped particles. To include this fact
he estimated the Kozeny constant c0 to be equal to 1

5 giving the best agreement with experiments. In [36]
values for the Kozeny constant are listed and studies determining the Kozeny constant are reviewed. Further
experiments suggest that the Kozeny coefficient c0 = c0(θ) depends on the porosity θ itself. In more detail,

it was empirically shown that the quotient ( c0
σ2 )/(

θ3

(1−θ)2 ) does not remain constant for decreasing porosity θ

but increases, cf. [11]. Relations of the Kozeny constant with respect to porosity are listed in [36]. Carman
concludes that equation (1) is not satisfied for very small porosities, e.g. for clays [11]. In [12] the limitation
of (1) for coarse materials in which the Darcy regime is no longer given is additionally discussed.

Due to the general complexity of porous media, the same porosities may induce different effective perme-
abilities, cf. [21] and Section 5.2 for a numerical illustration. To overcome this drawback and relax the widely
taken assumption that a porous medium consists of straight tubes, there is already numerous research taking
additionally geometric features such as the tortuosity, mean particle size, or grain size into account. The
tortuosity is defined as the ratio of the average traveling length per unit length. Incorporating the tortuosity
into the Kozeny-Carman equation (1) yields

K =
c0

τ2σ2

θ3

(1− θ)2
,

cf. [21, 50]. The porosity is often related to the tortuosity via the resistivity factor F , the constrictivity, or
model parameters that may be calibrated with experimental data. Archies law F = A

θm (with parameters
A,m) then yields the following porosity-tortuosity relation

τ2 = (Fθ)n = (Aθ(1−m))n(2)

with parameters A,m, and n, cf. [48]. For sands and muds this relation is used with n = 1. Then the empirical
coefficient A varies in the range between 0.6 and 2 and the tortuosity factor m within 1 to 4, see [17]. Further
porosity-tortuosity relations are summarized in [1, 23, 39, 48]. In [39] simple expressions for the tortuosity
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depending on the porosity and a further parameter describing the average distance to bypass solid obstacles
are proposed. In [1] a quite complex tortuosity-permeability relation for spherical porous media was derived.
Since it is challenging to determine the tortuosity via lengths of streamlines, [20] proposed a method which
allows calculating the tortuosity directly from the fluid velocity field. Finally, [23] has critically reviewed
the vast number of tortuosity models. As main drawback of the proposed models, this article stated that
they are all distinct and not comparable due to their distinct derivation namely empirically, analytically, and
numerically. Following [8], beside the porosity and tortuosity also a characteristic hydraulic length (describing
the effective hydraulic pore radius) and a constriction factor (characterizing the fluctuation of local hydraulic
radii) should be considered for an appropriate formula predicting permeability of a porous media.

Alternatively, the Kozeny-Carman equation (1) is reformulated in terms of the mean particle size d [51]
to include further geometric information. For spherical grains of constant size it holds d = 6

σ
leading with

c0 = 1
5 to

K =
d2

180

θ3

(1− θ)2
.

For circles, squares, crosses (and cylinders) on the other hand, it holds d = 4
σ

and thus

K =
d2

80

θ3

(1− θ)2
.

cf. [58]. In more general geometrical settings a shape factor f(s) with f(s)d2 = c0
σ2 is introduced and hence

K = f(s)d2
θ3

(1− θ)2

holds, cf. [5, 51].
A large number of further permeability models in terms of the grain size d10 (dx denotes the grain size

such that x% of the solid grains are finer than dx) instead of the mean grain size are reviewed in [14]. In
addition to the Hazen relation, Kozeny-Carman type equations are formulated:

K = CH(d10)
2 (Hazen 1911) ,

K = 1.2C0.735
U d0.8910

θ3

(1−θ)2 (Shahabi 1984) ,

K = 2.4622
(

d210
θ3

(1−θ)2

)0.7825

(Chapuis 2004) .(3)

The Hazen formula is valid for 0.1mm < d10 < 3mm with the Hazen empirical coefficient CH taking values
between 1 and 1,000, but is usually assumed to be 100, cf. listing and references in [12]. The parameter CU :=
d60

d10
is the coefficient of uniformity. Several experimental studies of the grain size impact on the permeability

showed that using d10 is a good choice compared to e.g. d17, d20 or d50 (also used in other formulae).
Moreover, each of the above models in (3) is reasonable only if the parameters θ, d10 and CU satisfy specific
conditions, cf. [14]. E.g. the last relation of Chapuis 2004 yields good prediction for natural soil with
d10 > 3mm and 0.23 < θ < 0.5.

In addition to the Kozeny-Carman relation and its variations discussed above, power law models are
available for the permeability with fitting parameters λ, η [26].

(4) K
K0

=
(

θ
θ0

)η

or K = λθη ,

where K0 and θ0 denote the initial or a reference value of permeability and porosity, respectively. Although
3 is a common choice for η, the values of η strongly depend on the underlying processes which change the
pore space. Smith et al. [26, 49], who investigate the dissolution of carbonate rocks suggest η = 3 for ho-
mogeneous and η between 6 and 8 for heterogeneous rocks. Menke even proposes values of 16.2 < η < 23.8
for heterogeneous media [32]. Bernabé et al. [26, 9] determine η between 2.5 and 3 for plastic compaction,
η > 10 for chemical alteration, and η > 20 for mineral dissolution. Although power laws are easy to use
relations, we emphasize that power laws or especially the Verma-Pruess relation (see below and [26]) do not
tend to infinity for θ → 1. Thus it is necessary to verify for each application separately whether these models
replicate the real behavior, cf. Section 5.2.
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Along these lines, there is an unmanageable number of formulae for the effective permeability depending
not only on the porosity, but also on numerous fitting parameters and physical variables incorporating
geometrical information into the models. However, in terms of applicability low parameter models being
particularly independent of hard to measure input are most desirable. Moreover, many of the cited models
are derived from fitting to data and are often only valid in a small range of porosity, due to experimental
constraints. The smaller the range, the better approximations may be obtained even with linear models and
the more sophisticated it is to yield accurate approximation qualities with power laws. For most soils the
range of porosity lies between 0.3 and 0.7 [34] and idealized porous media are often considered to represent
the soil. Consequently, porosity ranges related to sphere packings are of particular interest. Uniform packed
spheres have porosities between 0.26 and 0.48. The porosity for densest packings range from 0.26 to 0.32 for
cubic body centered packings. Random packings have porosity ranges between 0.3 and 0.35 and yield good
approximations for sandy soils. Although polydisperse sands could theoretically fall to porosities below 0.26,
this is improbable and porosities of 0.3-0.35 are obtained [34]. However, porous rocks such as sandstone may
have very low porosities (< 0.3) and peat soils contrarily have porosities up to 0.8-0.9 [34]. In this sense the
whole range of porosities is relevant and thus is investigated within this research.

A further drawback of functional relations stated above is that the permeability degenerates only for θ =
0. This model assumption is a very strong restriction and not reasonable for most geometric settings.

Consequently, the following model improvement is considered throughout this research: θ is replaced by θ− θ̂

for θ ≥ θ̂ and K = 0 otherwise, cf. also the Verma-Pruess relation (8) [26] or [53, 43] in the context of

porosity-diffusion relations. The value of θ̂ is analytically deduced from the specifically chosen geometry, cf.
Table 1.

Additionally, we emphasize the fundamental drawback that the Kozeny-Carman equation (1) as well as
their variations, the power law model (4) and all models listed in (3) refer to scalar coefficients rather
than to the full tensors. This simplification is only verified for isotropic porous media; compare Remark 1
and 2 in Section 3 and the numerical illustrations in Section 5.2. However, porous media and thus also
the corresponding effective permeability tensor are often anisotropic, cf. [15, 12]. In Section 3, we state
some mathematical theory which enables computing the full permeability tensor on the prescribed geometry
of a representative elementary volume. The simulation outcomes are discussed for different representative
geometries in Section 5 and made quantitative by interpolating the obtained data. In doing so the following
variants of the Kozeny-Carman and Verma-Pruess equations (power law) potentially including degeneration
are considered:
Kozeny-Carman equation for given θ̂ and with one free parameter λ

KKC1(θ) = λ
(θ − θ̂)3

(1− θ)
2 , θ ≥ θ̂(5)

Kozeny-Carman equation with two free parameters λ, β

KKC2(θ) = λ
(θ − θ̂)3

(1− θ)
β
, θ ≥ θ̂(6)

Kozeny-Carman equation with three free parameters λ, β, η

KKC3(θ) = λ
(θ − θ̂)η

(1− θ)
β
, θ ≥ θ̂(7)

Verma-Pruess equation (power law) with two free parameters λ, η

KVP (θ) = λ
(

θ − θ̂
)η

.(8)

3. Mathematical model

If the underlying geometry of a representative elementary volume Y is prescribed, cf. Figure 2 and Figure 3,
some mathematical theory is available that makes it possible to calculate the full, potentially anisotropic, ten-
sor K. Starting from mathematical models at the pore scale, an averaging procedure is performed in order to
derive effective models. For fluid flow, incompressible Stokes equations are the starting point. Volume averag-
ing [56], two-scale asymptotic expansion [7] or mathematically more rigorously, two-scale convergence [33, 2]
may be applied to these equations. As a result of the averaging procedure, Darcy’s law as introduced in
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Section 1 is derived. The effective tensor K is given explicitly as the integral over solutions of auxiliary cell
problems which are defined on the representative elementary volume. The situation may be extended to the
Stokes-Darcy regime at the pore scale, see Section 3.2. This means that the porous matrix is not considered
to be a completely inert solid, but also contributes to the flow by its own microporosity. Upscaling in this
situation also yields a Darcy-type law and auxiliary cell problems, from which the permeability tensor K̄ may
be calculated.

3.1. Upscaling the Stokes equations to Darcy’s law. The porosity θ = |Ys|
|Y | is defined as the volume

of the pore space Ys = Y \Ȳd with respect to the total volume of the representative elementary volume Y =
(

− 1
2 ,

1
2

)n
, where Yd denotes the solid phase within Y , cf Figure 1 (right). The permeability K in the Stokes

regime may be determined using the following homogenization result.
From Stokes equations at the pore scale with scaling parameter ε > 0, velocity uε, pressure pε, and

external force term f = f(x)

(9)

−ε2µ∆uε +∇pε = f in Ωε
s

∇ · uε = 0 in Ωε
s

uε = 0 on Γε
sd ,

where Ωε
s denotes the pore space and Γε

sd the interface (boundary of the solid matrix), cf. Figure 1 (left).
Darcy’s law is deduced via homogenization theory [27]

u+ 1
µ
K∇p = f in Ω

∇ · u = 0 in Ω(10)

with the effective permeability tensor K = (Kij)
n
i,j=1 being determined via

Kij :=
1

|Y |

∫

Ys

(ωj)i dy(11)

∂Ω

Ω

Y
ε
d,i

Y
ε
s,i

Y
ε
i

Ys

Yd

Γ
ε
sd,i

Γsd

sΩ
ε

dΩ
ε

Γ
ε

sd

ε

Y

∂Y

Figure 1. Left: periodic representation of a porous medium Ω in 2D with pore space Ω
ε
s. Right:

unit cell Y with solid grain Yd, liquid phase Ys, and interface Γsd.
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with supplementary cell problems in (ωj , πj), j = 1, . . . , n

(12)



















−∆yωj +∇yπj = −ej in Ys

∇y · ωj = 0 in Ys

ωj = 0 on Γsd

ωj , πj periodic in y.

Hereby, ej denotes the unit vector in direction j = 1, ..., n.

Remark 1. For isotropic media, the effective tensor reduces to a scalar K = KE with unity matrix E. Such
settings are numerically evaluated and illustrated in Section 5.2, Figure 6. In general, it is difficult to work
out analytical solutions of the cell problem (12). However, in case of a tube (see Figure 2) the problem reduces
to the Poiseuille flow and thus the analytically determined permeability is equal to K = 1

12θ
3, cf. [4].

3.2. Upscaling the Stokes-Darcy regime to Darcy’s law. The coupled Stokes-Darcy system at the
pore scale with scaling parameter ε as given in [4] reads

Stokes equations in the pore space

−2µε2∇ · (Duε
s) +∇pεs = f in Ωε

s

∇ · uε
s = 0 in Ωε

s

uε
s = 0 on ∂Ω(13a)

Darcy equations in the porous matrix

uε
d + µ−1K̃∇pεd = f in Ωε

d

∇ · uε
d = 0 in Ωε

d(13b)

Beavers-Joseph interface conditions

uε
s · νs = uε

d · νs on Γε
sd

2νs ·Duε
s · τ = − α

ε

√
K̃
uε
s · τ on Γε

sd

2µε2νs ·Duε
s · νs = ps − pd on Γε

sd(13c)

with velocity uε
s and pressure pεs in the Stokes region, velocity uε

d and pressure pεd in the Darcy region, external

force term f = f(x), permeability K̃ of the microporous matrix, and Beavers-Joseph interface condition [6]
with dimensionless slip coefficient α. Moreover, the unit normal νs points into the solid and the tangential
vector τ with length 1 is orthogonal to νs. In (13) Duε

s =
1
2∇(uε

s + (uε
s)

T ) is the symmetric gradient.
The mean velocity ū fulfills Darcy’s law and is given as the sum of the mean velocity ūs in the Stokes

region and the mean velocity ūd in the Darcy region, i.e.

ū = ūs + ūd = − 1
µ
K̄∇p+ f in Ω

∇ · ū = q in Ω(14)

with effective permeability tensor K̄ = (K̄ij)
n
i,j=1 given via

K̄ij :=
1

|Y |

∫

Ys

(ωs
j )i dy +

1
|Y |

∫

Yd

(ωd
j )i dy(15)



BEYOND KOZENY-CARMAN: PREDICTING THE PERMEABILITY IN POROUS MEDIA 7

and supplementary cell problems in (ωs
j , π

s
j , ω

d
j , π

d
j ), j = 1, ..., d































































−2∇y ·Dωs
j +∇yπ

s
j = ej in Ys

∇y · ωs
j = 0 in Ys

µK̃−1ωd
j +∇yπ

d
j = ej in Yd

∇y · ωd
j = 0 in Yd

ωs
j · νs = ωd

j · νs on Γsd

2νs ·Dωs
j · τ = − α√

K̃
ωs
j · τ on Γsd

2νs ·Dωs
j · νs = πs

j − πd
j on Γsd

ωs
j , π

s
j periodic in y.

Remark 2. For scalar-valued K̃ and isotropic media, the effective tensor K̄ reduces to a scalar K̄ = K̄E

with unity matrix E. Such settings are numerically evaluated and illustrated in Section 5.3, Table 9.

4. Setting and numerical methods

Assumptions on the hard to access microstructure have to be made to apply the mathematical theory
introduced in Section 3. In our study, representatives elementary volumes for single grain, platy, blocky,
prismatic soil structures, porous networks, or real porous media from CT images are used, cf. Figure 2
and Figure 3. Such geometries often serve as model systems for hypotheses testing. Moreover, due to its
tremendous complexity, idealized porous media are frequently used to represent the soil [34]. 2D represen-
tatives, e.g. prototypes with rough (potentially structured) planar surfaces, 3D transparent model systems
consisting of silica glass beads which facilitate imaging, or model systems from 3D printing techniques al-
lowing to create sophisticated model systems with controlled surface properties and topologies are used [25].
The model systems chosen also mimic artificial model systems that directly arise in technical applications.
Examples are microfluidic systems such as 1D analogues of porous media [22] or microwells which allow the
precise geometric positing or trapping of cell for cultivation or further studies. The wells may for instance
comprise honeycomb structures [28]; recently also 3D porous cubes which facilitate oxygen diffusion have
been investigated [41].

The permeability of porous media with specific underlying geometries has been investigated by numerous
authors: In [35] a circular geometry is considered and the calculated functional relation between permeability
and porosity is fitted to a third order polynomial. In [3], a even more complex situation is considered: In
an anisotropic rectangular geometry, the permeability tensor over porosity is calculated, which finally leads
to a non monotonic functional relation for the cations. Similarly in [42], different interaction potentials
relating rather to van-der Waals-interaction than electric ones are considered and the effective permeability

Figure 2. 2D geometries: square, circle, cross of type 1, cross of type 2, rectangle of type 1 with

different but constant height, rectangle of type 2, ellipse, tube; fluid in blue, solid in white

Figure 3. 3D geometries cube, sphere and tube; fluid in blue, solid in red.
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Geometry θ̂
Square 0
Circle 1− π

4
Cross (type 1) 0.64
Cross (type 2) 0.04
Rectangle (type 1, small) 0.8
Rectangle (type 1, large) 0.2
Rectangle (type 2) 0.5
Ellipse 1− π

8
Tube 0
Cube 3D 0

Sphere 3D 1 +
√
8
3 π − 5

4π
Tube 3D 0

Table 1. Critical porosity value θ̂ of degeneration for geometries depicted in Figure 2 and 3.

tensor over the porosity is evaluated. In [18] the permeability depending on the saturation for fix porosity is
computed for 2D rectangular cell geometries. In [52] the permeability is computed for some simple geometries,
where the underlying cell problem is considered for several boundary conditions (periodic, uniform, confined).
Numerical simulations and computations for the permeability in geometries with textile microstructures are
considered in [24]. A numerical procedure for the evaluation of equivalent permeability for fractured vuggy
porous media is investigated in [29]. The relationship of permeability and porosity in a 2D porous structure
formed by regularly placed overlapping solid circles was numerically investigated in [38]. In [31] precipitation
and dissolution in a three-dimensional pore throat with evolving aperture was simulated and for different
dissolution scenarios permeability-porosity relations were numerically derived. Likewise [36] investigates the
dependence of the Kozeny constant on porosity and the pore to throat size ratio for an periodic array of
rectangular rods. This article concludes that such geometric information should be taken into account to
enhance the applicability of the Kozeny-Carman equation. In these articles above the numerical computations
are based on the Navier-Stokes equations at the pore scale. Contrarily, [54] used a volume averaging approach
to compute the permeability in a 2D square setting. A homogenization method by asymptotic expansion,
cf. Section 3.1, was applied in [13] to obtain the permeability for a periodic array of cylinders, were the cell
problem was computed numerically by mixed finite elements. All the articles compared there numerical results
with the Kozeny-Carman equation and concluded that the usability of this well-established relation depends
strongly on the underlying geometry. In [55] permeability relations for numerous geometries composed of
squares were computed by finite difference methods. Finally, numerical simulations on real data set have
been considered, cf. e.g. [37].

Besides [13, 35], only qualitative evaluations of the permeability-porosity relation were given. In [13, 35]
interpolation of the obtained data has been done to provide easy to use functional relations (polynomial of
third or fourth order) for the permeability. We contribute exactly to this point and provide quantitative
porosity-permeability relations of Kozeny-Carman or power law type based only on the various prescribed
geometries, cf. Table 2–8. To this end, first the auxiliary cell problems and tensors of Section 3 are computed
on representative elementary volumes.

The geometries depicted in Figure 2 and Figure 3 may serve as reasonable model systems for different soil
structures. Quintard already states in [40] that two dimensional model systems fail particularly if unconsol-
idated anisotropic systems are considered. Consequently 3D model systems are discussed additionally. The
circle, sphere, and ellipse for instance represent single grain or granular soils such as sandy soils or artificial
model systems consisting of glass beads. In case that the sphere touches the boundary of the reference cell a
primitive cubic packing is obtained. Rectangles on the other hand have widely been used to represent platy
structures. In case that the rectangles touch the boundary of the elementary volume, a system of tubes is
obtained. Likewise, cubes represents blocky soil, and cuboids represent prismatic soils respectively.

For the square/cube and circle/sphere the evolution is uniform in the direction of the axis and in radial
direction, respectively. For the cross two different evolutions are taken into account. First a pure lengthening
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of the cross arms along their axes (type 1) and second an additional thickening of the cross arms while
lengthening (type 2). Likewise, for rectangles of different, but constant height uniform evolution in width
is considered (type 1). Moreover, rectangles of type 2 and the ellipse evolve uniformly in width and also in
height. Finally, we consider tubes of varying thickness (which equates rectangles of constant width 1 with
varying height).

In this research, we also calculate the permeability on a real data set obtained from the group of Stephan
Peth, University of Kassel, Germany. It is a slice of a 3D microaggregate scan (250× 250× 250 pixels) which
is further modified as depicted in Figure 4. A modification of a subset (128× 128 pixels) is made such that
the pore space is connected to guarantee unique solvability of the cell problem (12). The porosity is θ ≈ 58.9%.

As a discretization method for the underlying partial differential equations the local discontinuous Galerkin
method is used on structured grids within the software M++ [57]. Discontinuous Galerkin methods generally
use element-wise polynomial but globally discontinuous ansatz functions. The local discontinuous Galerkin
method uses a mixed formulation where second (or higher) order equations are replaced with a system of
first order equations by introducing auxiliary flux variables. For an analysis and detailed description of the
used method for the Darcy equation we refer to [46, 47]. The Stokes equation is discretized as described in
[16] and the Beavers–Joseph interface condition to couple free and Darcy flow is employed as in [45, 44].

The meshes for the 2D-geometries comprise 128× 128 elements in two dimensions. Those in three dimen-
sions comprise 163 elements.

The data obtained is interpolated using a least square method. For given porosities θi, i = 1, . . . , N and
computed permeabilities Ki, i = 1, . . . , N , we search for the parameter vector α⋆ minimizing the sum of the
least squares

N
∑

i=1

(f(α, θi)−Ki)
2

for one of the permeability functions f = KKC1,KKC2,KKC3,KVP , cf. (5)–(8), with different number J =
1, 2, 3 of parameters αj ∈ {λ, β, η}, j = 1, . . . , J . For the isotropic geometries the permeabilities Ki are given
as the computed scalar-valued tensor. For the anisotropic geometries we chose Ki as the eigenvalue that

corresponds to the flow in the distinct direction in which no flow is possible at the critical porosity θ̂. For the
tube in 3D we consider the eigenvalue corresponding to the flow alongside the tube (EV1) and additionally
the eigenvalue corresponding to the flow orthogonal to the tube (EV2) because both tend to zero as θ tends
to zero. The related minimization problem is solved in MATLAB2017a1 by means of the routine nlinfit.
The data points in our study were chosen with a minimum distance of 0.01 in the porosity θ. For the 2D
geometries, our data points are approximately equally distributed with the number of points N depending

on the critical porosity θ̂, ranging from N = 15 for the rectangle (type 1, small) to N = 63 for the tube. For

1 c©2017 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See math-
works.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered
trademarks of their respective holders.

Figure 4. Modification of the geometry of a real porous medium from CT images; fluid in blue,

solid in red. Left : original CT image, Right : modified geometry.
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Figure 5. Cell problems’ solutions on the real geometry depicted in Figure 4 with right hand

side e1 (top), and e2 (bottom); ω1, ω2, π from left to right.

the 3D geometries the data points are slightly weighted towards higher porosities. It should be noted, that
we computed the data points for the 3D cube and tube with the obstacle placed in the corner of the cell
instead of the center. This way we obtain an appropriate number of data points ranging from N = 13 for
the cube to N = 34 for the sphere. In order to evaluate our fitting, we define the relative error as follows

erel =

√

∑N
i=1 (f(α

∗, θi)−Ki)
2

√

∑N
i=1 K

2
i

.

5. Evaluation

In this section, we evaluate the outcome of our numerical simulations. We first visualize the cell prob-
lems’ solutions for a real geometry as depicted in Figure 4 and state the corresponding permeability tensor.
Thereafter, we calculate porosity-permeability relations for various isotropic and anisotropic geometries as
depicted in Figure 2 and 3. We compare our results with the well established Kozeny-Carman and Verma-
Pruess relations, cf. Section 2, and provide quantitative functional relations of type (5)–(8) for the various
geometries. Furthermore, we investigate the influence of a microporous solid matrix onto the permeabil-
ity, which illustrates that even the full geometrical information generally does not suffices to determine the
permeability.

5.1. Simulation on real geometry. The solutions of the Stokes cell problems (12) on the modified real
geometry as depicted in Figure 4 are visualized in Figure 5. Integrating the flux solution, we obtain the
permeability tensor

K = 10−3

(

0.02189 0.005866
0.005873 0.398

)
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Figure 6. Scalar representative K over porosity for isotropic geometries in 2D: square, circle,

cross (type 1 and 2); Left: linear scale, Right: semi-logarithmic scale

with eigenvalues λ1 = 0.398 · 10−3, λ2 = 0.0218 · 10−3. The real geometry has a porosity of θ ≈ 58.9%.
For comparable porosity of θ ≈ 58.5%, we obtain the permeability K = 0.00442 for a cross (type 2),
which overestimates the calculated real geometry’s permeability. On the other hand, the permeability K =
0.0000353, which we obtain for the cross (type 1) for a porosity of θ ≈ 65.4% underestimates the real geometry.

5.2. Porosity-permeability relations. In this section, we evaluate the permeability in terms of porosity
for the representative geometries illustrated in Figure 2 and 3. Contrary to experimental capabilities, we
thereby consider the whole range of porosities 0 < θ < 1, cf. discussion in Section 2. In Figure 6 the porosity-
permeability relation is depicted for the chosen representative isotropic geometries, in Figure 7 for the chosen
anisotropic geometries, and in Figure 8 for the chosen three dimensional geometries (anisotropic in case of
the tube), respectively. We emphasize that depending on the chosen (anisotropic) geometry significantly
different values are obtained for the effective permeability even assuming the same porosity values. In this
sense it is evident that the underlying geometrical shape and structure plays an essential role for the porosity-
permeability relation.

It is evident from Figure 6 and 7 that the permeability degenerates for values θ̂ > 0 for some geometries
and is not always singular in θ = 1, but has finite value instead. This is because some geometries such as
the square or circle shrink to a single point in the limit θ → 1 and thus yield a singularity. Contrarily, the
tube, rectangle (type 1), and cross (type 1) have more complex geometrical 1D-limits for θ → 1 such as line
segments or crosses with thickness 0. These limits are still obstacles and thus impede the fluid flow. As we
will see below, for these geometries the exponental power 2 in the denominator in (1) exactly balances with
the order of θ-dependence of the specific surface σ, cf. (16a). In contrast, the three dimensional tube also
shrinks to a line segment for θ → 1 which, however, does not affect the flow significantly, cf. Figure 8. Further
note that the rectangle (type 1) with constant height a coincides with the square for θ = 1− a2, i.e. θ = 0.96
for the rectangle (type 1, small) with a = 0.2 and θ = 0.36 for the rectangle (type 1, large) with a = 0.8
in Figure 7. For these values the eigenvalues corresponding to the flow in vertical and horizontal direction,
respectively, are equal and for θ < 1 − a2, i.e. if the rectangle width becomes larger than its height a, the
eigenvalues change their ratio.

5.2.1. Kozeny-Carman relation. We now evaluate the Kozeny-Carman type equations (5)–(7) with different
number of free parameters, cf. Section 2.

For the Kozeny-Carman equation (5) with one free parameter λ, Table 2 shows the least square fit-
ting results for the geometries depicted in Figure 2 and 3 and evaluated in Figure 6 and 7. Moreover, the
relative errors as introduced in Section 4 are calculated. The fitted values of λ strongly vary for the dif-
ferent geometries ranging from 2.04 · 10−7 to 3.4 · 10−3. We emphasize that we have a bad approximation
quality for all geometries as is evident from the calculated relative errors ranging from 44.8% to 89.1%, cf.
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Figure 7. Eigenvalues of K over porosity for anisotropic geometries 2D: tube, rectangle (type 1,

small and large), rectangle (type 2), ellipse; Left: linear scale, Right: semi-logarithmic scale
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Figure 8. Eigenvalues of K over porosity for geometries in 3D: tube, cube and sphere; Left: linear
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Table 2 and the illustration in Figure 9 (left). We conclude that this is due to the intrinsic dependence of
the parameter λ on the porosity θ, cf. factor c0

σ2 in (1). However, for the one parameter model (5) the expo-
nent of the denominator is fixed at value 2, which is not reasonable for most geometric shapes, see (16) below.

We next consider the Kozeny-Carman equation (6) with two free parameters λ and β. In Figure 9 (right),
we illustrate the approximation quality of the least square fits as given in Table 3. Although these fits show
a much better approximation quality than the one parameter model (5), cf. Table 2 and Figure 9 (left), the
largest relative error is still erel = 8.76% for the square, cf. Table 3. We emphasize that, on the other hand,
the least square fit for the tube only has a marginal relative error of erel = 0.003%, cf. Table 3 and Figure 9
(right, black lines). This is to be expected since the Kozeny-Carman relation (1) was originally derived for a
bundle of tubes.

The values of the parameter β range from −0.0194 to 0.482, i.e. they are significantly smaller than the
value of 2 which was proposed by Carman (1). We even obtain a slightly negative value of β for the cross
(type 1). In fact this KKC2-fit would lead to an unreasonable degeneration of the permeability in the limit
θ → 1. Since this has only impact for very large porosities, β = 0 would be a reasonable choice.
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Figure 9. Left: least square fits of KKC1 for tube, λ = 0.0000275 and erel = 89.1%. Right: least

square fits of KKC2 for tube, square, and rectangle (type 1).

The obtained results are even more meaningful in the context of the Kozeny-Carman equation if it is taken
into account that the prefactor c0

σ2 in (1) is in general not independent of the porosity θ, cf. Section 2. We
emphasize that the specific surface σ indeed does depend on the porosity θ and consequently the exponential
power of 2 in the denominator in (1) is reduced. More precisely, it holds with Kozeny constant c0 = 1

5

Square : σ2 =
16

1− θ
→ K =

1

80

θ3

1− θ
,

Circle : σ2 =
4π

1− θ
→ K =

1

20π

(θ − θ̂)3

1− θ
,

Tube : σ2 =
4

(1− θ)2
→ K =

1

20
θ3(16a)

Geometry λ erel in %
Square 0.000000204 69.4
Circle 0.00000365 72.8
Cross (type 1) 0.0000868 84.7
Cross (type 2) 0.0000121 72.0
Rectangle (type 1, small) 0.0034 64.9
Rectangle (type 1, large) 0.0000352 88.9
Rectangle (type 2) 0.00000598 73.3
Ellipse 0.000471 62.4
Tube 0.0000275 89.1
Cube 3D 0.00000139 46.7
Sphere 3D 0.00000154 44.8
Tube 3D (EV1) 0.00000417 68.5
Tube 3D (EV2) 0.00000208 67.8

Table 2. Least square fitted parameters and relative error for KKC1.
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Geometry β λ erel in %
Square 0.304 0.0266 8.76
Circle 0.301 0.0635 3.56
Cross (type 1) −0.0194 2.24 3.54
Cross (type 2) 0.380 0.0250 4.48
Rectangle (type 1, small) 0.0286 15.7 3.96
Rectangle (type 1, large) 0.0037 0.165 0.34
Rectangle (type 2) 0.313 0.201 4.34
Ellipse 0.298 0.476 1.88
Tube 0.0000218 0.0833 0.003
Cube 3D 0.459 0.0208 4.60
Sphere 3D 0.482 0.0201 4.71
Tube 3D (EV1) 0.300 0.0510 6.90
Tube 3D (EV2) 0.306 0.0245 6.22

Table 3. Least square fitted parameters and relative error for KKC2.

and for the three dimensional geometries

Cube 3D : σ2 =
36

(1− θ)
2
3

→ K =
1

180

θ3

(1− θ)
4
3

,

Sphere 3D : σ2 ≈ 23.3867

(1− θ)
2
3

→ K ≈ 1

116.9333

(θ − θ̂)3

(1− θ)
4
3

,

Tube 3D : σ2 =
16

1− θ
→ K =

1

80

θ3

1− θ
.(16b)

We note that for the range 0.21 < θ < 0.81 the modified Kozeny-Carman relation (16b) for the three-
dimensional tube lies in between the computed permeability curves for its eigenvalues EV1 (upper bound)
and EV2 (lower bound) and is thus an adequate average approximation.

In case of the twodimensional tube, we conclude that β = 0 is the reasonable choice which perfectly fits
our results, cf. Table 3. Moreover, the magnitude of the factor λ = 0.0833 fits quite well the proposed value
1
20 = 1

4c0
= 0.05 with Kozeny constant c0 = 1

5 which was experimentally determined for diverse geometries.

We conclude that the Kozeny-Carman relation (1) taking into account the specific surface (16a) accurately,
perfectly approximates the geometry of tubes for which it was originally derived. The prefactor c0 should
further be related to tortuosity, cf. Section 2, which does not play a role for straight tubes and thus the
permeability is underestimated (since λ = 0.0833 > 0.05 = 1

4c0
), cf. Figure 10 (black lines). Finally, the

analytically determined solution K = 1
12θ

3 for the Poiseuille flow in case of tubes, cf. [4] or Section 3.1, is

perfectly reflected by the above computations, where β ≈ 0 and λ = 0.833 ≈ 1
12 .

Considering (16a), we rather expect β ≈ 1, and λ ≈ 1
80 = 0.0125 for the square and λ ≈ 1

20π ≈ 0.0159 for

the circle, respectively. In three dimensions (16b) suggests λ ≈ 1
80 ≈ 0.0056 and λ ≈ 0.0086 with β ≈ 4

3 for
the cube and the sphere, respectively. This yields a much better agreement compared to the approximations
given for β = 2 (cf. Table 2 and 3).

We observe that the Kozeny-Carman equation often overestimates the permeability and note that the
impact of tortuosity was completely neglected up to now. Therefore, in Figure 11 the numerically determined
permeability and the Kozeny-Carman relation without and with the additional tortuosity factor 1

τ2 , cf.

Section 2 are compared. We consider Archies law (2) with n = 1 leading to τ2 = Aθ(1−m) which has the
most impact for the largest proposed parameters A = 2 and m = 4, see [17], i.e. τ2 = 2θ−3. It is evident
from the Figures 11 and 12 that the permeabilities computed for the square and the circle belong to the area
in between the Kozeny-Carman relation neglecting tortuosity and the relation with maximal tortuosity up to
very large porosities, cf. gray areas in the Figures 11 and 12. This justifies a permeability-porosity relation by
the Kozeny-Carman equation including the influence of tortuosity via Archies law (with an appropriate choice
of parameters A ≤ 2 and m ≤ 4). Compared to the square, the mismatch of the Kozeny-Carman equation
and the computed permeability is larger in case of a circle and increases for small porosities, cf. Figure 12.

This is due to the fact that the circle has a positive critical porosity θ̂ = 1 − π
4 , cf. Table 1. Therefore, the
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corresponding Kozeny-Carman equation, cf. (16a); Left: linear scale, Right: semi-logarithmic scale

Kozeny-Carman relation taking this value into account (cf. Section 2) has better approximation quality than
the original Kozeny-Carman equation (1), cf. Figure 12.
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Figure 11. Scalar representative K over porosity for the square compared with the corresponding

Kozeny-Carman equation (16a); including Archies law (2); Left: linear scale, Right: semi-logarithmic

scale

Finally, we consider the rectangle of type 1 with constant height a or the cross of type 1 with constant
cross arm thickness a. In both cases we obtain

(16c) σ2 = 4

(

a+
1− θ

a

)2
1

(1− θ)2
→ K =

1

20

a2

(a2 + 1− θ)2
(θ − θ̂)3

and conclude that in these situations the power law λ(θ − θ̂)3 is reasonable since the singularity in θ = 1

cancels out. Although the factor 1
20

a2

(a2+1−θ)2 still depends on the porosity, the influence of θ decreases for

large a. Therefore, for both the cross (type 1) with a = 1 and the rectangles (type 1) particularly the large
one with a = 0.8, the parameter β is close to 0, i.e. (1 − θ)β ≈ 1, cf. Table 3. Consequently, for these
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Geometry β λ erel in %
Square 0.658 0.0124 0.70
Circle 0.267 0.0614 1.03
Tube 0.000161 0.0833 0.003
Cube 3D 0.987 0.00630 0.85
Sphere 3D 0.824 0.00850 2.90
Tube 3D (EV1) 0.704 0.0219 0.74

Table 4. Least square fitted parameters and relative error for KKC2; restricted on the range

0 < θ < 0.8

specific geometries a power law λ(θ − θ̂)3 is more suitable than the Kozeny-Carman equation. Because of
this conclusion it makes sense to neglect the denominator and thus to use functional relations of power law
type to fit the numerical results. This will be done in Section 5.2.2 below by investigating the Verma-Pruess
equation KVP .

If the range of porosity is restricted to 0 < θ < 0.8, the parameters β and particularly λ in the KKC2-fit
improve and better match with the values given in (16), cf. Table 4. We further note that the neglected
range 0.8 < θ ≤ 1, which contains the delicate point θ = 1, is generally less important for applications.
Finally, we consider the Kozeny-Carman equation KKC3 with three free parameters. As expected, a com-
parison of Table 5 and Table 3 shows that the approximation quality increases with more fitting parameters.
We estimate η between 2.35 and 6.20 (see Table 5) for the least square fit. Regarding the tortuosity with
respect to Archies law (2) the suggested exponent of 3 in the Kozeny-Carman relation may be enlarged.
However, restricting the range of porosity to 0 < θ < 0.8 yields beside an improved agreement of the param-
eters β, λ with (16) also exponents η, which are in a close range of the proposed value of 3, cf. Table 6. In
particular, the averaged parameter η̄ = 2.99 of all considered geometries almost coincides with this value.
The exponent of 3 consequently seems to be a good approximation for a wide range of geometries.

5.2.2. Verma-Pruess relation. We now investigate the Verma-Pruess relation (power law) KVP . Table 7
shows the results of the least square fits for KVP . Only for the cross (type 1), the rectangle (type 1), and
the tube we obtain a good approximation quality with erel ≤ 4.34%, cf. Table 7. This result matches with
the previous section, where precisely these geometries exhibits a parameter β close to 0 justifying a power
law approach. Especially for the tube the exponent η is exactly equal to 3 verifying the results of Section
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5.2.1, cf. Tables 3–5. Contrarily, the Verma-Pruess relation yields large relative errors ranging from 10.1%
to 27.8% for all the other geometries. Therefore, it is not astonishing that the values for η and λ are ranging
immensely up to 45.4 and 424.2, respectively, since the power law fits try with very high values of η (ascent)
and λ (amount) to copy the singular behavior at θ = 1, which is usually exhibited by the permeability tensor.
Restricting the range of porosity to 0 < θ < 0.8 and thus disregarding a possible singularity at θ = 1 decreases
the fitted parameters η ≤ 5.05, λ ≤ 0.925 and the relative error erel ≤ 5.16%, cf. Table 8. Nevertheless,
applying a power law the parameters also vary strong in the literature, cf. discussion in Section 2. Compared
to these, the values of the exponent η we obtained are still in a reasonable range.

5.3. Comparison of the Stokes and the Stokes-Darcy regime. As discussed above, there are diverse
methods taking the dependence of the permeability on the underlying geometry into account. In the following
we illustrate that even identical geometric settings may lead to different permeabilities. To this end, we study
the impact of the porous matrix on the permeability. Also in such a situation the upscaling method enables
us to calculate the permeability tensor K̃, cf Section 3.2. Up to now, the porous matrix was considered
to be inert, i.e. did not contribute to the permeability (Stokes regime). Contrarily, we now additionally
assign a microporosity to the porous matrix (Stokes-Darcy regime). In Figure 14, we compare the cell
problems’ solution for the Stokes regime (11) with those of the Stokes-Darcy regime (15), cf. Section 3 where
a representative microporous matrix (quadratic inclusion) Yd = [ 14 ,

3
4 ] × [ 14 ,

3
4 ] is considered. Here, different

values of permeability ranging from K̃ = 10−1 to K̃ = 10−7 are considered in the Darcy region. Grids of
fineness 2−6 are used for the discretization as described in Section 4.

Geometry η β λ erel in %
Square 5.12 0.252 0.0375 3.06
Circle 3.53 0.276 0.0825 2.29
Cross (type 1) 2.69 0.0176 1.37 2.60
Cross (type 2) 4.08 0.318 0.0348 1.52
Rectangle (type 1, small) 2.35 0.162 3.02 0.26
Rectangle (type 1, large) 2.96 0.0090 0.160 0.14
Rectangle (type 2) 4.16 0.271 0.578 1.80
Ellipse 2.66 0.345 0.284 0.88
Tube 3.00 −0.000263 0.0833 0.002
Cube 3D 6.20 0.405 0.0291 1.25
Sphere 3D 5.22 0.430 0.0299 1.32
Tube 3D (EV1) 5.28 0.226 0.0758 2.35
Tube 3D (EV2) 5.04 0.230 0.0350 2.11
Table 5. Least square fitted parameters and relative error for KKC3.

Geometry η β λ erel in %
Square 3.28 0.533 0.0160 0.17
Circle 2.70 0.453 0.0390 0.26
Cross (type 1) 2.41 0.00720 0.909 0.04
Cross (type 2) 3.20 0.522 0.0195 0.19
Rectangle (type 1, large) 2.98 0.0035 0.1637 0.009
Rectangle (type 2) 2.99 0.530 0.110 0.008
Ellipse 2.50 0.345 0.220 0.73
Tube 3.00 −0.0002 0.0834 0.001
Cube 3D 3.50 0.748 0.0101 0.13
Sphere 3D 2.59 1.01 0.00570 2.75
Tube 3D (EV1) 3.34 0.530 0.0306 0.07
Tube 3D (EV2) 3.35 0.520 0.0155 0.08

Table 6. Least square fitted parameters and relative error for KKC3; restricted on the range

0 < θ < 0.8
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Geometry η λ erel in %
Square 15.8 0.164 27.8
Circle 9.06 1.26 21.4
Cross (type 1) 2.79 1.64 2.77
Cross (type 2) 9.27 0.172 15.9
Rectangle (type 1, small) 3.00 17.4 4.34
Rectangle (type 1, large) 3.01 0.167 0.47
Rectangle (type 2) 11.5 424.2 17.3
Ellipse 4.87 9.42 10.1
Tube 3.00 0.0833 0.002
Cube 3D 45.4 0.377 18.4
Sphere 3D 39.4 1.53 21.3
Tube 3D (EV1) 12.3 0.242 14.1
Tube 3D (EV2) 12.6 0.120 14.9

Table 7. Least square fitted parameters and relative error for KVP .

Geometry η λ erel in %
Square 4.45 0.0473 2.64
Circle 3.40 0.114 2.29
Cross (type 1) 2.42 0.925 0.04
Cross (type 2) 4.20 0.0564 2.29
Rectangle (type 1, large) 2.99 0.165 0.02
Rectangle (type 2) 3.47 0.450 1.06
Ellipse 2.71 0.539 0.97
Tube 3.00 0.0833 0.002
Cube 3D 5.05 0.0445 2.34
Sphere 3D 4.84 0.0506 5.16
Tube 3D (EV1) 4.35 0.0845 2.04
Tube 3D (EV2) 4.34 0.0419 2.00

Table 8. Least square fitted parameters and relative error for KVP ; restricted on the range 0 < θ < 0.8
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Figure 13. Least square fits of KVP for tube, square, and rectangle of type 1.



BEYOND KOZENY-CARMAN: PREDICTING THE PERMEABILITY IN POROUS MEDIA 19

Figure 14. Cell problems’ solutions ω1 (left), ω2 (middle) and π (right) for Stokes-Darcy regime

with right hand side e1 and K̃ = 10
−1 (top), K̃ = 10

−4 (2nd line), K̃ = 10
−7 (3rd line) and Stokes

flow (bottom).
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K̃ 100 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8

K̄ 0.795 0.189 0.0436 0.0196 0.0149 0.0138 0.0135 0.0134 0.0134

Table 9. Permeability K̄ of the Stokes-Darcy regime for different choices of K̃ in the porous matrix.

We compare the impact on the permeability values. For the Stokes regime, we calculate K = 0.0131 while
Table 9 shows the different permeability K̄ for the Stokes-Darcy regime ranging from 0.795 to 0.0134. It is
evident that the impact of the Darcy regime is only negligible for small values of K̃ in the porous matrix.

6. Discussion

In this paper, standard results from upscaling theory were stated for a Stokes and Stokes-Darcy system.
These results enable calculating the effective permeability tensor based on dynamically evolving representative
elementary volumes. Fitting the data obtained, we provided quantitative relations between porosity and
permeability of Kozeny-Carman and Verma-Pruess (power law) type. With our approach larger porosity
ranges than accessible in experimental studies may be covered. Moreover, we were able to provide the full
potentially anisotropic tensor (represented by its eigenvalues) instead of scalar representative which is only
valid for isotropic situations. From our investigations, we conclude whether Kozeny-Carman type or power
law type porosity-permeability relations are more reasonable for various prototypic representative elementary
volumes. In doing so, we stress that the intrinsic dependence of the specific surface on the porosity can not be
neglected in order to represent the strength of the singularity accurately. Restricting the range of porosity led
to a decrease of the relative error of the fitted quantitative relations and moreover to a better agreement with
the well-established parameters. Therefore, we expect that a sufficient restriction yields a very good match
of these parameters. However, the goal of this article, beside others, was to provide quantitative relations
depending only on the underlying geometry, which are valid in the whole (or slightly restricted) range of
porosity. In this sense they generalize the well-established relations, which are commonly not applicable in
the whole range.

Moreover, we demonstrated how our method may be applied to real geometries. Further research is
needed to investigate porosity-permeability relations for larger three-dimensional samples. However, dynamic
measurements are still challenging. A process driven understanding of the elementary volumes evolution is
therefore essential to facilitate calculating the dynamic porosity-permeability relations.

Comprehensive flow and transport modeling also needs a parametrization of the effective diffusion tensor
as proposed in [43]. Finally, further research including extension of homogenization results is needed to
similarly approach the permeability in the unsaturated case.
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ZULETZT ERSCHIENENE BEITRÄGE:
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