Horst D. Schulz Matthias Zabel Editors

Marine Geochemistry

2nd revised, updated and extended edition

With 303 Figures, 49 in color

Table of Contents

Preface	V
Acknowledgements	IX
Authors	XIX

1 The Solid Phase of Marine Sediments

DIETER K. FÜTTERER

1.1	Introduction
1.2	Sources and Components of Marine Sediments
1.2.1 1.2.2 1.2.3	Lithogenous Sediments 2 Biogenous Sediments 8 Hydrogenous Sediments 10
1.3	Classification of Marine Sediments
1.3.1 1.3.2	Terrigenous Sediments 12 Deep-Sea Sediments 13
1.4	Global Patterns of Sediment Distribution
1.4.1 1.4.2 1.4.3	Distribution Patterns of Shelf Sediments 16 Distribution Patterns of Deep-Sea Sediments 17 Distribution Patterns of Clay Minerals 19
1.4.4	Sedimentation Rates
1.5	Problems

2 Physical Properties of Marine Sediments

Monika Breitzke

2.1	Introduction
2.2	Porosity and Wet Bulk Density
2.2.1 2.2.2 2.2.3	Analysis by Weight and Volume Gamma Ray Attenuation Gamma Ray Attenuation Gamma Ray Attenuation Electrical Resistivity (Galvanic Method) Gamma Ray Attenuation
2.2.4	Electrical Resistivity (Inductive Method)
2.3	Permeability
2.4	Acoustic and Elastic Properties
2.4.1 2.4.2	Biot-Stoll Model
2.5	Sediment Classification
2.5.1 2.5.2	Full Waveform Core Logs as Acoustic Images P- and S-Wave Velocity, Attenuation, Elastic Moduli and Permeability

2.6	Sediment Echosounding	57
2.6.1	Synthetic Seismograms	57
2.6.2	Narrow-Beam Parasound Echosounder Recordings	64
2.7	Problems	69

3 Quantification of Early Diagenesis: Dissolved Constituents in Marine Pore Water

HORST D. SCHULZ

3.1	Introduction: How to Read Pore Water Concentration Profiles	75
3.2	Calculation of Diffusive Fluxes and Diagenetic Reaction Rates	77
3.2.1	Steady State and Non-Steady State Situations	77
3.2.2	The Steady State Situation and Fick's First Law of Diffusion	79
3.2.3	Quantitative Evaluation of Steady State Concentration Profiles	82
3.2.4	The Non-Steady State Situation and Fick's Second Law of Diffusion	87
3.2.5	The Primary Redox-Reactions: Degradation of Organic Matter	88
3.3	Sampling of Pore Water for <i>Ex-Situ</i> Measurements	90
3.3.1	Obtaining Samples of Sediment for the Analysis of Pore Water	90
3.3.2	Pore Water Extraction from the Sediment	93
3.3.3	Storage, Transport and Preservation of Pore Water	101
3.4	Analyzing Constituents in Pore Water, Typical Profiles	102
3.5	In-Situ Measurements	105
3.6	Influence of Bioturbation, Bioirrigation, and Advection	112
3.7	Signals in the Sediment Solid Phase	117
3.7.1	Analysis of the Sediment's Solid Phase	117
3.7.2	Interpretation of Element Profiles	118
3.7.3	Correlation of Sediment Cores by the Contents of Elements	119
3.8	Problems	121

4 Organic Matter: The Driving Force for Early Diagenesis

JÜRGEN RULLKÖTTER

4.1	The Organic Carbon Cycle	125
4.2	Organic Matter Accumulation in Sediments	126
4.2.1 4.2.2 4.2.3 4.2.4	Productivity Versus Preservation	127 128 130 131
4.2.5	Allochthonous Organic Matter in Marine Sediments	132
4.3	Early Diagenesis	134
4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6	The Organic Carbon Content of Marine Sediments Chemical Composition of Biomass The Principle of Selective Preservation The Formation of Fossil Organic Matter and its Bulk Composition Early Diagenesis at the Molecular Level Biological Markers (Molecular Fossils)	134 138 142 144 146 146

4.4	Organic Geochemical Proxies	149
4.4.1	Total Organic Carbon and Sulfur	149
4.4.2	Marine Versus Terrigenous Organic Matter	150
4.4.3	Molecular Paleo-Seawater Temperature and Climate Indicators	154
4.5	Analytical Techniques	158
4.5.1	Sample Requirements	158
4.5.2	Elemental and Bulk Isotope Analysis	159
4.5.3	Rock-Eval Pyrolysis and Pyrolysis Gas Chromatography	159
4.5.4	Organic Petrography	159
4.5.5	Bitumen Analysis	160
4.6	The Future of Marine Geochemistry of Organic Matter	161
4.7	Problems	162

5 Bacteria and Marine Biogeochemistry

BO BARKER JØRGENSEN

ł

いたからんになっていたのでいうとうないためで

5.1	Role of Microorganisms	169
5.1.1 5.1.2	From Geochemistry to Microbiology - and back	169 171
5.2	Life and Environments at Small Scale	173
5.2.1 5.2.2 5.2.3	Hydrodynamics of Low Reynolds Numbers Diffusion at Small Scale Diffusive Boundary Layers	174 174 175
5.3	Regulation and Limits of Microbial Processes	176
5.3.1 5.3.2 5.3.3 5.3.4	Substrate Uptake by Microorganisms Substrate Limitations in the Deep Sub-surface Temperature as a Regulating Factor Other Regulating Factors	177 178 179 180
5.4	Energy Metabolism of Prokaryotes	180
5.4.1 5.4.2 5.4.3 5.4.4 5.4.5 5.4.6 5.4.7	Free Energy Reduction-Oxidation Processes Relations to Oxygen Definitions of Energy Metabolism Energy Metabolism of Microorganisms Chemolithotrophs Respiration and Fermentation	182 182 184 184 185 185 185
5.5	Pathways of Organic Matter Degradation	189
5.5.1 5.5.2 5.5.3	Depolymerization of Macromolecules Aerobic and Anaerobic Mineralization Depth Zonation of Oxidants Depth Zonation	190 190 192
5.6	Methods in Biogeochemistry	195
5.6.1 5.6.2 5.6.3 5.6.4 5.6.5	Incubation Experiments Radioactive Tracers Example: Sulfate Reduction Specific Inhibitors Other Methods	196 196 198 198 200
5.7	Problems	201

6 Benthic Cycling of Oxygen, Nitrogen and Phosphorus

CHRISTIAN HENSEN, MATTHIAS ZABEL AND HEIDE N. SCHULZ

6.1	Introduction	207
6.2	Distribution of Oxygen, Nitrate and Phosphate in Seawater	208
6.3	The Role of Oxygen, Nitrogen and Phosphorus in Marine Sediments	210
6.3.1 6.3.1.1 6.3.1.2 6.3.1.3 6.3.1.4 6.3.2 6.3.2.1 6.3.2.1 6.3.2.2	Respiration and Redox Processes . Nitrification and Denitrification . Coupling of Oxygen and Nitrate to other Redox Pathways . Anaerobic Oxidation of Ammonium with Nitrate (Anammox) . Nitrogen Isotopes in Marine Sediments . Input and Redistribution of Phosphate in Marine Sediments . P-Species and Forms of Bonding . Authigenic Formation of Phosphorites .	210 210 215 217 218 219 219 221
6. 4	Determination of Consumption Rates and Benthic Fluxes	223
6.4.1 6.4.2 6.4.3	Fluxes and Concentration Profiles Determined by In-Situ Devices Ex-Situ Pore Water Data from Deep-Sea Sediments Determination of Denitrification Rates	225 226 226
6.5	Significance and Quantitative Approaches	229
6.5.1 6.5.2	Estimation of Global Rates and Fluxes	229 230
6.6	Summary	234
6.7	Problems	234

7 The Reactivity of Iron

RALF R. HAESE

7.1	Introduction	241
7.2	Pathways of Iron Input to Marine Sediments	241
7.2.1 7.2.2	Fluvial Input	241 242
7.3	Iron as a Limiting Nutrient for Primary Productivity	244
7.4	The Early Diagenesis of Iron in Sediments	246
7.4.1 7.4.2 7.4.2.1 7.4.2.2	Dissimilatory Iron Reduction	247 248 248 249
7.4.2.3 7.4.3 7.4.3 1	Iron Reactivity towards S, O_2 , Mn, NO_3^- , P, HCO_3^- , and Si-Al	251 251 251
7.4.3.2 7.4.3.3	Iron Oxidation by O_2 , NO_3^- , and Mn^{4+} Iron-Bound Phosphorus	253 255
7.4.3.4 7.4.3.5	The Formation of Siderite The Formation of Iron Bearing Aluminosilicates	255 256
7.4.4 7.4.5	Iron and Manganese Redox Cycles Discussion: The Importance of Fe- and Mn-Reactivity in Various Environments	257 260

7.5	The Assay for Ferric and Ferrous Iron	262
7.6	Problems	264

8 Sulfur Cycling and Methane Oxidation

BO BARKER JØRGENSEN AND SABINE KASTEN

ł

ł

ŧ

1

8.1	Introduction	271
8.2	Sulfate Reduction and the Degradation of Organic Matter	272
8.2.1 8.2.2 8.2.3	Geochemical Zonation	273 274 275
8.3	Anaerobic Oxidation of Methane (AOM)	278
8.3.1 8.3.2 8.3.3	The AOM Zone in Marine Sediments	279 280 283
8.4	Effects of Sulfate Reduction on Sedimentary Solid Phases.	285
8.4.1 8.4.2 8.4.3 8.4.4	Reactions with Iron Pyrite Formation Pyrite Formation Magnetite and Barite Magnetite and Barite Non-Steady State Diagenesis	285 285 288 289
8.5	Pathways of Sulfide Oxidation	293
8.6	Determination of Process Rates	298
8.7	The Sulfur Cycle	300
8.8	Problems	302

9 Marine Carbonates: Their Formation and Destruction

RALPH R. SCHNEIDER, HORST D. SCHULZ AND CHRISTIAN HENSEN

9.1	Introduction	311
9.2	Marine Environments of Carbonate Production and Accumulation	311
9.2.1 9.2.2	Shallow-Water Carbonates	311 315
9.3	The Calcite-Carbonate-Equilibrium in Marine Aquatic Systems	317
9.3.1	Primary Reactions of the Calcite-Carbonate-Equilibrium with Atmospheric Contact in Infinitely Diluted Solutions	318
9.3.2	Primary Reactions of the Calcite-Carbonate-Equilibrium without Atmospheric Contact	320
9.3.3	Secondary Reactions of the Calcite-Carbonate-Equilibrium in Seawater	320
9.3.4	Examples for Calculation of the Calcite-Carbonate-Equilibrium in Ocean Waters	321
9.4	Carbonate Reservoir Sizes and Fluxes between Particulate and Dissolved Reservoirs	324
9.4.1 9.4.2	Production Versus Dissolution of Pelagic Carbonates	325 327
9.5	Problems	334

10	Influences of Geochemical Processes on Stable Isotope Distribution in Marine Sediments	
	Torsten Bickert	
10.1	Introduction	339
10.2	Fundamentals	339
10.2.1 10.2.2	Principles of Isotopic Fractionation	339 340
10.3	Geochemical Influences on ¹⁸ O/ ¹⁶ O Ratios	341
10.3.1	$\delta^{_{18}}$ O of Seawater	341
10.3.2	$\delta^{_{18}}$ O in Marine Carbonates	343
10.4	Geochemical Influences on ¹³ C/ ¹² C Ratios	346
10.4.1	$\delta^{_{13}} ext{C}\Sigma_{_{CO2}}$ of Seawater \ldots	346
10.4.2	$\delta^{_{13}}$ C in Marine Organic Matter	347
10.4.3	$\delta^{_{13}}$ C in Marine Carbonates	351
10.5	Geochemical Influences on ¹⁵ N/ ¹⁴ N Ratios	353
10.5.1	$\delta^{_{15}}$ N in Marine Ecosystems	353
10.5.2	$\delta^{_{15}}$ N in Marine Organic Matter	355
10.6	Geochemical Influences on ³⁴ S/ ³² S Ratios	356
10.6.1	$\delta^{_{34}}$ S of Seawater and Pore Waters	356
10.6.2	$\delta^{_{34}}$ S in Marine Sediments	359
10.7	Geochemical Influences on ¹¹ B/ ¹⁰ B Ratios	360
10.7.1	$\delta^{_{11}}$ B of Seawater and Pore Waters	360
10.7.2	$\delta^{_11}$ B in Marine Carbonates	361
10.8	Problems	362

11 Manganese: Predominant Role of Nodules and Crusts

GEOFFREY P. GLASBY

11.1	Introduction	371
11.2	Manganese, Iron and Trace Elements in Seawater	371
11.3	Sediments	375
11.3.1	Manganese, Iron and Trace Elements in Deep-Sea Sediments	375
11.3.2	Diagenetic Processes in Deep-Sea Sediments	377
11.4	Manganese Nodules and Crusts	380
11.4.1	Deep-Sea Manganese Nodules	380
11.4.2	Influence of Diagenesis on Nodule Growth	386
11.4.3	Rare Earth Elements (REE) as Redox Indicators	388
11.4.4	Co-Rich Mn Crusts	390
11.4.5	Shallow-Marine Ferromanganese Concretions	393
11.4.6	Hydrothermal Manganese Crusts	395
11.4.7	Micronodules	397
11.4.8	Mineralogy	398

11.4.9	Dating	400
11.4.10	Mn Crusts as Paleoceanographic Indicators	403
11.4.10.1	Recording Hiatuses in Mn Crusts	403
11.4.10.2	2 Application of Isotopic Studies of Co-rich Mn Crusts to the Study of Present-	
	day Deep-ocean Circulation	407
11.4.10.3 Application of Isotopic Studies of Co-rich Mn Crusts to the Study of Paleocean		
	Circulation	410
11.4.11	Economic Prospects	411
11.4.12	Future Prospects	414
11.5	Problems	415

12 Quantification and Regionalization of Benthic Refluxe

MATTHIAS ZABEL AND CHRISTIAN HENSEN

ļ

Î

ţ

İ

1

Ï

1

ŧ

の一本のため

12.1	Introduction	429
12.2	Fundamental Considerations and Assessment Criteria for Benthic Flux Rates	430
12.2.1 12.2.2 12 2 3	Depth Resolution of Concentration Profiles	431 432 433
12.2.4	Time-Dependent Variances and Spatial Variations in the Micro-Environment	433
12.3	The Interpretation of Patterns of Regionally Distributed Data	435
12.3.1 12.3.2 12.3.3	Input and Accumulation of Organic Substance	435 438 .440
12.4	Conceptual Approaches and Methods for Regional Balancing	442
12.4.1 12.4.2 12.4.3	Statistical Key Parameters and Regression Analysis. Variograms and Kriging Geographical Information Systems (GIS)	442 442 443
12.5	Applications	445
12.5.1	Balancing the Diffusion Controlled Flux of Benthic Silicate in the South Atlantic -	445
12.5.2	Global Distribution of Benthic Oxygen Depletion Rates - An Example of Regression Analysis	447
12.5.3	Use of Numerical Models to Investigate Benthic-Pelagic Coupling	450
12.6	Concluding Remarks	452
12.7	Problems	452

13 Input from the Deep: Hot Vents and Cold Seeps

PETER M. HERZIG AND MARK D. HANNINGTON

13.1	Hydrothermal Convection and Generation of Hydrothermal Fluids	
	at Mid-Ocean Ridges	459
13.2	Onset of Hydrothermal Activity	462
13.3	Growth of Black Smokers and Massive Sulfide Mounds	462
13.4	Physical and Chemical Characteristics of Hydrothermal Vent Fluids	465

13.5	The Chemical Composition of Hydrothermal Vent Fluids and Precipitates	468
13.6	Characteristics of Cold Seep Fluids at Subduction Zones	472
13.7	Problems	473

14 Gas Hydrates in Marine Sediments

GERHARD BOHRMANN AND MARTA E. TORRES

14.1	Introduction	482
14.2	Hydrate Crystal Chemistry and Stability of Gas Hydrates	482
14.2.1	Cages and Three Crystal Structure.	482
14.2.2	Guest Molecules	483
14.2.3	Stability and Phase Boundaries of Gas Hydrates	484
14.3	Hydrate Occurrence in The Oceanic Environment	485
14.3.1	Gas Hydrate Stability Zone in Marine Sediments	485
14.3.2	Seismic Evidence for Gas Hydrates	487
14.3.3	Generation of Gases for Hydrate Formation	488
14.3.4	Methane Transport and Hydrate Formation	490
14.3.5	Gas Hydrate Accumulation in Sediments and Fabric of Natural Gas Hydrates	492
14.4	Pore Water Anomalies Associated with Gas Hydrate Formation and	
	Decomposition	494
14.4.1	Gas Hydrate and Chloride Anomalies	495
14.4.2	Gas Hydrate and Water Isotope Anomalies	502
14.5	Gas Hydrate Carbonate Formation and Anaerobic Oxidation of Methane	503
14.5.1	Petrographic Characteristics of Clathrites	503
14.5.2	Carbonate Precipitation through Microbial Activity	504
14.6	Concluding Remarks	506
14.7	Problems	507

15 Conceptual Models and Computer Models

HORST D. SCHULZ

15.1	Geochemical Models	513
15.1.1	Structure of Geochemical Models	513
15.1.2	Application Examples of Geochemical Modeling	517
15.2	Analytical Solutions for Diffusion and Early Diagenetic Reactions	523
15.3	Numerical Solutions for Diagenetic Models	524
15.3.1	Simple Models with Spreadsheet Software ('Press-F9-Method')	525
15.3.2	Two-Step Models with Explicit Numerical Solution of Fick's 2 nd Law.	529
15.3.3	Two-Step Models for Combined Complex Transport/Reaction Processes.	538
15.4	Bioturbation and Bioirrigation in Combined Models	543
15.5	Problems	545

Answers to Problems

Index