© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Contents

	Preface	xiii
1	Introduction	1
2	Observing the Ocean	4
	2.1 Ships	5
	2.2 Navigation	6
	2.3 The Preelectronics Era	6
	2.4 The Electronics Era	16
	2.5 The Rise of Satellites	27
	2.6 Intermediate- and Long-Duration Measurements	34
	2.7 Experiments and Expeditions	43
	2.8 The Frontier: Duration	46
	2.9 Other Generic Observation Issues	47
	An Interlude	50
3	What Does the Ocean Look Like?	51
	3.1 Some Physical Descriptions	51
	3.1.1 Gravity and the Shape of the Earth	52
	3.1.2 Topography	54
	3.1.3 Water Movement	56
	3.2 Gross Thermal and Salinity Properties	63
	3.2.1 A Global View of the Surface Ocean	75
	3.2.2 The Atmospheric Forcing Structure	76
	3.2.3 The Surface Layer	83
	3.2.4 Abyssal Boundary Layers	85
	3.3 Equations of Motion	86
	3.3.1 The Sphere	87
	3.3.2 Vorticity	94
	3.3.3 How Big Are Terms?	95
	3.3.4 Geostrophy	97
	3.3.5 Boundary Conditions	98
	3.3.6 Cartesian Approximation	101
	3.3.7 The β -Plane	101

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

	3.3.8 Conservation Laws	102
	3.3.9 Instability	103
	3.4 Models	104
4	Linear Wave Dynamics	109
	4.1 Background	109
	4.2 Surface Gravity Waves	109
	4.3 Cartesian Approximations of the Rotating System	121
	4.3.1 Effects of Topography	133
	4.4 A Stratified Ocean	134
	4.4.1 Separation of Variables	141
	4.4.2 The Sphere	147
	4.4.3 Inertial Waves	149
	4.4.4 Vertical Propagation—Infinitely Deep Ocean	150
	4.4.5 Nonlinearities	151
	4.4.6 Low Frequency Limits	153
	4.5 Initial Value-Adjustment Problems	153
5	Observations of Internal and Inertial Waves	156
	5.1 Introduction	156
	5.2 The Surprising Garrett and Munk Result	158
	5.3 Subelements of the Spectrum	159
	5.3.1 Inertial Waves	159
	5.3.2 Internal Tides	162
	5.3.3 Vortical Modes	162
	5.3.4 Deviations from the GM Spectrum and the Energy-Source Problem	163
	5.3.5 Instabilities and Breaking of Internal Waves	165
6	The Tide Disturbing Potential and the Milankovitch Forcing	169
	6.1 Origin	169
	6.1.1 Solar Gravitational Tides	170
	6.1.2 Solar Motion	175
	6.1.3 Lunar Tides	180
	6.1.4 Combined Tides	180
	6.2 Pole Tide	182
	6.3 Thermal Tides	183
	6.4 Solid-Earth Tides, Self-Attraction and Load, and Atmospheric Tides	184
	6.4.1 The Atmosphere	186
	6.5 Tidal Analysis	186
	6.5.1 Frequency Domain Analysis	187
	6.5.2 Hydrodynamic Nonlinearities	188
	6.5.3 Time Domain Analysis	189
	6.6 The Milankovitch Problem	192
7	Observations of Tides and Related Phenomena	195
	7.1 Tidal Dynamics	195
	7.2 Tides of a Flat-Bottom Ocean on a Sphere 1	197
	7.3 Cartesian Approximations	198

Contents • ix

	7.3.1 Atmospheric Tides	200
	7.4 Tides of a Flat-Bottom Ocean on a Sphere 2	200
	7.5 Basic Tidal Observations	202
	7.5.1 Distribution	204
	7.5.2 The Many Tidal Constituents	207
	7.6 Internal Tides	212
	7.6.1 Changing Tidal Constituents	215
	7.7 Dissipation: Tidal Friction	215
	7.7.1 Paleotides and the History of Earth Rotation	220
8	Balanced Motions	228
	8.1 The Nature of the Variability	228
	8.1.1 The Forcing	229
	8.2 In Situ Observations	229
	8.2.1 Moorings	229
	8.2.2 Shipborne Instruments	232
	8.2.3 Float Observations	233
	8.3 Altimetric Data: Global Characteristics	234
	8.3.1 What Does the Altimeter See?	234
	8.3.2 Time-Domain Representations	235
	8.3.3 Frequencies and Wave Numbers	235
	8.4 Vertical Structure	239
	8.5 Spectral Interpretation	241
	8.5.1 Wavenumber Power Laws	242
	8.5.2 Frequency Spectra	244
	8.5.3 Wave-Like Features	245
	8.5.4 Balanced Barotropic Basin Modes	245
	8.5.5 Other Contributions: Vortical Modes	247
	8.6 Generation of Balanced Variability	248
	8.7 Dissipation of Balanced Variability	248
9	The Time-Mean Ocean Circulation	250
	9.1 Geostrophy and the Dynamic Method	251
	9.1.1 Resolving the Paradox: The Box Inverse Method	253
	9.1.2 The β -Spiral	256
	9.1.3 Needler's Formula	259
	9.1.4 Qualitative Circulation Estimates	259
	9.1.5 Circulation Estimates: Inverse Methods	261
	9.2 Global Property-Weighted Transports	264
	9.2.1 Global Heat, Freshwater, Nutrient and Oxygen Transports	265
	9.3 Regional Estimates	268
	9.4 Convective Regions	271
	9.5 Ocean State Estimates	275
	9.6 Global-Scale Solutions	277
	9.6.1 Large-Scale Results	280
	9.6.2 Long-Duration Estimates	290
	9.6.3 Short-Duration Estimates	291
	9.6.4 Global High-Resolution Solutions	291
	9.6.5 Regional Solutions	293

10 Large-Scale Circulation Physics	294
10.1 Theories of the Wind-Driven Ocean	294
10.1.1 Stommel and Arons Abyssal Flows	302
10.2 Thermocline Theories	304
10.2.1 Nonlinear Theories	304
10.3 Western Boundary Currents	307
10.4 The Role of Eddies	308
10.5 Testing Mean Dynamics	309
10.5.1 The Annual Cycle	311
10.6 A Summary	313
11 Interpreting and Using the Circulation	314
11.1 Energetics and Mixing	314
11.1.1 Mean Energy Sources	315
11.1.2 Energy Sinks	324
11.1.3 Mixing Rates	326
11.2 The Meridional Overturning Circulation	329
11.3 Integrals and Choke-Points	334
11.4 Time Scales	336
11.4.1 Time Scales Based on Volume	336
11.4.2 Time Scales Based on Propagation and Advection	338
11.4.3 Time Scales from Diffusion and Viscosity	339
11.4.4 Time Scales Based on Energetics	340
11.4.5 Time Scales Based on Tracers	341
11.4.6 Dynamical Time Scales	344
11.5 Consequences of Memory	344
11.6 Other Physical Aspects and Regimes	345
11.7 Sea Level, the Geoid, and Related Problems	349
12 Low-Frequency, Time-Varying, Global-Scale Flow	352
12.1 Background	352
12.1.1 Forcing Fields	353
12.1.2 Atmospheric Spectra	354
12.2 Decadal-Scale Ocean Variability: The Recent Past	358
12.2.1 Hydrographic Results	358
12.2.2 In Situ Measures of Circulation	363
12.2.3 Global Sea Level Change and Heat Uptake	363
12.2.4 The Tide-Gauge Era and Multidecadal Sea Level Changes	372
12.3 Sea-Surface Temperature	376
A Brief Afterword	377
A A Primer of Analysis Methods	379
A.1 Expectation and Probability	379
A.2 Time Series Analysis: Fourier Methods	381
A.2.1 Process Types	382
A.3 Basic Fourier Representations	382
A.3.1 Splitting	385

© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher.

Contents • xi

A.3.2 Discrete Forms	385
A.3.3 Convolution	389
A.3.4 Miscellaneous Notes on Fourier Methods	390
A.3.5 Randomness and Spectral Estimation	391
A.4 Autocorrelations and Autocovariances	403
A.5 Coherence and Multiple Time Series	407
A.6 Power and Coherence in a Wave Field	410
A.7 A Note on Confidence Limits	412
A.8 Spherical Harmonics	414
A.9 Making Maps	416
B Inverse and State Estimation Methods	420
B.1 Inverse Methods and Inverse Models	420
B.2 Least-Squares	421
B.3 State Estimation	428
B.4 The Observations	430
B.5 Data Assimilation and Reanalyses	431
C Problematic Terms and Concepts	435
D Useful Numerical Values	441
E Notation, Abbreviations, and Acronyms	444
References	
Index	477