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Zusammenfassung 
Die vorliegende Dissertation beschäftigt sich mit zwei Hauptthemen der akustischen 

Meeresbodenklassifizierungstechniken. Im Fokus des ersten Teils steht die Separierung von 
akustischen Klassen, die die Diskriminierungsfähigkeit der Klassifizierungstechniken und die 
Qualität ihrer Ergebnisse beeinflusst. Der zweite Teil befasst sich mit der räumlichen 
Auflösung von akustischen Karten des Meeresbodens, die mit der akustischen 
Klassenseparierung in wesentlicher Verbindung steht. Die Themenbereiche werden mithilfe 
eines integrierten Ansatzes untersucht, der a) eine fortgeschrittene unüberwachte 
Klassifizierungstechnik benutzt und b) deren Auswirkungen auf die “angular response 
analysis” (ARA) analysiert. Darüber hinaus wird ein neuartiger Ansatz zur Verbesserung der 
ARA-Technik beschrieben. Durch die Anwendung einer unüberwachten Technik auf der 
Grundlage der Bayesschen Statistik, die einen internen Cluster-Validierungstest durchführt, 
wurde eine objektive Klassifizierung der gesamten Rückstreuungsdaten erlangt. Diese 
Technik nutzt Rückstreuungsmessungen der einzelnen Winkel aus dem zentralen Bereich 
des Sonar Fächers und bietet dadurch eine bessere Diskriminierung von akustischen Klassen. 

Die grössten Vorteile der Bayesschen Technik sind, dass keine Sonarkalibrierung 
erforderlich ist, sie innerhalb des Fächers Variationen des Meeresbodens unterscheidet und 
ordinale kategorische Werte für akustische Klassen ausgibt.  Letzteres hilft bei der 
Korrelation von akustischen Klassen mit Daten von Sedimentproben. Die Kapitel dieser 
Studie basieren auf drei Studien der Bayesschen Technik für die Diskriminierung von: 
ähnlichen Typen von weichen Sedimenten, unterschiedlichen Sedimenttypen von Schluff bis 
Kies sowie verschiedenen Dichten von Mn-Knollen (Knollen m-2). Die 
Klassifizierungsergebnisse werden pro Strahl zugewiesen und ermöglichen eine hohe 
räumliche Auflösung der Meeresboden-Klassen. Insbesondere ein spezieller 
hydroakustischer Datensatz mit stark überlappenden Fächern in Verbindung mit empirischer 
ARA unterstützte die Untersuchung der Bayesschen Ergebnisse. Es wurde festgestellt, dass 
die Bayessche Technik die dominanten Winkelresonanzen aus den gesamten 
Rueckstreuungsdaten objektiv klassifizieren kann. In Anbetracht dessen, dass die ARA-
Technik auf den physikalischen Zuständen des Meeresbodens basiert und dass sie durch 
akustische Klassenhomogenitätsprobleme und fehlende räumliche Auflösung begrenzt ist, 
schlagen wir einen neuen Ansatz zur Verbesserung dieser Probleme vor. Hierfür wird das 
Konzept des Hyper-Angular Cube (HAC) angewendet und seine Ergebnisse mit den 
Bayesschen Klassifizierungsergebnissen verglichen. Der HAC wird durch mehrere 
Rückstreuungsschichten aufgebaut, die entweder durch die Interpolation von dichten 
Echomessungen oder durch die Normalisierung der Rückstreu- Mosaike bei 
unterschiedlichen Einfallswinkeln resultieren können. Die letztgenannte Methode minimiert 
die Kosten für den Erwerb von dichten hydroakustischen Daten und wurde bisher noch nicht 
vorgestellt. Die hochdimensionale Datenstruktur des HAC ist geeignet für die überwachte 
Klassifizierung mit maschinellen Lerntechniken und einer eingeschränkten Menge an 
Sedimentproben. Der Ansatz betrachtet die Winkelabhängigkeit der Rückstreuung und nutzt 
hydroakustische- und Probendaten effizienter als es bisher möglich war. 
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Abstract 
 

This thesis focuses on two major topics regarding acoustic seafloor classification 
techniques. The first topic is that of acoustic class separation which affects the 
discriminative power of classification techniques and the quality of final results. The second 
topic is the spatial resolution of seafloor acoustic maps that is fundamentally coupled with 
acoustic class separation. These topics are examined through an integrated approach which, 
a) employs an advanced unsupervised classification technique and b) analyzes its 
implications on the angular response analysis (ARA) of acoustic backscatter. Moreover, a 
novel approach for improving the ARA technique is described. Applying an unsupervised 
technique (based on Bayesian statistics) that performs an internal cluster validation test, we 
obtain objective classification of the entire backscatter dataset. This technique utilizes 
single-angle backscatter measurements from the middle range of the sonar swath offering 
better discrimination of acoustic classes. The main advantages of the Bayesian technique 
are that it does not require sonar calibration, it resolves along-swath seafloor variations and 
that it outputs ordinal categorical values for acoustic classes. The latter advantage assists in 
correlating acoustic classes with ground truth information. The Bayesian technique was 
applied in three studies for discriminating: similar types of soft sediments, a wide range of 
sediment types from silt to gravel and various densities of Mn-nodules (nodules m-2) 
respectively. The classification results are assigned per beam providing high spatial 
resolution of the seafloor classes. In particular, a special hydro-acoustic dataset with high 
swath overlap assisted the examination of Bayesian results in conjunction with empirical 
ARA. It was found that the Bayesian technique can objectively classify the dominant angular 
responses from the entire backscatter dataset. Considering that the ARA technique, is based 
on the physical properties of the seafloor and that it is limited by acoustic class 
homogeneity issues and lack of spatial resolution, we suggest a new approach for improving 
these issues. Therefore, the concept of the Hyper-Angular Cube (HAC) is applied and its 
results are compared with the Bayesian classification results. The HAC is built by several 
angular backscatter layers which can result either by interpolation of dense soundings or by 
normalization of backscatter mosaics at different incidence angles. The latter method 
minimizes the cost of acquiring dense hydro-acoustic data and has not been presented 
formerly. The high dimensional data of the HAC is suitable for supervised classification using 
machine learning techniques and restricted amount of ground truth information. This 
approach takes angular dependence of backscatter into consideration and utilizes hydro-
acoustic and ground truth data in a more efficient way than it was possible until now.  
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1. INTRODUCTION 
1.1 Rationale for the study  

 

In recent decades the world ocean-floor faces significantly increased anthropogenic 
pressure related to climate/ocean change, coastal population/infrastructure growth and 
considerable demand for marine resources (fish, minerals). As a consequence, a number of 
efforts have been initiated in order to better evaluate and monitor marine areas that are 
affected by these pressures. These efforts primarily use seafloor mapping as a tool helping 
to interpret, analyze, and predict numerous seafloor-types at different spatial scales and 
their change over time. The development of multi-beam echo-sounders (MBES) has played a 
key role in seafloor mapping. The strongly expanding use of MBES technology in recent 
years has significantly increased the availability of hydro-acoustic data at various spatial 
scales. The main advantage of MBES systems is that they provide co-registered, motion-
compensated bathymetric and backscatter data covering relatively large areas on the 
seafloor. Bathymetric data are used primarily for precise bathymetric mapping while 
backscatter data provide important information about the seafloor type. The ever-
increasing volume of MBES data has triggered the need for methods towards more efficient 
and detailed mapping of the seafloor. This occurs because the solution for a variety of 
research and marine spatial planning and management problems relies on input of geo-
information about the seafloor and its associated habitats. Thus there is a fundamental 
requirement to transform hydro-acoustic data into meaningful seafloor maps that carry 
useful information at appropriate spatial scale. To achieve this, the scientific field of 
Acoustic Seafloor Classification (ASC) (Anderson et al., 2008) that incorporates different 
kinds of methods and approaches has been developed. Essentially the main objective of ASC 
is to identify discrete parts in the hydro-acoustic data (bathymetry and/or backscatter) that 
are characterized by individual homogeneity that reflects physical seafloor properties (i.e.: 
sediment grain size, porosity, etc.). A robust way to perform ASC is through statistical 
analysis and parallel involvement of the acoustic properties of the seafloor (see ASC 
methodologies box, section 2.3). Parts of the seafloor with unique acoustic features and 
properties are then compiled to create seafloor classification maps which can be validated 
by means of ground-truth data (e.g. physical sampling, visual observations, section 2.4). 
Seafloor classification maps comprise valuable input information to various marine spatial 
projects such as for sediment characterization, benthic habitat mapping, seafloor resource 
exploration and evaluation and even for geochemical studies.   

  

ASC METHODOLOGIES  
 

There are several ASC approaches available in literature which can be generally divided 
in three categories according to the following criteria:  
 
a) The type of hydro-acoustic data that they are applied to: meaning that MBES data can be 
processed either as acoustic signal by utilizing seafloor acoustic parameters and theoretical 
models (signal processing) or as processed gridded data such as bathymetric surfaces and 
backscatter mosaics which can be processed using image analysis techniques.  
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b) The type of processing outcomes, which could be i) categorical variables representing 
seafloor types (qualitative, semi-quantitative results) or ii) continuous variables representing 
seafloor properties or quantitative sedimentary features such as grain size, percentage of 
gravel etc, 
c) The employment of ground-truth information in the classification process. Classification 
methods that require a priori input of ground-truth information for determining the number 
of classes are called supervised methods while methods that only use ground-truth data for 
validation of results are called unsupervised. In this regard if there is a substantial amount of 
ground-truth data then supervised classification can be applied whereas in case of lack or 
limited ground-truth data an unsupervised approach should be preferred instead. As with 
any remote sensing technique, a minimum amount of ground-truth information is required 
for validating the classification results regardless the method used to process the data. This 
is because remotely sensed data provide only indirect information about the seafloor; since 
they do not represent actual seafloor samples. 
 

A) Processing style B) Results type C) Ground-truth data input 

signal processing 
(angular 

responses) 

quantitative 
(continuous) 

Supervised (a priori) 

image processing 
(grids) 

qualitative 
(categorical) 

Unsupervised (not 
required) 

 
Using the categories mentioned above, one can efficiently describe the nature of any ASC 
method. In literature a number of ASC methods have been widely studied and some of them 
became established as standard approaches in some cases.  The ASC approaches that have 
been studied in this thesis include: 
  
- Angular Response Analysis (ARA). This is a signal-based approach that provides semi-
quantitative and quantitative information about the seafloor. It has been established by 
experimental and in-situ hydro-acoustic studies on various sediment types. These studies 
yielded a number of acoustic parameters which determine the absolute acoustic backscatter 
values of sediments for certain frequencies and incidence angles of ensonification. 
Geophysical models of seafloor backscatter (section 2.3.2) make use of these acoustic 
parameters for predicting the angular responses of certain seafloor types and vice-versa. 
ARA inversion uses measured MBES backscatter values for adjusting the appropriate model 
parameters and thus predicting seafloor sediments. ARA is part of the Geocoder software 
that runs in some commercial MBES processing suites (FMGT, Caris HIPS). Apart from model-
based ARA there is also the empirically-derived ARA. In this case the relative backscatter 
intensity values (Chapter 4) are extracted from each incidence angle and compared with 
ground truth information.   
- Unsupervised classification combining Principal Components Analysis (PCA) and k-means 
clustering. 
PCA has been extensively applied in several classification studies in literature. The main 
advantage of PCA is that it can combine information from a high dimension feature space 
and output less features (the principal components) that possess more descriptive 
properties. The principal components can then be clustered using a k-means approach and 
produce a representation of seafloor classes. However the number of clusters needs to be 
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defined by the user. In this respect, many unsupervised methods require some sort of cluster 
validation test in order to identify the optimum number of clusters in which the dataset can 
divided in. PCA can be applied either on tables or grids and it can include numerous MBES 
bathymetric and/or backscatter features (variables). As for example, Huang et al. (2013) 
applied PCA on tables with backscatter angular response features (e.g.: slope, minimum, 
maximum) and produced principal components for each incident angle. Another example of 
PCA application is the QTC Multiview software that based on Preston 2009 implementation. 
Preston 2009 developed a PCA approach for classifying MBES backscatter data using a large 
number of backscatter gridded features (1st order statistics, textural analysis statistics) along 
with bathymetric gridded data. 
- Unsupervised classification using Bayesian probability. This method has been in the core 
of this thesis being applied in diverse MBES datasets and compared to other ASC 
approaches. It is a relatively new method implemented by Simons and Snellen (2009). The 
method is based on the central limit theorem interpreted for MBES backscatter data. 
According to this theorem, the backscatter values resulted from the beam footprint of a 
particular incidence angle should follow normal distribution for a specific seafloor type 
(section 2.3.3). The Bayesian method has some important advantages over more commonly 
used unsupervised methods. First it assigns acoustic classes to each beam and so it resolves 
across-track seafloor type changes on a footprint scale. One of the most important features 
of the Bayesian method is that it calculates statistically the optimum number of classes, thus 
offering more objective results.   
- Supervised methods (traditional and machine learning algorithms). In contrast to 
unsupervised methods the supervised ones require pre-definition of the seafloor classes.  
Therefore, ground-truth data of adequate quality and quantity should be employed in this 
kind of classification approach. One of the most commonly-used supervised methods is the 
Maximum Likelihood Classification (MLC). It has been applied in satellite image classification 
and also in studies using MBES data. The MLC method requires that hydro-acoustic data 
values of a particular seafloor type have a normal distribution. In practice this is not always 
valid hence this assumption can be a drawback of the method. In addition MLC becomes 
problematic with high dimensional data (i.e.: large number of MBES grids). In contrast, 
recent developments of machine learning algorithms provide supervised classification in a 
more robust way, meaning that they do not require normal distributions of the data and 
they can identify non-linear relationships between the MBES features and seafloor types 
(Chapter 6). Moreover, machine learning algorithms can deal with high dimension data and 
relatively small amount of ground-truth information.  
 
 

An important feature that affects the usefulness of ASC maps is spatial resolution. A 
seafloor classification map should be at a scale comparable with that of ground-truth 
samples/the natural heterogeneity in order to provide useful geo-information to the end-
users (Reid 2007; Anderson et al., 2008; McGonigle et al., 2009). Reid (2007) incorporated 
the beam footprint (i.e.: the ensonified area on the seafloor, section 2.2.1) in the notion of 
seafloor habitat scales, implying that seafloor features greater than the beam footprint can 
be mapped and thus classified by means of ASC (Greene et al., 1999). Regarding seafloor 
mapping in shallow water or at low altitude from the seafloor (10-1000 m range between 
sonar and seafloor) the beam footprint diameter ranges on average from 0.4 to 1.4m in 10 
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m depth (incidence angles from 0° to 60°) to 3.5 to 14m in 100 m depth. These beam 
footprint sizes are comparable to the scale of ground-truth observations and support the 
assumption that the seafloor type is mostly homogeneous within these footprints. 
Consequently it is inferred that effective ASC should be carried out on a per beam footprint 
basis so that seafloor maps represent natural seafloor variability and can be correctly 
compared with ground-truth data.  

ASC maps with high spatial resolution can be used for example, in support of 
quantitative resource evaluation of certain minerals on the seafloor (i.e.: Mn-nodules, 
sulfides etc). Margolis & Burns (1976) were among the first to discover that Mn-nodule 
densities, sizes and shapes vary significantly over distances of few tens of meters. However 
they note that Mn-nodule spatial variability could not be resolved by the acoustic means 
that were available at the time of their study. Mn-nodules not only represent a potential 
resource for exploitation but also they serve as an important hard substrate habitat for dee-
sea sessile fauna (Vanreussel et al., 2016; Purser et al., 2016). Thus they can be used as 
habitat surrogate for particular species and ASC maps of Mn-nodules with sufficient spatial 
resolution can support better fauna abundance estimates and spatial heterogeneities of 
nodule-related species over wider areas. 

 

 
Figure 1.1: A) Fine scale acoustic classification map of scallop habitats (from Kostylev et al., 2003) B) 
Seafloor areas with very high (VHBS) and low backscatter values (LBS) indicating geological features 
related to methane seeps (from Naudts et al., 2008) C) & D) Seafloor areas with, low (Lbs), medium 
(Mbs) and high (Hbs) backscatter values representing various geomorphological features (Gardner et 
al., 2003). 
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Another important parameter of ASC methods is class separation. Class separation 
refers to the degree at which hydro-acoustic data exhibit unique properties so that an ASC 
method can distinguish one seafloor type from another. The significance of identifying 
acoustically homogeneous areas on the seafloor has been highlighted by Hughes-Clarke 
(1994),  Parnum (2007) and  Fonseca et al. (2009). However, due to method restrictions, 
results from traditional ASC methods (Fonseca and Mayer, 2007; Che-Hasan et al., 2014) 
cannot resolve the across-track seafloor changes as they do not hold sufficient spatial 
resolution (section 2.3.1). To overcome these drawbacks, alternative ways have been 
investigated for improving acoustic class separation (Fonseca et al., 2009). Another 
approach is the concept of angle-cube which was originally developed by Parnum (2007) 
and is further utilized in this study (chapters 4, 6).  

Since seafloor sediments or substrate types are often being used as surrogates for 
various benthic habitats (Greene et al., 1999) the need for ASC with improved spatial 
resolution and sediment discrimination capability is even more important. An important 
example of MBES backscatter mapping is the study of Kostylev et al. (2003) which focuses 
on acoustic mapping of sediments related to the commercial species of scallop Placopecten 
magellanicus. Their study concludes, that precise seafloor classification maps that are able 
to capture fine scale sediment variability, can assist sustainable scallop fishing activity and 
improve fishery and dredging management (Fig.1.1 A). Another study that highlights the 
significance of high resolution hydro-acoustic data in habitat mapping is that of Summers-
Morris et al. (2004) where they combined bathymetric analysis with underwater video data 
for delineating hard substrates, serving as rock-fish habitats in inshore waters. Gardner et al. 
(2003) studied the geomorphology of Santa Monica bay considering high resolution MBES 
backscatter data. Accordingly, they linked physiographic features (of tectonic, sea-level and 
sedimentary origin) with generic categories (high/low) of acoustic backscatter values (Fig.1.1 
C&D). Their study is a useful example regarding the role of backscatter data in 
interdisciplinary mapping approaches. Moreover, Naudts et al. (2008) utilized MBES 
backscatter data for mapping fine-scale geological features related to methane seeps (e.g.: 
methane-derived authigenic carbonate structures) (Fig.1.1 B). Similarly, Greinert et al. 
(2010) utilized MBES backscatter measurements for establishing a relation between these 
and the number of methane seeps which then was applied for extrapolation (of the number 
of seeps) in a wider area. The last two studies demonstrate the value of MBES backscatter 
data, through the diversity of scientific problems which they can apply to.         

Ideally, an ASC should be able to differentiate the minimum seafloor heterogeneity 
which exists at a scale comparable to that of the sonar footprint. Considering that the sonar 
footprint at shallow waters (<<100 m water depth) is at a scale of a few square meters, the 
ability of ASC methods to acoustically resolve similar seafloor types becomes a challenging 
task. This thesis focuses on ASC strategies that provide sufficient class differentiation and 
produce results with spatial resolution comparable to that of the sonar footprint for 
relatively short ranges (10-100 m) between the sonar and the seafloor. For improving class 
separation and spatial resolution in ASC, we examine two different strategies of analyzing 
acoustic backscatter from MBES data: one that is based on a particular methodology which 
can be applied on any kind of sonar data and one that is based on a particular data structure 
which can be analyzed with advanced ASC methodologies.  
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Method-based strategy 

Initially a novel ASC method based on Bayesian probability is applied on various MBES 
datasets covering different seafloor types and it is compared to other ASC approaches (PCA 
with k-means clustering, empirical Angular Response Analysis, machine learning algorithms). 
This method analyzes the backscatter variability within selected beams (of certain incidence 
angles) and assigns classes to each beam footprint according to Bayesian probability criteria. 
By applying the Bayesian approach on different MBES datasets collected from diverse study 
areas (section 1.3) we aim at evaluating the performance of the method in producing high 
resolution ASC results showing sufficiently separated acoustic classes that correspond to 
ground-truth information.  

 

Data-structure strategy 

Alternatively, improved spatial resolution and class separation can be achieved by 
constructing and analyzing a particular data matrix. Multiple backscatter layers can be 
produced for each beam incidence angle (chapter 6) and stacking of all layers produces the 
so-called Hyper-Angular Cube (HAC) matrix which is similar to the angle-cube model 
developed by Parnum (2007). The main advantage of this approach is that each cell of the 
cube holds substantial acoustic information which can be exploited by traditional ASC 
methods (i.e. ARA) for providing acoustically meaningful, high resolution classification 
results. Such a data matrix has not been reported widely in the literature, although it has 
been pointed out that it is a crucial tool for improving class separation in ASC (Rzhanhov et 
al., 2012; Che-Hasan et al., 2014; Huang et al., 2013).     

 

1.2 Research questions  
 

This thesis was primarily driven by the following scientific questions about improving 
spatial resolution and class separation in ASC using MBES backscatter data.  

- What is the minimum difference between sediment types that can be discerned by 
ASC methods?  

To answer this question we employed the Bayesian method and compared its performance 
with other methods that are commonly applied for ASC (PCA with k-means clustering, 
empirical Angular Response Analysis, machine learning algorithms). For better constraining 
the application towards the scientific question, we applied the Bayesian method to MBES 
data from an area with high seafloor sediment homogeneity and an area with broad range 
of sediment types (section 1.3). In this way, the Bayesian method was tested for producing 
useful ASC results that sufficiently distinguish a variety of sediment types.  
 
 

- How can acoustic class separation be quantified? 
This question led to the comparison of Bayesian method results with angular response 
information extracted from the HAC. The cells of the HAC include information at high spatial 
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resolution about the angular dependence of backscatter values. Angular dependence is a 
fundamental acoustic property of the seafloor and it forms an essential component of many 
ASC methods (section 2.3.1). The HAC information in conjunction with Bayesian results 
provide a useful framework for evaluating class separation and how the Bayesian method 
contributes in separating dominant angular responses representing major seafloor types. In 
addition we examine the suitability of the HAC as a specific data structure for producing 
adequate ASC results using novel ASC methods (pattern recognition and machine learning 
algorithms) and utilizing a small amount of ground-truth data as a priori information.  
   
 

- Is the Bayesian method suitable for ASC of hard substrates such as Mn-nodules fields? 
Mapping of Mn-nodule fields comprises an active field of research with important 
implications in resource evaluation, deep sea benthic habitat mapping and deep sea mining 
impact assessment. Therefore in this study we compare the Bayesian method with 
predictive mapping (random forests) using sufficient quantitative ground-truth data for 
acoustic class validation. High resolution AUV MBES data provide an excellent opportunity 
to map the Mn-nodule coverage at the scale of the sonar footprint. 
 

1.3 Case studies overview 

This thesis was based on analysis of high resolution (meters scale) hydro-acoustic data-sets 
from MBES surveys in three different study areas. Each study area comprises a unique 
seafloor environment with all of them covering a wide range of seafloor variability. The 
diversity of seafloor types incorporated in the study, assisted in evaluating the scientific 
questions set in the previous paragraph. 

 

-  Grevelingen  
The Grevelingen study area (chapter 3) is a dammed estuary in the Netherlands, 

formerly exposed to the North Sea. The seafloor of the Grevelingen is covered by sediments 
ranging from silt and clay to medium sand with shell fragments. The main bathymetric 
features of the area include relict tidal bed-forms (sand ripples), as well as steep channel 
slopes and rugged terrain created during sediment dredging in recent years. Underwater 
video data provide evidence for localized epi-benthic cover with various densities of 
pebbles. MBES data from this area are suitable to test the ability of the Bayesian method to 
discriminate very similar sediment types. The study based on this data compares the 
Bayesian method with PCA and k-means classification and validates their results with grain 
size analysis information. 
 

- Eckernförde Bay  
The seafloor of the Eckernförde Bay study area shows a smooth bathymetry with 

various sediment types (chapters 4, 5). The seafloor sediments range from (anoxic) silt and 
clay to gravel and pebbles. Areas covered by fine sand were found to be colonized by 
diverse benthic epi-fauna and infauna. In addition a large part of the bay has been surveyed 
with more than 100% swath overlap resulting in high density ensonification of the seafloor. 
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This allowed the calculation of several backscatter layers building up the Hyper-Angular 
Cube. Backscatter angular response information from each cell of the HAC assisted in 
identifying homogeneous acoustic areas that contain ground-truth information. Angular 
responses were then combined with Bayesian method results for quantifying acoustic class 
separation. Furthermore, the HAC data were used in unsupervised and supervised ASC 
algorithms. The performance of ASC algorithms was evaluated using sediment grain size 
information and the Bayesian classification results for comparison.   
  
- DISCOL  

Hydro-acoustic data from the DISCOL area (chapter 5) assist in mapping of Mn-nodules 
and testing the Bayesian method in classifying a hard seafloor substrate. The seafloor in the 
study area generally shows a smooth bathymetry and is almost entirely covered by Mn-
nodules. According to AUV optical data the coverage of nodules varies significantly over 
short distances (10s-100s meters), forming sparse and dense patterns. Therefore, nodule 
variability that is captured by hydro-acoustic data allows testing the Bayesian and predictive 
mapping methods in quantifying this hard substratum that serves as important potential 
mineral resource and as a fragile deep sea ecosystem.  
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2. RESEARCH BACKGROUND - ACOUSTIC REMOTE SENSING OF 
THE SEAFLOOR 
2.1 MBES principles and state-of-the-art  
 

Analogous to airborne and space-bone radars which are based on electromagnetic 
signals, active sonars transmit acoustic pulses underwater and record their response travel-
time (bathymetry) and intensity (backscatter). In this way, collection of underwater 3D 
imaging data is possible, having particular implications in seafloor mapping studies. Apart 
from valuable information about the range (which is transformed to depth measurement) 
sonars provide also intensity records, which are influenced by the physical properties of the 
seafloor in a complex way. Modern seafloor mapping pays particular attention to acoustic 
intensity (recorded by multi-beam echo-sounders (MBES) as a robust mean for 
characterizing the seafloor (Brown and Blondel, 2009). In literature, these MBES records are 
referred as acoustic backscatter, or backscattering strength (BS, for absolute values).  

 

 

Figure 2.1: Diagram showing the geometry of a MBES sonar transmission. Each ensonified strip (grey 
rectangles) accounts for a portion of seafloor area that is defined as beam-footprint. (source: 
http://www3.mbari.org/products/mbsystem/sonarfunction/SeaBeamMultibeamTheoryOperation.p
df) 

 
The acoustic signal is projected through a beam-forming process from the transmitter 

onto the seafloor (Lurton, 2002). Beam forming is a technique for projecting several acoustic 
signals (beams) so they are steered on specific azimuthal directions (de Moustier, 1988). The 
acoustic signal is characterized by a swath of acoustic beams which exhibit fan-shape 
geometry (Fig.2.1). Consequently, each projected beam ensonifies an area on the seafloor at 
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a certain incidence angle. The area ensonified by each beam is called the beam footprint. 
The beam footprint is proportional to the pulse length (duration), the across and along track 
opening of each beam, the incidence angle and the distance from the sonar to the seafloor 
(Fig.2.2) (Lurton, 2010). The beam footprint is quantifiable not only as area but also as the 
time at which, the acoustic pulse with particular duration interacts with the seafloor 
(Parnum, 2007; Simons and Snellen, 2009). The temporal dimension of the footprint is 
exploited by some sonar types in order to record individual backscatter values from within 
each footprint (time-series, snippets, section 2.2.1) instead of providing only an average 
value of the backscatter for each beam (Innanghi et al., 2015). It is implied that beams 
having a greater footprint size would carry more backscatter measurements. After 
interaction with the seafloor the acoustic signal is reflected backwards in some or any 
direction (depending on the seafloor roughness, section 2.2.2), and the receiver 
(hydrophone) captures the intensity of the signal at each receiving beam angle (Urick, 1983). 
The sonar system software then, amplifies and processes the recorded backscatter data 
which is co-registered with each depth measurement resulted from each beam (Lamarche 
et al., 2011). Measurements of depth and backscatter from each beam are also termed 
soundings. A single, full-swath transmission is called ping and usually involves more than 
one hundred beams with incidence angles from 0 to maximum 80 degrees, resulting in 
equal number of soundings (as the number of beams). Typically, most MBES systems trigger 
multiple pings per second, providing increased along track coverage which is also affected 
by the survey speed of the vessel (de Moustier, 1988; Lurton and Lamarche, 2015). 
Regarding the across track coverage, it depends on the degree of overlap between adjacent 
survey tracks and the maximum angle of the swath (de Moustier, 1988). Sounding coverage 
(or density) is a crucial factor in MBES mapping once it influences the spatial resolution of 
the final maps and also it affects the applicability and performance of ARA method (Hughes-
Clarke et al., 1994; Huang et al., 2013). MBES surveys with high overlap provide increased 
sounding coverage at increased survey time and cost. However the resulting data density 
allows for improved backscatter analyses with unprecedented accuracy (Chapters 4, 6, 
Alevizos, 2017).             

The ensonification area directly underneath the sonar transmitter is called the nadir 
and the beams steered at this direction have normal incidence angle (i.e.: perpendicular to 
the seafloor). This area has particular interest regarding the backscatter behavior and is 
going to be analyzed further in the next paragraphs. Beams away from nadir are called 
oblique whereas beams at the boundaries of swath are called outer beams (section 2.2.4).  

 

Figure 2.2: Intersection of beam opening in the 
along-track (receiver beam: Rx) and the across-
track (transmitter beam Tx) directions forming 
the beam footprint (ellipse) on the seafloor 
(modified from Parnum and Gavrilov 2011). 
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Functionality of MBES systems depends upon a number of appropriate parameters, so 
they are able to provide accurate measurements of depth and backscatter values. Accurate 
depth and backscatter values are required as input data to any ASC method for valid 
classification results. Several MBES parameters need to be adjusted prior to MBES data 
acquisition and during post-processing. For collection of MBES data of adequate quality the 
sonar system has to be provided with external information regarding the following 
parameters:  

 

- Accurate above- and under-water positioning 
Spatial accuracy is of great importance in MBES mapping and its level is dictated by 

the specific objectives of the project. Ship-based MBES surveys rely on GPS antennas in 
conjunction with motion information (explained below) for accurate positioning and 
georeferencing of sounding measurements (Mayer, 1999; Blondel, 2009). Autonomous 
Underwater Vehicle (AUV), Remotely Operated Vehicle (ROV) or other underwater 
platforms rely on acoustic Ultra-Short Base-Line (USBL) or Long Base-Line (LBL) systems for 
accurate underwater positioning (Blondel, 2009). USBL systems consist of pairs of acoustic 
transponders between the underwater platform and the surface vessel that provide relative 
distance and direction of the underwater platform with reference to the vessel. This 
information is then combined with GPS data in order to obtain underwater navigation and 
MBES data georeferencing. LBL systems are used for underwater navigation of AUVs and 
they are fixed transponders, placed on the seafloor. LBL systems transmit acoustic signals 
that are received by the AUV which uses them to triangulate its position and to 
georeference the MBES data using USBL communication with the surface vessel.     

 

- Inertial motion compensation 
Vessels and underwater platforms are dynamic even when they are not moving, 

meaning that their position is susceptible to motion induced by the constantly changing 
conditions of water masses. Vessel motion introduces artifacts in the MBES data records 
which need to be compensated for (Blondel, 2009). Inertial motion sensors (IMS) measure 
the motion of vessel or underwater platforms in three dimensions. The main motion 
components being measured by an IMS system are: roll, pitch, yaw and heave (Fig.2.3). 
Motion information is then combined with GPS data allowing the MBES system to perform 
real-time motion compensation of the hydro-acoustic data (Hughes–Clarke et al., 1997). 
Because in practice the MBES system and the motion sensor/-s cannot be perfectly aligned 
there are a number of tests required prior to MBES data acquisition so that the MBES 
applies the correct motion parameters. Application of these parameters is based on 
matching of timestamps between the IMS and the MBES sonar, thus accurate time between 
these is crucial for achieving good quality hydro-acoustic data (Blondel, 2009). The tests 
required prior to MBES data acquisition, are called the “patch test” and they assist in 
measuring the fine-scale misalignments (of angles) relative to the IMS and the MBES system. 
The patch test consists of: 
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a) A roll test: this is to identify the difference in angle between the MBES and the IMS 
that introduces bias in the motion about the y-axis. To perform this test the vessel 
should run 2 lines in opposite directions with half swath overlap over flat seafloor. In 
an ideal sensor configuration swath data from these lines should perfectly overlap 
but this is not the case. The dipping angle of flat seafloor should be measured for 
port and starboard sides and provided to the MBES software as roll bias value.  
 

b) A pitch test:  this is to identify the difference in angle between the MBES and the IMS 
that introduces bias in the motion about the x-axis. To perform this test the vessel 
should run 2 lines in opposite directions with half swath overlap over seafloor with 
slope and parallel to the slope. Measurement of the along-swath angle difference of 
seafloor slope in the two swaths should be provided to the MBES software as pitch 
bias value.   

 
c) A yaw (or heading) test: this is to identify the difference in angle between the MBES 

and the IMS that introduces bias in the motion about the z-axis. To perform this test 
the vessel should run 2 lines in opposite directions with half swath overlap over 
seafloor with slope, perpendicular to the slope or over flat seafloor with some 
distinct target (e.g.: shipwreck). Measurement of the across-swath angle difference 
of the target or seafloor slope in the two swaths should be provided to the MBES 
software as pitch bias value.   

 

 

Figure 2.3: Sketch illustrating the inertial motion components of a vessel (modified from: 

http://coastalhydraulicslaboratoryfact.tpub.com/chetn-ix-1/chetn-ix-10004im.jpg). 

 

- Static offsets and time differences between the sensors 
The survey components (antennas, sensors) are not all placed at the same point, 

therefore the MBES accuracy depends on the so called static offsets between these 
components.  The relative position of the MBES sensor to the GPS antennas and the IMS 
sensor has to be measured and inserted in the MBES software prior to data acquisition so 
MBES data receive position and motion information that is spatially corrected (Lurton and 
Lamarche, 2015). In addition to the spatial offsets, time differences between the survey 
components must be taken into account. Time differences can cause the so called “latency 
errors” which are related to erroneous application of motion bias compensation on the 
data.  

http://coastalhydraulicslaboratoryfact.tpub.com/chetn-ix-1/chetn-ix-10004im.jpg
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Figure 2.4: a) AUV bathymetry grid (3 m x 3 m 
cell size) with motion (roll bias) artefacts due to 
varying  time difference between the IMS and 
the MBES sonar (latency error). Black arrows 
indicate the along-track direction. b) Filtered 
AUV bathymetry grid (3 m x 3 m cell size) using 
a Gaussian filter for images. 

 

This occurs because time is the parameter that interconnects the components of a 
MBES system and even a small time delay can have a great impact on data quality (Fig.2.4 
a). Such an effect was encountered in AUV bathymetry data in chapter 5 where it was not 
possible to account for a varying time difference and a Gaussian filter for images was 
applied instead (Fig.2.4 b). Time-related offsets can be measured via a latency test. The 
vessel needs to run two overlapping lines in the same direction over a target on the seafloor 
at two different speeds (one twice as fast as the other). The target will appear in different 
positions if a latency error exists. The time difference can be given by the following formula 
when the apparent distance of the target on the seafloor is measured: 

t = D/(Vfast-Vslow)                                                                                                                      [2.1] 

where: t = time delay in seconds, D = apparent along-track displacement of target between 
the two lines in meters, V = the vessel speed for fast and slow lines respectively (in 
meters/second).   

- Sound velocity data 
Propagation of sound under water is affected by the physical properties of the water 

column and primarily by water density. Layers of water masses with different densities 
cause refraction of the acoustic signal in the same way that different transparent materials 
refract light (Fig.2.5). As a result, varying sound velocities can produce artifacts in the hydro-
acoustic data in the sense that refracted signals are received in wrong positions and that 
faster/slower sound velocities may be incorrectly converted to shallower/deeper depth 
measurements. Lurton et al. (1994) derived a sound speed profile from measured water 
column properties for correcting the MBES depth measurements. This method is currently 
an essential part in every MBES survey.  
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Figure 2.5: Diagram 
representing the effect of 
water column sound 
properties on the hydro-
acoustic signal. (source: 
https://confluence.qps.nl). 
 

- Vertical motion  
Tidal information with reference to a vertical datum local to the study area should be 

obtained and applied to the MBES data either prior to the survey or in post-processing of 
the data. Additionally, measurement of the relative draft of the vessel along with draft 
change (due to bulge, fuel consumption) should be taken into consideration for correcting 
the vertical motion effects on the MBES bathymetry data.  

Once the above parameters are tuned, then the MBES survey can yield reliable hydro-
acoustic data without positional or motion artefacts. However other kinds of artifacts might 
be present on the data (bubbles, fish, turbulence) and post-processing of bathymetry is 
required in order to obtain clean bathymetric data. Bathymetric data of high quality are 
needed to improve the quality of backscatter data as well, but the backscatter data require 
particular post-processing steps in order to be used for ASC. The corrections of backscatter 
measurements are analyzed in the following section along with the various factors that 
influence backscatter from the seafloor.   

 

2.2 Principles of seafloor acoustic backscatter  
 

The interaction between the incident acoustic signal and the seafloor is a complex, 
stochastic physical process. Its complexity is due to the fact that a large number of factors 
affect backscattering of the seafloor. In order to obtain a solid view about the acoustic 
behaviour of the seafloor in a practical way one should consider the following.      

Kinsler et al. (1999) demonstrated that seafloor backscattering is primarily dependent 
on the difference between the acoustic impedances of the water and the seafloor material, 
while it is also affected by seafloor surface roughness (relative to signal wavelength), 
sediment volume heterogeneity and angle of ensonification (Lurton and Lamarche, 2015). It 
has to be noted that interaction between the acoustic signal and the seafloor surface 
roughness or sediment volume depends on the frequency of the transmitted signal as well 
(Jackson et al., 1986). In a simplified example where seafloor surface is considered as flat 
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and smooth and the incident acoustic pulse is perpendicular to the seafloor surface, 
backscatter can be estimated simply by the reflection coefficient between the two media; 
i.e.: water and seafloor cover. The reflection coefficient is derived by the ratio of transmitted 
to the reflected acoustic pressures which at normal incidence angles is only dependent on 
the acoustic impedance of the material that covers the seafloor (Eq.2.2). In contrast, at 
oblique angles of ensonification the reflection coefficient also depends on the incidence 
angle (Kinsler et al., 1999).  
 
Reflection coefficient for normal incidence angles:   
 

V= (Z2-Z1)/ (Z2+Z1) = (ρc2-ρc1)/ (ρc2+ρc1)                                                                      [2.2]    
 
where: Z= acoustic susceptibility of the media, ρ= bulk density of the media, c=speed of 
sound through the media 
 

Natural seafloor not only includes a large variety of sedimentary/benthic cover types 
but also it occurs in a variety of forms including slopes in any aspect, various scales of 
surface irregularity and volume inhomogeneity. The following sections describe the effects 
of seafloor surface and volume characteristics on acoustic backscatter. 
 

2.2.1 Ensonified area on the seafloor 
 

The acoustic signal is projected as an array of beams (swath) on the seafloor at various 
incidence angles, ensonifying a particular area on the seafloor, that is dependent on pulse 
length (duration) and angle of ensonification (Lurton, 2010). It has been shown that a large 
seafloor surface is ensonified at incidence angles close to nadir and when long pulses are 
transmitted, whereas a small seafloor surface is ensonified at incidence angles towards the 
outer range of the swath and when short pulses are transmitted (Lurton, 2010). The 
ensonified area can be expressed as a function of time (that is the duration of the pulse 
length) implying that each ensonified area yields a number of acoustic time series values 
that depends on the footprint size (Hammerstad, 2000). These backscatter time series values 
are called snippet data (or snippets, or scatter-pixels) and can either be logged by the MBES 
separately or they are combined for measuring the mean backscatter from each beam 
(Fig.2.6). 
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Figure 2.6:  
Diagram representing the time-
series/snippets of backscatter 
measurements within a single 
footprint (ensonified area) 
(source: https://confluence.qps.n) 

 
The snippets are involved in the theory of the Bayesian method (chapter 3) where it is 

suggested that the values of a large number of individual snippet data within a single 
incidence angle footprint would have a normal distribution when a homogenous seafloor 
type is considered (Simons and Snellen, 2009).     
 

2.2.2 Seafloor surface scattering 
 

When the acoustic pressure wave hits the seafloor, initially it interacts with the 
seafloor surface. A smooth and flat seafloor surface will reflect the incident acoustic signal 
opposite but along to the direction of ensonification (Fig.2.7 d) (Jackson and Richardson, 
2007). This is called the specular reflection and its backscattering strength depends on the 
angle of ensonification and the acoustic impedance of the seafloor cover (Urick, 1983). 
However, in practice this does not occur in its absolute sense. Seafloor surface is known for 
having irregular relief hence it reflects acoustic energy in any direction with part of it being 
reflected directly back to the sonar sensor (Fig.2.7 d). The relief of seafloor surface can be 
described by different statistical expressions, including the variance of seabed heights, the 
root mean square residuals of an average fitted seafloor bathymetry (Fig.2.7 b) and power 
spectra analysis (Ferrini and Flood, 2006; Eleftherakis, 2013; Lurton and Lamarche, 2015).      

The seafloor surface can be characterized as smooth or rough when compared to the 
wavelength of the incident acoustic signal (Table 2.1). Thus, surfaces with seafloor height 
variations greater than the signal wavelength are considered rough, whereas surfaces with 
height variations smaller than the signal wavelength are considered smooth (Lurton and 
Lamarche, 2015). In the case of smooth surfaces, the incident acoustic signal is highly 
subjective to specular reflection for normal incidence angles and backscattering is affected 
by angular dependence for oblique angles (Fig.2.8 d). When a rough surface is ensonified, it 
scatters the acoustic energy in all directions hence the effect of angular dependence 
decreases and backscattering is similar for all incidence angles (Fig.2.8 f).   
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Table 2.1: Frequency and acoustic wavelength for given sound speed underwater (1500 m/s). 

Frequency (kHz) λ  (mm) 

50 32 

180 9 

400 4 

700 2 

 
 
Considering the above, it is understood that the frequency of the acoustic signal (that 

controls signal’s wavelength) plays a very important role in acoustic backscatter (Table 2.1). It 
is implied that seafloor roughness which is at a scale similar to the acoustic wavelength will 
have a prominent impact on backscatter signal, meaning that, depending on the operating 
sonar frequency the same seafloor may appear rough or smooth.   
 

 
Figure 2.7: a) Sediment Profile Imager photo displaying volume inhomogeneity and bioturbation 
effects (illustrated in minor image, source: Senckenberg Institute) in the upper 30 cm of surface 
sediments. b) Root mean square residuals (black dots) from fitted bathymetric surface, as an 
example of seafloor roughness measure (from Eleftherakis, 2013). c) Sketch of acoustic signal 
penetration at different frequencies for a middle range incidence angle (Beaudoin et al., 2015). d) 
effect of seafloor roughness on the directivity of the specular reflection of backscatter (Lurton and 
Lamarche, 2015).  
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2.2.3 Sediment volume scattering 
 

Part of the acoustic wave energy is transmitted through the seafloor to some extent. 
The extent of acoustic penetration is determined by the sonar frequency (i.e.: the 
wavelength of the acoustic signal), the density of seafloor material and the angle of 
ensonification (Fig.2.7) (Urick, 1983; Jackson and Briggs, 1992).  

Seafloor sediments with low impedance (sediments with low bulk density) allow 
transmission of acoustic energy through their volume deeper than sediments with higher 
impedance. In addition, acoustic signals with short wavelengths (i.e.: high frequency sonar, 
>100 kHz) are more susceptible to absorption by the seafloor sediments than signals with 
larger wavelengths (i.e.: low frequency sonar) (APL, 1994; Ferrini and Flood, 2006; Fonseca 
and Mayer, 2007). Thus large wavelength signals penetrate deeper into the sediments for 
given sediment impedance. In nature, the sediment volume is not necessarily homogeneous 
in all cases; therefore backscatter includes a contribution from individual scatterers such as, 
infauna, sub-surface layering, gas bubbles or concavities due to bioturbation (Fig.2.7. a) 
(Novarini and Caruthers, 1998).  In case of smooth and flat seafloor surface, intermediate 
oblique incidence angles (from the middle range) show greater penetration potential than 
normal incidence and greater oblique angles at the outer swath range (Fig.2.7 c). At normal 
incidence angles, the specular reflection counteracts the penetration of the acoustic signal 
into the seafloor and at greater oblique angles the acoustic signal produces a weak 
backscattering because most of its energy is entirely reflected (Lamarche et al., 2011).     

Apart from the concepts described previously, two major parameters that constitute 
acoustic properties of the seafloor influence the acoustic backscatter. These are the angular 
and frequency dependences of backscatter strength, the features of which provide valuable 
insights in the task of seafloor characterization.  
 

2.2.4 Angular dependence of seafloor backscatter 
 

Angular dependence refers to the influence that the ensonification angle exerts on 
seafloor backscatter measurements. This phenomenon has been observed in experiments, 
in situ and also it has been predicted by geo-acoustic models. Angular dependence is a 
physical property of the seafloor (Jackson and Briggs 1992; Fonseca and Mayer, 2007) 
meaning that a certain seafloor type yields a unique set of angular responses. 

 This set is also referred to as acoustic signature of a particular seafloor type (Alevizos 
2017) and it contains information about seafloor roughness and volume heterogeneity. In 
angular response analysis, the angular responses are divided in parts of the incidence angles 
domain (normal, intermediate oblique and very oblique) (Fonseca and Mayer, 2007; Huang 
et al., 2013). These domains can also be expressed in terms of increasing distance from the 
sonar nadir as near, middle and outer ranges respectively (Fig.2.8 b).  

A smooth seafloor composed of soft sediments (with low impedance) would yield high 
backscatter values at the near nadir domain (specular reflection effect) followed by lower 
values at middle range angles and even lower values at outer range angles (Fig.2.8 c,d). The 
smoother the surface it is, the greater the effect of specular backscatter at the near range 
leading to greater contrast between the backscatter values of the near and middle ranges. 
The backscatter at the middle range includes contribution from the seafloor volume (as 
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penetration is optimal for these angles, section 2.2.3) whereas in the outer range 
backscatter gets weaker since the acoustic energy is distributed at a larger ensonification 
area (Lamarche et al., 2011). A seafloor of harder material produces more uniform angular 
responses along all angular domains with a clear decrease in backscatter values in the outer 
range (Fig.2.8 e,f). Furthermore, it has been found that smooth seafloor with soft sediments 
would result in high backscatter values at normal incidence angles, appearing as hard 
seafloor. In contrast, backscatter values from the middle range angles differ substantially for 
each seafloor type, making them an ideal tool in seafloor acoustic classification (section 
2.3.1) (Lamarche et al., 2011).  

Although angular dependence is a valuable property for acoustic investigations of the 
seafloor, it rather complicates the appearance of acoustic imagery. When considering 
acoustic backscatter maps of the seafloor, the angular dependence is removed from the data 
so they only represent backscatter variations as if the entire survey took place with single 
incidence angle beams (Fonseca et al., 2009; Lamarche et al., 2011).  

 

 
Figure 2.8: A) Sketch showing across-track MBES swath. B) Example port and starboard backscatter 
responses of incidence angles corresponding graphically with beam angles in figure A. The dotted 
rectangles indicate the angular regimes relatively to the nadir (zero). C) Schematic representation of 
backscattering geometry of a smooth seafloor regarding the three regimes (arrows) described in 
figure B. D) Schematic representation of angular responses from a smooth seafloor with red arrows 
indicating the BS at each angular regime. E) Schematic representation of backscattering geometry of 
a rough seafloor. Red and yellow arrows indicate the acoustic energy directed back to the receiver, 
whereas the rest of the arrows indicate the diffused paths of acoustic energy. F) Schematic 
representation of angular responses from a rough seafloor with red arrows indicating the BS level at 
each angular regime. (modified from Lurton and Lamarche 2015). 
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The preferable incidence angles for backscatter image normalization are in the middle 
range (40-45 degrees) of the swath and the backscatter of these incidence angles is 
considered as a robust single parameter suitable for geological interpretations (Lamarche et 
al., 2011). By normalizing the backscatter intensity for a certain incidence angle, the 
backscatter mosaic can be obtained. The mosaic is a georeferenced image analogous to the 
bathymetric grid which contains co-registered backscatter intensity information. Backscatter 
mosaics along with their neighbourhood statistics can be utilized by image-based techniques 
for ASC (section 2.3.3).    

Every seafloor type has unique geological and morphological characteristics (on its 
surface and volume) that influence backscatter, thus producing a broad spectrum of angular 
responses depending on several seafloor physical variables (such as surface roughness, grain 
sizes, sediment porosity) and sonar parameters (incidence angle and frequency) (Williams 
and Jackson, 1998). It has been further demonstrated that angular dependence varies with 
sonar frequency as well, adding supplementary information about the seafloor properties 
(Hughes-Clarke, 2015). In order to describe more accurately the angular dependence, 
geophysical and empirical models have been developed and they are described in section 
2.3.2.  
 

2.2.5 Frequency dependence of seafloor backscatter 
 

Considering the optics theory, each material absorbs and emits radiation at certain 
wavelengths suggesting that a certain type of material would show a unique variability in 
reflectance depending on the wavelength of the incoming radiation (Campbell, 1996). A 
comparable concept also accounts in hydro-acoustics, meaning that backscatter intensity 
(analogous to reflectivity) of a particular seafloor type would express a distinct response 
when signals of different frequencies are used. This is ought to the interaction between the 
signal wavelength (which is frequency dependent) and the magnitude of seafloor roughness 
and sediment grain size (Table 2.1) (Jackson and Richardson, 2007). It is expected that 
seafloor types with a particular roughness magnitude would yield maximum backscatter 
intensity for certain signal wavelengths, providing valuable information about seafloor 
roughness or sediment grain sizes (Ferrini and Flood, 2006). In practice, there is not a 
continuous dataset for backscatter values over a wide range of acoustic wavelengths as it is 
true for optical data (Fig.2.9). However, recent studies based on multi-frequency (or multi-
spectral) MBES hydro-acoustic mapping support the use of more than one sonar frequency, 
either simultaneously or repeatedly over the same study area (Hughes-Clarke et al., 2015; 
Beaudoin et al., 2016). As it has already been stated, sonar frequency determines the 
wavelength of the acoustic signal and therefore it controls the penetration of the signal 
through the seafloor and its interaction with surface roughness (Jackson and Richardson, 
2007). The exploitation of multiple frequencies is of great potential in studying the acoustic 
behaviour of seafloor. One way to achieve this is by comparing the angular responses of 
various seafloor types resulted from different frequencies (Lurton and Lamarche, 2015). 
Angular domains with contrasting backscatter values may be exploited for advanced seafloor 
classification approaches. Until now, geophysical models such as the APL have investigated 
lower sonar frequencies (10-100 kHz) so more recent studies focus on examination of 
seafloor backscatter from higher frequencies (Bajor, 2013).          
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Figure 2.9: Left: Example of continuous spectral responses of terrestrial land cover. Right: Graphical 
example of multi-frequency acoustic responses relatively to spectral ones. (source: Beaudoin et al., 
2016, GEOHAB)     

 
Although from a theoretical perspective the frequency dependence provides a 

multitude of opportunities for seafloor characterization, in technical terms it is not much 
developed due to associated high cost of instrumentation and multiplication of ship-time for 
achieving good coverage using multiple frequency sonars. Recent developments in sonar 
technology allow for ensonification using three different frequencies (200, 300 and 400 kHz) 
simultaneously. This type of sonars is going to offer more opportunities in the field of 
seafloor classification.     
 

2.2.6 Backscatter data corrections 
 

Before any useful information about the seafloor can be extracted from backscatter 
measurements using ASC methods, it is necessary that the received acoustic signal is filtered 
appropriately in such a way so backscatter variability reflects only changes in seafloor type. 
A standard procedure should be followed for providing geometric (ensonified area, seafloor 
slope) and radiometric (beam pattern, absorption, gain) corrections in the received acoustic 
signal (Beaudoin et al., 2002; Hellequin et al., 2003). The following corrections are applied by 
the majority of commercial software for backscatter processing and considered as standard 
good practice for backscatter data processing.  
 
 
Geometric and radiometric corrections 
 

Seafloor topography influences the ensonified area and alters the angle of the incident 
beams. As a result, backscatter values may contain variations related to bathymetric surface 
variability. These effects produce backscatter artefacts and must be compensated for. 
Consequently, backscatter values need to be corrected for seafloor slope and orientation, 
and the actual footprint area of each beam (Beaudoin, 2002; Fonseca and Calder, 2006).   

Seafloor backscatter also includes artefacts due to the dynamic way that the sonar 
system treats the received acoustic signal (Fonseca and Mayer, 2007). These artefacts are 
related to transmission power, beam pattern, receiver gain, and pulse length parameters and 



Evangelos Alevizos, Acoustic Seafloor Classification  2017

 

29 
 

require appropriate corrections. As an example, changes in the transmission power can alter 
backscatter intensities unequally within the same seafloor type. The beam pattern can also 
influence the responses of certain beams making them appear with higher or lower 
intensities than their adjacent beams responses (Beaudoin, 2002; Lurton and Lamarche, 
2015). The received signal is often amplified by applying different gains which obscure the 
actual seafloor backscatter. Finally, pulse length changes influence the extent of the 
ensonified area on the seafloor hence altering backscatter intensity for a given seafloor 
surface (Lurton and Lamarche, 2015).      
 
Sonar calibration 
 

The above compensations for the backscatter values are usually applied on a single 
dataset resulted from single sonar configuration on a given study area. Additional issues may 
be introduced by: i) different sonar/survey configurations or processing software, ii) varying 
oceanographic conditions and iii) repeated surveys over the same area (Lurton and 
Lamarche, 2015). Case studies have demonstrated that the above factors can considerably 
affect backscatter measurements over a range of 3 to 10 dB.  

In order to achieve comparable results when different sonars, sonar configurations and 
settings, and repeated surveys take place, MBES sensors should ideally be calibrated. 
Calibration of MBES sensors includes internal (industry standardized) and field calibration 
procedures (still in experimental stage). Internal calibration takes place at the manufacturing 
stage and assures that the acoustic signal is transmitted and received within a certain range 
of acoustic energy (dB values). Field calibration is considered as the ultimate tuning of the 
sensor though this method faces significant operational restrictions. The purpose of field 
calibration is to reduce the backscatter measurements to absolute dB values which are 
representative of reference seafloor types and comparable to values from experimental 
measurements (Mopin et al., 2012; Welton et al., 2013). It is understood that for successful 
field calibration a reference seafloor area with appropriate physical properties is required 
(Sutherland et al., 2007; Lurton and Lamarche, 2015). The issue of field calibration is not 
trivial and requires a combination of laboratory and field work along with commonly 
acceptable seafloor reference areas in order to be effectively applied.   

However the absence of sensor calibration does not prohibit adequate backscatter 
processing up to a certain level. The only requirement is that the MBES acquires backscatter 
in a stable, linear and repeatable way (Preston, 2009; Alevizos et al., 2017). Then even when 
the backscatter values are not absolute, it is possible to identify differences in hydro-acoustic 
data due to seafloor type variations (Chapters 4, 6).  
 
 

2.3   Acoustic Seafloor Classification approaches  
2.3.1   The importance of angular dependence 
     
 
         Seafloor backscatter variability due to the angle of ensonification has led to the 
development of several types of signal-based seafloor classification techniques generally 
called Angular Response Analysis (ARA). This approach has extensive applications in MBES 
backscatter interpretation, providing results which exhibit high correlation with seafloor 
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properties such as: grain size (phi), porosity and roughness (Fig.2.10, Fonseca and Mayer, 
2007; Fonseca et al., 2009).  

On this basis, the concept of angular dependence of seafloor backscatter can be 
exploited in order to accurately characterize parts of the seafloor that have been ensonified 
from multiple angles. To achieve accurately absolute and universally comparable results, it is 
required that the MBES sonar is calibrated. However, it is also possible to derive empirical 
angular response signatures from uncalibrated sonars as long as the signatures hold 
sufficiently distinguishable geometry for each seafloor type (Beyer et al., 2007; Lurton and 
Lamarche, 2015; Alevizos et al., 2017). A particular problem with ARA is that in most 
instances it accounts for a wide patch on the seafloor, hence decreasing the spatial 
resolution of the resulted classification map and masking out along-swath sediment 
variability or simply, sedimentary features that are smaller than the analysing patch. This is 
caused because in most cases it is common to utilize half of the MBES swath to derive the 
angular signatures. Some strategies to improve the spatial resolution of ARA have been 
developed and they are based on initial segmentation of the backscatter mosaic in 
homogeneous objects assuming that they hold similar angular responses (Fonseca et al., 
2009; Rzhanov et al., 2012; Che-Hasan et al., 2014). Ultimately, the spatial resolution issue 
of the ARA, would be effectively solved if MBES surveys for seafloor characterization were 
designed in such a way in order to achieve high density of multi-angle soundings per 
seafloor unit (Augustin and Lamarche, 2015; Alevizos et al., 2017). This would allow for 
extraction of angular response signatures from a much finer part of the seafloor, drastically 
improving the classification map resolution and maximizing the discrimination of various 
seafloor types. 
  
 

2.3.2 Geophysical and empirical ARA models  
 

In literature several geophysical or empirical models have been applied for predicting 
acoustic backscatter as a function of incidence (or grazing) angle for a given sonar frequency. 
Usually these models are based on a set of parameters regarding each seafloor type, and by 
varying these parameters (as model inputs) the model outputs the backscatter response as a 
function of angle. Inversely, when field hydro-acoustic data exist, the model can be used for 
predicting the seafloor parameters and finally the seafloor type.  Next we consider three of 
the most-implemented models that have been used in various studies. 

The first model is the APL based on a study from Jackson et al. (1986) and described in 
detail in APL‐UW TR9407 (1994) report. This model uses the Kirchhoff approximation at near 
normal incidence angles combined with Lambert’s law away from normal incidence to fit 
experimental observations of absolute backscatter values of soft sediments obtained by 
relatively low frequency sonar systems (10-100 kHz). The APL model considers the seafloor 
as homogenous fluid with isotropic surface roughness and applies empirical parameters for 
surface roughness and volume backscatter to simulate more complex seafloor types. The 
APL model is valid for a given number of sediment types (Fig.2.10) and its outputs help to 
understand the backscatter behaviour as a function of angle for a given sonar frequency. 

  In general it is a widely accepted and implemented model particularly in research, 
which lacks in describing complex seafloor types such as those with discrete scatterers, 
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volume inhomogeneity, gravel beds and benthic cover such as submerged vegetation and 
coral reefs.    
 

 
Figure 2.10: Prediction of angular response values of general sediment types using the APL model for 
100 kHz frequency. (source: Lurton and Lamarche, 2015).  

 
In general the outputs of the APL model (as those shown in Fig.2.10) are based on the 

target strength (TS) equation: 
 

TS = BS + 10log10 A = 10log10(σr+ σv)+ 10log10A                                                                 [2.3] 
 
Where: BS is the recorded backscattering strength (absolute values), A is the ensonified area 
and σr and σv are the roughness and volume backscatter coefficients respectively.  
 
 

Another geophysical model was developed through laboratory work of Pouliquen et al. 
(1999), Bergem et al. (1999) and Canepa et al. (2005) which simulates the effects of volume 
inhomogeneity and micro-roughness more effectively. In the so called BORIS-SSA model 
sediment volume inhomogeneity is modelled by assuming spheres with variable radii and 
elasticity within the sediment matrix. In addition the BORIS-SSA model accounts for small 
(cm scale) seafloor surface roughness by incorporating a Gaussian power law spectral 
density stochastic surface. Model results have demonstrated that large scale surface 
roughness (greater than the pulse wavelength) affects the time of arrival and the dispersion 
of energy in directions other than the specular of the acoustic signal. In contrast, small-scale 
surface roughness influences the maximum amplitude of the backscatter response (Tesei et 
al., 2009). The model has been validated not only by experimental data but also by in situ 
measurements.       

In addition to the physical models, empirical models have also been developed. One 
important empirical approach is the GSAB model (Lamarche et al., 2011). This model fits 
angular BS values using a nested function of the incidence angle with three components 
(Fig.2.11, Eq. 2.4). The components contain a limited amount of parameters (A-F) the tuning 
of which results in predictions of angular backscatter values. This model is generalizing well 



Evangelos Alevizos, Acoustic Seafloor Classification  2017

 

32 
 

any type of angular response and has shown agreement with physical model prediction 
results (Lamarche et al., 2011).    
 

BS(θ) = Aexp(-θ2/B) + CcosDθ + Eexp(-θ2/F)                                                                   [2.4]  
 
 

 

 
Figure 2.11: Example of the 
GSAB model fitting (grey line) 
of measured backscatter values 
(crosses) by combining 
exponential and Gaussian 
functions (dashed lines) using 
parametersA-F. The parameters 
are used to adjust the shape of 
functions until a successful 
fitting to the original 
measurements is achieved. 
(source: Lamarche et al., 2011). 

 
Latest ARA implementations 
 

ARA has also been combined with image-based techniques in an effort to maximize 
class separation. This occurred since initial ARA applications were based (and some still do) 
on an analysis window defined by half-swath and a few tens of consecutive pings (Fig. 2.13 
A). This approach, yields sediment prediction maps with coarse spatial resolution that are 
unable to differentiate along swath sediment variability (Fig2.12). As a result new hybrid 
approaches that incorporate ARA made their appearance in more recent studies.  

Fonseca & Mayer (2009) suggested an alternative approach according to which ARA 
should be based on soundings resulted from homogenous areas on the seafloor (Fig.2.12, 
2.13 B). The need for acoustic class homogeneity had just been born. To achieve this, they 
utilized the backscatter mosaic which they segmented into acoustic objects (i.e.: groups of 
grid-cells, see OBIA box). Each object is assumed to be acoustically homogeneous thus 
soundings from within discrete reference objects should produce more pronounced angular 
responses. Combination of ARA with backscatter mosaic segmentation was followed in other 
studies as well. Che-Hasan et al. (2014) applied backscatter mosaic segmentation for 
identifying homogeneous areas that yield distinct angular responses of benthic habitats 
(invertebrates, algae) and sediments. In their studies classification of acoustically 
homogenous areas was based on supervised classification algorithms such as the Random 
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Forest (RF) and Maximum Likelihood Classification (MLC) using ARA variables and 
bathymetric derivatives as inputs. In another approach utilizing ARA, Rzhanov et al. (2012), 
enhanced the step of segmentation. They applied over-segmentation to the backscatter 
mosaic in order to identify as homogenous areas as possible. Then they extracted angular 
response curves from reference objects and applied pattern recognition concepts utilizing 
both angular response curves and object geometry.   
 
 

 

Figure 2.12: The approach 
introduced by Fonseca et 
al. (2009) for improving the 
discriminating power of 
ARA, a) Patch (orange 
rectangle) of half swath 
width and few tens of 
pings long, the angular 
signature of which is 
shown in sub-plot c 
(orange curve), b) 
homogeneous objects 
resulted from mosaic 
segmentation (orange, 
green and yellow areas 
numbered as I, II and III), c) 
Distinct angular signatures 
of object I (yellow) and 
object II (green) in contrast 
to the mixed signature of 
the orange patch.   

 
 
 

Furthermore some other studies consider ARA curves as geometric objects which can 
be classified directly (Fig.2.13 C). Hughes-Clarke et al. (1997) and Huang et al. (2013) 
extracted several geometrical ARA features by treating ARA curves as 2D vectors. These ARA 
features were used for classifying seafloor sediments. Their studies introduced new concepts 
in ARA but also highlighted the need for acoustic measurements from homogeneous 
seafloor areas that help differentiating better the angular responses. In a similar approach, 
Hamilton and Parnum (2011) applied unsupervised statistical clustering for 2D objects 
directly on ARA curves for sediment classification. Their approach, although it offers a new 
aspect on treating ARA curves it does not perform cluster validation meaning that the user 
has to define the number of clusters intuitively.    
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Figure 2.13: The main ARA approaches 
found in recent literature and in 
commercial software: A) analysis on 
acoustic patches (FMGT software), B) 
applied on homogenous objects 
(Fonseca et al., 2009; Che-Hasan et al., 
2014), C) shape analysis (Hamilton and 
Parnum 2011).  

 

 

2.3.3 Backscatter classification based on image analysis  
 

Apart from ARA-based studies there are others that employ backscatter mosaic and 
bathymetry layers (gridded data) for seafloor classification. As it has been discussed earlier, 
the angular dependence can be removed from the backscatter data for producing mosaics 
with angle-normalized backscatter values which are favourable for visual analysis (either by 
expert users or image processing algorithms). Backscatter mosaics show variations of 
backscatter intensity (for single incidence angle) reflecting changes according to seafloor 
types. Usually the backscatter mosaic and bathymetry grids are used for producing several 
other grids such as backscatter statistics and bathymetric derivatives (Table 2.2). The list of 
derivable bathymetric and statistical backscatter products is extensive and Table 2.2 presents 
the most-frequently used examples in literature. Bathymetric derivative such as the 
Bathymetric Position Index (BPI), rugosity, complexity, curvature and aspect have shown 
close relation with benthic ecosystem processes such as shelter availability and species 
abundance (Wilson et al., 2007; Dunn and Halpin, 2009; Ferrari et al., 2016) as well as with 
seafloor substrate type (Lundblad et al., 2006, chapter 5) and local hydrodynamic regime 
(Dolan et al., 2008; Rengstorf, 2013; Peukert, 2015). Consequently, it is understood that 
bathymetric derivatives hold a major role as proxies in seafloor mapping. In addition 
backscatter neighborhood statistics have been effectively applied in classifying seafloor 
sediments according to textural information (Blondel et al., 2006; Preston, 2009). The 
bathymetric derivatives and backscatter statistics are calculated within a spatial 
neighborhood analysis window (circular or rectangular covering n x n cells) or within objects 
which resulted from backscatter mosaic segmentation (see OBIA box). The backscatter 
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mosaic can be used for calculating not only the first order statistics (mean, median, mode, 
standard deviation, quantiles etc) but also: textural statistics using Grey Level Co-occurrence 
Matrices (GLCMs, Haralick, 1973) and 8-bit color transformations (HSI). ARA features (such 
as slope, skewness, kurtosis) can also be calculated for image-objects of backscatter mosaics 
and thus incorporated in image-based analysis (Che-Hasan et al., 2014). Following, the batch 
of bathymetric and backscatter grids is used as input to unsupervised or supervised image-
classification algorithms. When the backscatter and bathymetry grids and their 
derivatives/statistics are used as input for modelling the ground-truth data (i.e.: with 
supervised classification algorithms) they called explanatory variables or descriptors, while 
the ground-truth data are called response variables.   
 

Table 2.2: List of the most-commonly used bathymetric derivatives, and backscatter statistics 
(textural and angular) in literature (modified from Stephens and Diesing, 2014 and Che-
Hasan et al., 2014). 

Bathymetric derivatives 

slope the first derivative of bathymetric surface, a measure of the rate of 
bathymetry change along a path (measured in degrees, percent or radians) 

aspect the azimuthal orientation of slope facets, measured in degrees 

eastness normalized aspect with regards to the east direction, measured in radians  

northness normalized aspect with regards to the north direction, measured in radians  

standard 
deviation 

dispersion from the mean depth of the spatial neighborhood 

rugosity 
It is a measure of the irregularity of a surface. Most commonly appearing as 
Terrain Ruggedness Index or Vector Ruggedness Measure 

fractal 
dimension It is the rate of complexity change as a function of scale. 

mean curvature 
It is the second derivative of a surface (Moore et al., 1991). Positive values 
indicate that the neighborhood surface is upward convex, negative values 
indicate tha it is upward concave and zero values indicate flat surface.  

profile 
curvature It is curvature perpendicular to the slope direction 

planar 
curvature It is curvature along the slope direction 

Bathymetric 
Position Index 

It calculates the relative topographic position of a central grid-cell to a spatial 
neighborhood defined by a rectangular or circular annulus with an inner and 
outer radius. (Weiss, 2001, Wright et al., 2005). Positive values indicate local 
elevations, negative values indicate local depressions and zero values indicate 
flat areas 

complexity is a 2D measure of surface roughness along a path 

Moran's I 
it measures the autocorrellation between the cell-values of a predifiend 
neighborhood 

Backscatter statistics 

mean It is the average backscatter value within a spatial neighborhood of cells 

median  It is the median backscatter value within a spatial neighborhood of cells 

mode It is the most frequently occurred value within a spatial neighborhood of cells 

standard 
deviation 

It is the dispersion from the mean backscatter value of the spatial 
neighborhood 
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HSI 
Hue-Saturation-Intesity cube for transforming RGB values (e.g.: of a 
backscatter mosaic) into a more intuitive geometrical color space 

GLCM textural 
statistics 

Grey-Level Co-Occurrence Matrices analyse the grey-level 8-bit cell-values of 
backscatter mosaics along pre-defined orientations (e.g.: NE) within a spatial 
neigborhood. They measure the frequency and numerical relation between 
the cell-values and output the textural statistics below: 

GLCM entropy 
It measures the level of randomness of cell-values within a spatial 
neighborhood 

GLCM 
correlation 

It measures the linear dependency of gray levels of neighboring pixels,  
(Kumar 2014) 

GLCM contrast 
It measures the differences between the cell-values within the spatial 
neighborhood. 

GLCM standard 
deviation 

Both measure the degree of dispersion of a cell-value around the mean value 
of the spatial neighborhood 

GLCM variance 

GLCM 
homogeneity 

It measures the similarity between the cell-values within the spatial 
neighborhood. 

ARA statistics 
These are calculated within certain domains of the angular response curves 
(i.e.: from incidence angle 10 to 30 degrees) 

ARA mean It is the average angular backscatter value of the entire angular curve  

ARA slope 
It is the rate of change of angular backscatter values at a certain part of the 
curve (between two incidence angles) 

ARA skewness It is a measure of curve symmetry with reference to a central incidence angle 

ARA kurtosis It is a measure of curve distortion from normal distribution 

 
 
Unsupervised ASC methods 
 

Unsupervised methods employ statistical expressions for identification of natural 
groupings that may exist within hydro-acoustic datasets. Therefore these methods do not 
require input from ground-truth data. Unsupervised classification is considered as more 
objective and robust approach that the supervised ones, however many unsupervised 
techniques suffer from lack of estimating the optimum number of classes in the data (cluster 
validation).  

Traditionally, the user selects the number of classes in which the data should be 
classified in and then the various classification results are correlated against ground-truth 
information. The minimum number of classes beyond which there is no statistically 
significant improvement of the correlation coefficient (between acoustic classes and ground-
truth information) is usually considered optimal for final classification. The most common 
unsupervised techniques for data clustering include the k-means algorithm, the ISODATA 
algorithm (Chapter 5) and the principal component analysis (PCA) which typically is 
combined with the k-means algorithm. The k-means approach, clusters the data in k number 
of clusters (set by the user) by minimizing the within class Euclidian distances and 
maximizing the between class variances. Similarly the ISODATA algorithm clusters the data in 
a number of clusters by using a set of input parameters defined by the user. The user selects 
(intuitively) the minimum and maximum number of clusters along with thresholds about the 
within- and between-class standard deviation values that are considered acceptable for each 
cluster.  
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The ISODATA algorithm will merge together clusters that have lower between-class 
standard deviation than the one selected and it will divide clusters with greater within-class 
standard deviation (Memarsadeghi et al., 2006). In general, most of the unsupervised 
approaches require an external diagnostic test for cluster validation. Such diagnostic tests 
include the F-test, the gap statistic, the silhouette coefficient and the C-H criterion 
(Tibshirani et al., 2001). The role of diagnostic tests is to identify the minimum number of 
clusters that describe data variability effectively (i.e.: increasing number of clusters does not 
improve the score of the tests). In the studies included in this thesis we applied the 
silhouette coefficient (chapter 3) and the C-H criterion (chapter 4) tests. The silhouette 
coefficient examines how homogeneous are elements within a class. The coefficient can take 
values from -1 to 1. Values closer to 1 indicate high class homogeneity with majority of 
elements correctly assigned this class whereas values closer to -1 suggest that elements 
differ significantly from class mean value and thus should belong to another class. Values 
close to zero indicate that the elements are at the decision boundary between two classes 
hence they could be assigned any of these classes. The second tool is the Calinski-Harabazr 
(C-H) criterion that evaluates the optimal number of clusters. This method takes into 
account the between-class and the within-class differences at the same time for elements 
clustered in given number of classes. The number of classes that receives the highest C-H 
score is suggested as optimal for partitioning the data (Calinski and Harabazr, 1974). 
 
 
Supervised ASC methods 
 

In supervised classification the input of ground-truth information assists in establishing 
a model or a rule-set according to which the data can be classified in. In that sense, classes 
are pre-defined. The ground-truth data used to inform the classification is called training set. 
Supervised algorithms can be simple or complex ranging from user-defined class values (e.g.: 
Benthic Terrain Modeller, Wright et al., 2012) to random forest models and artificial neural 
networks (Stephens and Diesing, 2014). In any case the supervised algorithm establishes a 
set of criteria (knowledge) from ground-truth data values and uses these criteria to classify 
unknown parts of the acoustic data.    
 
 

TRAINING & VALIDATION SETS 
 

When a sufficient amount of ground-truth data is available, part of it can be used 
for algorithm training in supervised classification approaches. Depending on the 
algorithm, the training samples need to fulfil certain criteria. For example, in case of MLC 
the hydro-acoustic data belonging to training samples from each class should hold 
normal distribution. On the other hand, this is not required when machine learning 
algorithms are used (such as the RF or SVM). In general it is required that ground-truth  
samples represent all different types of seafloor from the study area and the 
corresponding hydro-acoustic data cover a broad range of values allowing for more 
robust training of the algorithm.  

The part of the ground-truth data that is not used for algorithm training may be 
preserved for assessment of classification results. Assigning a ground-truth sample as for 
training or for validation should be done randomly and validation samples should be 
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appropriately separated in space from the training samples in order to avoid introducing 
bias during classification assessment due to auto-correlation effects.  

Assigning several times (the number of times depends on various characteristics of 
the data and it can be estimated by statistical tools such as the Monte Carlo test) 
different part of the ground-truth data as for training or validation is called bootstrapping 
and it assists in capturing the sensitivity of the algorithm to different input data. In 
addition bootstrapping  aids cross-validation of the training data results. Thus cross-
validation helps in quantifying the robustness of the supervised classification algorithm.   
 
Data exploration 
 

When a large amount of explanatory variables exists, it is desirable to exploit only 
those that assist more in class separation. To identify which explanatory variables provide 
better class separation than others data exploration tools are applied. The most-common 
tools in data exploration include the probability density functions (PDFs) and box-plot 
diagrams. PDFs indicate the range of values (of an explanatory variable) within which 
each class occurs more frequently (Fig.2.14 A). This is a very informative way to evaluate 
how suitable an explanatory variable is in discriminating a set of classes. The box-plots 
designate also the range of explanatory variables values that the majority of training 
samples occur (2nd to 3rd quartile) along with the median value for each class (Fig.2.14 B). 
Both statistical tools provide useful semi-quantitative information that assists in decision-
making on the selection of the most informative explanatory variables.  
 

 
Figure 2.14: A) Example PDF plot using two classes. B) Example box-plot examining six classes. 
 

  
 
Studies on image-based ASC techniques 
 

Either in supervised or unsupervised classification approaches the validity of results 
needs to be tested using part of the ground-truth data. Unsupervised classification results, 
are tested by correlating them to ground-truth information such as grain size distribution 
data or expert-defined categories of seafloor. If there is significant correlation between 
classes and ground-truth data then ground-truth is used to characterize each unsupervised 
class. Classes from supervised approaches are compared with ground-truth data via their 
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contingency (or confusion) matrices and using Cohen’s kappa coefficient (chapter 4). 
Contingency matrices provide the accuracy percentages of modelled (or predicted) classes 
over the actual classes provided by the ground-truth. In addition the Cohen’s kappa 
coefficient is used for testing the agreement between output and actual classes and thus 
evaluating the performance of the supervised classifier. Some indicative studies using image-
based unsupervised or supervised approaches are presented below.    

Backscatter and bathymetry grids (including their statistics and derivatives) have been 
commonly used in unsupervised classification algorithms such as the PCA (chapters 3, 4). 
The PCA applies an orthogonal transformation to a set of correlated variables for calculating 
a reduced amount of new, uncorrelated variables that account for the same data variability. 
The new variables are called principal components and they carry information from all initial 
variables. It is implied that some initial variables have a greater contribution than others in 
the principal components. Following, the first two or three principal components often 
account for most of the data variability and they can be clustered in feature space using a k-
means algorithm. PCA using an extended set of backscatter textural statistics grids was 
introduced by Preston (2009). His study analyzes how the commercial ASC software QTC 
Multiview calculates three principal component vectors from a set of 123 backscatter 
textural and statistical variables (gridded). Other applications of PCA approach include that 
of Eleftherakis et al. (2013) for classifying riverbed sediments using a large set of 
bathymetric and backscatter statistics including bathymetry residuals.   

Blondel et al. (2006) developed a classification scheme based on textural features of 
BS mosaics resulted from different frequency sonars. They applied grey level co-occurrence 
matrices (GLCMs) transformation to the BS mosaics for obtaining new grids (descriptors) 
with textural information. Then they processed them using unsupervised classification 
algorithms from the TexAn software. Since BS mosaics are represented as greyscale imagery, 
they are suitable for calculation of several textural statistics (Table 2.2). Textural statistics 
often contain valuable information about seafloor cover hence they can be useful 
descriptors in ASC tasks.  

Ierodiaconnou et al. (2011) applied supervised classification (MLC, decision trees) on a 
set of bathymetric derivatives and backscatter mosaic derivatives (color-transformed cell 
values) using video data as ground-truth information for classifying macro-benthic 
organisms.  Stephens and Diesing (2014) compared six supervised methods (Classification 
Trees, Support Vector Machines, k-Nearest Neighbour, Neural Networks, Random Forest and 
Naive Bayes) for classifying seafloor sediments using ground-truth information from an 
extensive collection of sediment samples. They propose that careful tuning of supervised 
classifiers and selection of appropriate bathymetry/backscatter descriptors is important to 
obtain accurate results. It has to be noted that k-Nearest Neighbor and Naive Bayes 
algorithms are considered simpler and with less computational requirements compared to 
the rest of the algorithms. The other supervised algorithms (Classification Trees, Support 
Vector Machines, Neural Networks and Random Forests) are extensively used in the field of 
machine learning providing the ability to better identify complex relations in the data but 
they are considered to be computational demanding. Moreover their settings need to be 
adjusted for each specific data application and usually this is done by trial and error since a 
variety of input data can be used in different cases. Lucieer and Lamarche (2011) employed 
supervised and unsupervised classification methods within the context of object-based 
image analysis (OBIA). They utilized textural variables extracted from BS mosaics and 
bathymetric derivatives in conjunction with fuzzy k-means clustering for producing 
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probability maps for different sediment contents (i.e.: silt, sand, gravel). In addition they 
used backscatter and bathymetry grids as inputs for segmenting the study area into 
homogeneous objects. Following, they applied the nearest neighbour algorithm for 
predicting the sediment contents of unknown objects based on objects corresponding to 
highest probability from the initial unsupervised classification results. In the same sense, 
Lucieer and Lucieer (2013) compared three supervised classification methods (KNN, RF and 
decision trees) for classifying seafloor morphology, benthos and substrate using AUV MBES 
data in conjunction with OBIA.  
 
 
OBIA 
 

The increasing volume and resolution of geo-spatial datasets has led to the 
development of more sophisticated methods for data processing and interpretation. The 
concept of OBIA was developed taking advantage of the high spatial resolution imagery 
and treating image elements not as grid-cells (pixels) but as objects. Objects are groups of 
pixels with similar geometric and other properties, which can be related to other objects 
and in essence they represent real world objects (i.e: lakes, roads, buildings etc). 

OBIA is performed in two steps. The first step is called “segmentation” and it helps in 
grouping the image pixels for the production of objects. One or more grids can be used for 
segmentation and different segmentation algorithms/settings can yield various types of 
objects. In practice, segmentation involves expert knowledge provided by the user which 
should reflect the needs and particularities of the specific task. Segmentation is an 
automated and repeatable method for producing image objects the properties of which 
can be calculated as attributes table.  

The second step is “classification” of the image objects. As with traditional pixel-
based image classification the same with OBIA, objects need to be classified into an 
optimum number of classes or a predefined set of classes suggested by ground truth 
information. Thus unsupervised or supervised classification techniques can be applied on 
image objects in the same sense as if they were pixels. 

 
 

2.4 Ground-truth sampling and analysis 
 

As with any remote sensing technique so with hydro-acoustic mapping of the seafloor, 
backscatter measurements and their analytic results are not a direct representation of the 
real seafloor types, but they form an alternative source of information about the seafloor. 
Therefore results from ASC need to be linked somehow to the actual seafloor types that they 
describe (Sutherland et al., 2007). To achieve this, availability of an adequate amount and 
quality ground-truth data is necessary. Throughout backscatter analysis, ground-truth 
samples can be utilized in two major tasks: classification training and classification results 
validation (see training and validation tests box).   

The most common types of ground-truth data include sediment samples and 
underwater video/images. Acquisition of sediment samples is usually made with grabs or 
multi-corers (Fig.2.15 A,B). These types of gear are capable of sampling a few tens of 
squared centimetres of sediment area from the upper half meter of the seafloor column. 
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Underwater stills or video can also be utilized for ground-truth once they have been 
carefully annotated/interpreted. It is implied that adequate positioning is provided during 
seafloor sampling (McGonigle et al., 2009). Positioning errors can affect the classification 
accuracy and artificially increase or decrease the performance of classification algorithms. 

 

 

Figure 2.15: a) Multi-corer 
sampler for soft sediments, 
b) Van-Veen grab sampler 
for coarse (sand, gravel) 
sediments, c) Ocean Floor 
Observation System (OFOS) 
underwater video platform, 
d) example of video 
annotations overlaid on 
bathymetry map.   
 

 
 
In some cases ground-truth sampling takes place prior to or during hydro-acoustic 

surveys, thus little or no involvement of acoustic data information is used for guiding the 
plan of ground-truth locations. When seafloor sampling takes place after the MBES survey it 
is recommended that acoustic information is taken into account in scheduling of ground-
truth survey. Acoustic information may result from backscatter mosaic and/or combination 
of bathymetry through identification of particular acoustic/bathymetric features. Duplicates 
of sediment samples should be taken for each acoustic feature identified and samples 
should expand in the whole survey area. This is because due to sediment heterogeneity that 
can cause different seafloor types to express similar acoustic behaviour from place to place 
(chapter 4, Eleftherakis 2013).         

Sediment samples are usually analysed for grain size distribution of the fine fraction 
(<500 µm) whereas the coarse fraction is separated with various sieves and each sub-
fraction is weighted (Collier and Brown, 2005). Integration of grain size distribution and 
weights of sieved fractions provides grain size quantitative information (such as the mean, 
median and mode) for the whole sample which then can be used for comparison with 
acoustic data (chapter 4).   

Underwater images and/or video provide recordings of seafloor surface type along 
transects of several tens or hundreds of meters (Fig.2.15 C,D). The recordings consist of 
multiple sample points with unique coordinates and timestamp. The most common analysis 
is expert (manual) annotation/interpretation of each image or video slice which normally is 
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time-consuming and results in subjectivity-related errors. On the other hand automated 
image analysis can save time and provide results in a more consistent way (chapter 5). The 
results (either from expert or automated analysis) can be quantitative or qualitative. 
Quantitative information may refer to sediment grain size, number of boulders and seafloor 
roughness, while qualitative information is related to sediment types (rock, sand, silt). Semi-
quantitative results may also be provided referring to percentage of seafloor coverage or 
presence/absence of geological features (e.g.: boulders).      
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3. Acoustic discrimination of relatively homogeneous fine 

sediments using Bayesian classification on MBES data 
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Abstract 

Modern seafloor mapping is based on high resolution MBES systems that provide 
detailed bathymetric and acoustic intensity (backscatter) information. We examine and 
validate the performance of two unsupervised MBES classification techniques for 
discriminating acoustic classes of sedimentary units with small grain size variability. The first 
technique, based on a principal components analysis (PCA), is commonly used in literature 
and has been applied for comparison with the more recent approach of Bayesian statistics. 
By applying these techniques to a MBES dataset from an estuarine area in the Netherlands, 
we tested their ability to discriminate fine grained sediments (at least 70% silt) holding small 
percentages of coarser material such as sand, shell hash or shells. We focus on the Bayesian 
technique as it outputs acoustically significant classes related to backscatter values. This 
technique utilizes backscatter values averaged over scatter pixels (projected pulse lengths) 
inside the footprint of each beam.  The originality of our application lies in the fact that, the 
optimal number of classes is derived by utilizing a number of beams simultaneously. It is 
assumed that the backscatter values per beam vary relatively to the varying seafloor types.     
By treating the beams separately, across track variation in the seafloor type can also be 
accounted for. Thereby the classification is guided by outer, more discriminative beams. 
Additionally we control the optimal number of classes by employing the quantitative 
criterion of goodness of fit (χ2). The Bayesian acoustic classes show correlation with grain 
size parameters such as coarse fraction (>500µm) percentage and mean of the grain size 
(<500µm) when analysed with multiple linear regression. In order to examine the relative 
scale of the acoustic classification results we compare the Bayesian acoustic classes with 
underwater video interpretation. Our results reveal that the Bayesian approach enhances 
the sedimentological interpretation of MBES high resolution data, by providing classification 
on seascape scale (here meters to tens of meters). Hence we suggest that backscatter 
processing techniques are more commonly applied to produce classes that discriminate 
sediments with low grain size contrast. To describe this ability we introduce the term 
geoacoustic resolution. We want to encourage the use of the Bayesian technique also in 
deep sea applications, based on AUV data, where sediments express low variability but 
sampling would be time consuming and costly. The advantages of this method would favour 
mapping of macro-habitats which appear at meter-scale and require datasets of sufficient 
resolution in order to be quantitatively described.  
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3.1 Introduction  
 
Acoustic remote sensing of the sea, river or lake floor provides a non-destructive and 

cost effective way to produce a variety of qualitative and quantitative maps of depth and 
sediment type. Multibeam echo-sounders (MBES) are the state-of-the-art tool commonly 
used for bathymetric and sediment property mapping that finally results in sediment 
classification or habitat maps. In this respect, the increasing amount of MBES specific 
information recorded (pulse length, gain, snippets) allows for an increasingly accurate and 
representative description. Many of the MBES acoustic classification techniques 
discriminate between sediment types as different acoustic classes. Assigning sediment 
properties to these acoustic classes requires expensive and time consuming ground 
truthing (Simons & Snellen, 2009; Holmes et al., 2008; Clements et al., 2010). Obtaining 
better/more predictive seafloor maps at less ground truth cost is one of the goals in 
modern seafloor mapping research. Therefore, significant effort has been made towards 
improving and developing methodologies for a more quantitative representation of the 
seafloor lithology through MBES data analyses (Collier & Brown, 2004; Lamarche et al., 
2011; Fonseca et al., 2009).   

 

Acoustic backscatter classification  

Backscatter intensities registered by MBESs provide the most explanatory yet complex 
information regarding seafloor sediment properties (Hamilton & Parnum, 2010). Its 
complexity is the result of a number of factors including the sonar beam pattern 
characteristics, the sonar frequency, the incidence angle of the beam with the seafloor, the 
micro-roughness of the seafloor, the grain size of the sediments, coverage with epibenthic 
organisms and the volume scattering of the sediment (Hamilton & Parnum, 2010).  

Before any reasonable analysis can take place, backscatter data have to be 
geometrically (e.g. beam pattern, incident angle) and radiometrically (pulse length, gain, 
receive band width) corrected and ideally the MBES sonar has to be calibrated to record 
real dB values for comparison with other systems as well as for time series studies 
(Lamarche et al., 2011; Eleftherakis et al., 2014). An important factor that characterizes 
unprocessed backscatter data is the dependence of the received backscatter signals on the 
swath/incident angle which comprises a physical property of the seafloor (de Moustier & 
Alexandrou, 1991; Fonseca & Mayer, 2007). Sediments of the same type will give a 
different backscatter response when ensonified from different angles. This effect can be 
the basis of further analyses or can be compensated for in order to obtain a normalized 
image of the backscatter intensities. McGonigle et al. (2014) divide the different 
methodologies for backscatter processing in two main groups, i.e. the signal-based and the 
image-based methodologies.  

The signal-based methodologies include 1) the Angular Response Analysis (ARA), 
which makes use of the angular dependence (Fonseca et al., 2009; CheHasan et al., 2012; 
Huang et al., 2013; Rzhanov et al., 2012) and 2) acoustic modelling (Lamarche et al., 2011; 
Simons & Snellen, 2009). The advantage of signal-based methods is that they, in theory, 
can provide sediment characteristics such as mean grain size with no or only very limited 
ground truth data. These methods require good calibration of the MBES backscatter 
measurements to be comparable. Their computational demands can be significant if 
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inversion is applied, where the match between the measured and modelled signal is 
maximized by searching for the unknown sediment parameters (e.g.: mean grain size, 
porosity, seabed roughness). Implementation of signal-based methods is often less 
straightforward compared to the image-based methods. 

The image-based backscatter analyses include 1) supervised classification using 
underwater photos/videos (Summers-Morris, 2004; Rooper & Zimmerman, 2007; 
Ierodiakonou et al., 2011; Foubert et al., 2011; Neves et al., 2013; Marcon et al., 2013; 
Stephens & Diesing, 2014), 2) unsupervised classification based purely on statistical 
relationships and patterns of the data such as correlations and trends between their 
statistical derivatives (Hamilton & Parnum, 2010; Snellen and Simons, 2009; Lucieer & 
Lucieer, 2009; Amiri-Simkooei et al., 2009; Preston, 2009), and 3) combinations of 
supervised/unsupervised classification with Object Based Image Analyses (OBIA) of the 
backscatter mosaics (Lucieer & Lamarche et al., 2011; Estomata et al., 2012). These image-
based methods are less dependent on the calibration of the MBES backscatter 
measurements and do not use inversion techniques. However, independent ground 
truthing is needed for assigning physical sediment properties to the resulting sediment 
classes. 

All of the above-mentioned techniques for backscatter classification make use of at 
least some ground truth data in order to provide quantitative sediment property maps of 
the seafloor. In this study we focus on unsupervised classification algorithms and their 
ability to separate acoustic data in representative sedimentary classes. While in supervised 
techniques, the final classes are pre-defined according to the amount of ground truth data, 
in unsupervised techniques the natural meaning of the number of classes is being defined 
a posteriori.  

 

Rationale of the study 

In this study we are testing two unsupervised techniques for producing acoustic 
classes and compare the results with ground truth data including sediment grain sizes and 
visual observations. The goal is to examine if the fine scale variability within sediments is 
resolved by the acoustic classification algorithms given that the seafloor consists of the same 
overall sediment type (i.e. at least 70% silt).  

The ability to discriminate small differences in sediments is valuable in benthic habitat 
mapping of certain species (Kostylev et al., 2003) and potentially in seafloor exploration for 
aggregates extraction (dredging). For our MBES-based classification we propose an improved 
unsupervised acoustic classification of fine grained sediments. This technique is an advanced 
version of the Bayesian technique presented by Simons & Snellen (2009). The technique 
presented here does not require absolute sonar calibration, it is capable to resolve along 
swath sediment variations, makes use of the full backscatter record and most importantly, it 
provides statistical control for the optimum number of classes in contrast to other 
unsupervised techniques. A novelty of this study is that we utilize for the first time a 
combination of beams simultaneously in order to derive the optimal number of classes. The 
other unsupervised classification technique is based on MBES derivatives of backscatter or 
bathymetric measurements. By applying a principal component analysis, followed by a 
clustering of the most important principal components, acoustic classes are assigned to all 
data points. 
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Study area 

The MBES data were acquired in the Grevelingen (The Netherlands) which was cut off 
from the North Sea in 1971 when a dyke was built. The study area is a former estuary of the 
Rhine River but now it is mostly a brackish water lake with a depth ranging between 5 and 
48 meters. After the severe flooding of 1953, the Grevelingen became disconnected from 
the North Sea in 1971 as part of the Delta Project, which included the development of 
several dams. Since 1978 the Grevelingen is connected with the North Sea again via a lock 
build in the dam structure west of the area (Fig. 3.1). The Delta project had also a post 
construction phase for monitoring the geomorphological and ecological response of the ebb 
tidal deltas of South-West Netherlands (Mulder et al., 1991).  

The study site has received intense anthropogenic pressure in recent times as it has 
been used for sediment dredging to build the dam and as a dumping site for shell debris 
from locally farmed oysters. The sediment extraction has altered dramatically the area’s 
bathymetry by introducing elongated deep channels and local depressions (visible as the 
dark areas in the inset of Fig. 3.1). After building the dam, tidal activity of the North Sea that 
shaped the seafloor ceased. The previously formed ripples became buried by lacustrine 
sedimentation. Due to the connection to the North Sea via the small outlet in the dam, the 
Grevelingen offers habitat for several marine species mainly algae, crustaceans and fish, 
which form the local biodiversity pattern (Mulder et al., 1991). The area consists of loose 
sediments with low contrast in grain sizes. The main variability exists due to the varying 
content of sand, shell fragments, coverage of epibenthic organisms and the local occurrence 
of pebbles. The ability of discriminating rather homogeneous sediments, as investigated in 
this contribution, is important for a better understanding of habitats and organisms that 
show a strong discrimination between a subtle variability of fine grained sediments not only 
in the shallow water of the Grevelingen, but also  in the deep sea (Etter& Grassle, 1992).  

 

 
Figure 3.1: Shaded MBES bathymetry over a close-up of the area from Google Maps (red arrow in the 

lower left corner indicates the location). The green flags indicate micro-corer sample positions. 
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3.2 Methodology 

MBES survey and ground truth data 

The MBES survey was carried out in April 2013 using a Seabeam 1180 sonar with 180 
kHz and 1.5° across by 3° along track beam angles. Line spacing was 50 m with varying 50-
100% overlap. Raw backscatter data were exported with the HDPPost software as ASCII files 
and then further processed in Matlab. Sediment was recovered as ground truth data from 15 
micro-corer deployments and underwater video recording using GEOMARs Ocean Floor 
Observation System (OFOS) in December 2013 and July 2014. The upper 10 cm of the 
sediment were used for grain size analysis given that the MBES frequency of 180 kHz does 
not allow deeper penetration into the sediments.  

 

Table 3.1: Grain size statistics of the fine (<500 μm) and coarse (>500 μm) fractions of 
sediment samples with shell presence and Shepard class. 

 
 
The coarse and fine fraction were split using a 500μm sieve. The finer fraction was 

analyzed with a Coulter Counter and the results are presented in Table 3.1. The underwater 
video footage was interpreted using the Ocean Floor Observation Protocoll (OFOP) 
classification module and exported as an ASCII point file (Hütten & Greinert, 2008). The 

      
Fine fraction Coarse fraction 

  
  

No Lon Lat 
Mean 
(μm) 

Median 
(μm) 

Mode 
(μm) W.% W.% 

Shells 
(y/n) 

Shepard 
class 

1 
3.9049 51.7488 

106.1 19.5 14.9 80.4 19.6 y sandy Silt 

2 
3.8903 51.7472 

31.9 10.7 9.4 100 0 n clayey Silt 

3 
3.8703 51.7449 

27.0 14.5 16.4 97.6 2.4 n Silt 

4 
3.8585 51.7442 

20.1 9.3 10.3 100 0 n clayey Silt 

5 
3.8499 51.7437 

18.2 8.2 8.5 100 0 n clayey Silt 

6 
3.8405 51.7468 

26.2 10.9 16.4 100 0 n clayey Silt 

7 
3.8411 51.7445 

27.7 12.0 16.4 98.3 1.7 n clayey Silt 

8 
3.8487 51.7426 

22.5 10.7 14.9 100 0 n clayey Silt 

9 
3.8597 51.7416 

24.4 10.2 11.3 98.9 1.1 n clayey Silt 

10 
3.8702 51.7441 

24.8 11.9 13.6 100 0 n clayey Silt 

11 
3.9003 51.7499 

222.0 230.0 272.0 91.7 8.3 y Sand 

12 
3.8964 51.7488 

9.0 7.9 14.8 100 0 n Silt 

13 
3.8721 51.7459 

77.7 12.9 221.0 73.4 26.6 y sandy Silt 

14 
3.8450 51.7456 

12.5 9.5 12.9 100 0 n Silt 

15 
3.8832 51.7463 

10.6 9.4 15.9 100 0 n Silt 
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annotation of the videos was based on the macroscopic qualitative description of seafloor 
surface coverage. Four main types of seafloor cover were discriminated; they include dense 
epifauna and/or pebbles, sparse epifauna and/or pebbles and no epifauna or pebbles. The 
fourth type represents a seafloor covered with phytodetritus in water depth greater than 20 
meters.  
 
 

Classification algorithms 

In this study we compare two unsupervised classification algorithms and their 
capabilities of discriminating different sediment types. As first method we apply a Principal 
Components Analysis (PCA) in conjunction with k-means clustering for the assignment of 
classes as applied to underwater sediment classification by Amiri-Simkooei et al. (2011) and 
Eleftherakis et al. (2013). The algorithm was implemented in Matlab and the resulting 
classes where imported in a GIS environment for further examination. 

The PCA technique is using a numerous set of potentially moderately correlated 
variables in order to produce new, uncorrelated variables that fully describe the variability of 
the original dataset. For the variables we utilized five acoustic backscatter derivatives, 
including the mean BS, median BS, mode BS, min BS, and max BS (Eleftherakis et al., 2012). 
The first two principal components corresponding to the highest eigenvalues, which explain 
most of the data variation, were used for further classifications. Once the first two principal 
components are assigned, their coefficients can be plotted separately in GIS. These 
coefficients will show a gradual variation and will not indicate separate classes. In order to 
separate the PCA results into classes and combine the information contained in the two 
PCAs, we apply the k-means clustering algorithm. The k-means algorithm clusters the data 
by minimizing the distances of all points regarding to their class centroid (Eleftherakis et al., 
2013). It has to be noted that the final classes are assigned to patches of 3 neighbouring 
beams and 3 consecutive pings. The second classification method applied is the Bayesian 
technique as defined by Simons & Snellen (2009), Amiri-Simkooei et al. (2009) and Siemes et 
al. (2010). By using the average BS value per beam footprint, a histogram of the different dB 
values is created per beam. Our method utilizes the backscatter (dB) value fluctuations in 
the histogram derived from all backscatter values at a certain beam angle and fits a number 
of Probability Density Functions (PDFs, Gaussian) to it. The number of PDFs needed for a 
good match between modelled and measured histogram represents the number of seafloor 
types that can be discriminated from the backscatter data. The assumption underlying the 
method is that the number of scatter pixels in a beam (its footprint; see appendix of chapter 
3, Fig. 3.2, Fig. 3.3) is large and that consequently the backscatter per beam and seafloor 
type is distributed according to a normal distribution (Gaussian curve). Mathematically this 
assumption derives from the central limit theorem according to which the beam backscatter, 
as derived from a sufficient number of scatter pixels, will exhibit a Gaussian distribution for a 
single seafloor type. Consequently, the algorithm accounts for the ping-to-ping variability of 
the backscatter measurements. Variations in seafloor type can be approximated by summing 
a number of normal distributions with varying shape around a varying mean backscatter 
value. According to Amiri-Simkooei et al. (2009) the outer beams (beyond the middle range 
of the swath) are preferably utilized for fitting the Gaussians, and hence identifying the 
number of classes. This occurs because the outer beams ensonify a larger area at the 
seafloor (due to larger grazing angles) hence include more scatter pixels, giving rise to a 
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lower standard deviation and consequently increased geo-acoustic resolution (more on this 
term in paragraph 5.3). The amount of Gaussian curves needed for obtaining a good fit with 
the measured histogram is determined by the χ2 goodness of fit criterion. Fitting stops when 
adding Gaussians to the backscatter histogram does not lead to a further improvement of 
the χ2 (as close to 1 as possible). This quantitative measure allows for determining the 
statistically significant number of classes. Applying the χ2 criterion to a set of outer beams 
simultaneously, for identification of the optimum number of classes, makes the novelty in 
our processing approach. It has to be mentioned that the Bayesian technique assigns 
acoustic classes which correspond to certain dB ranges, thus resulting in acoustically 
meaningful clusters. Subsequently the grain size distribution parameters of the fine fraction 
and percentage of the coarse fraction can be plotted against their acoustic class for 
performing a linear regression. Finally, the outer beams are used to determine the 
distribution of BS measurements among the acoustic classes and the BS values at the 
remaining angles are assigned according to the same distribution.  We then obtain a 
classification map of high spatial resolution with a 2x2m bin size. In our study the MBES used 
did not provide the actual amount of scatter pixels per beam, therefore we estimated this 
number by applying the formula used by Siemes et al. (2009) to each beam (see appendix 
for chapter 3, Eq. 3.1). 

 

3.3 Results 

PCA and k-means clustering  

The first two principal components are derived from five backscatter properties (mean 
BS, median BS, mode BS, min BS, and max BS) which showed the highest correlation with 
these principal components. From the principal components that the PCA yielded we have 
chosen the first two as input for the k-means algorithm to cluster the geospatial patches 
according to their principal components values.  The clustering results are shown as 2D plots 
using only the first two PCs (Fig. 3.4). Several quantitative measures are presented in the 
literature that aid determining the number of clusters. In order to evaluate the number of 
acoustic classes that can be discriminated, we applied two quantitative criteria apart from 
the comparison with ground truth data. The first criterion is the total sum of distances and 
the second criterion is the silhouette coefficient as considered by Eleftherakis et al. (2013). 
The total sum of distances is a metric related to the difference of all classified points with 
the value of the class centroid. It generally decreases with an increasing number of classes. 
The silhouette coefficient is a measure of dissimilarity of a point compared to the points of 
its cluster (Eleftherakis et al., 2013) ranging from 0 to 1. Values above 0.5 generally account 
for sufficient separation of classes whereas less than 0.5 represent misclassification of data 
(potential class overlap). When applying the PCA technique there is a good evaluation of the 
number of classes using the sum of distances and the silhouette coefficient for more than 4 
classes; particularly for the 6 classes, the silhouette coefficient is 0.75. We have chosen to 
present the result for 6 classes for comparison with the Bayesian approach which also 
provides an optimal number of 6 classes (see next section). The resulting classes represent 
areas with similar values for the first two principal components (Fig. 3.4), hence a direct 
correlation with dB values cannot be established. This would have allowed further 
examinations with ground truth data. In order to visualize the PCA effectiveness in 
separating the classes, we added the mean grain size to classified patches (groups of beams 
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and pings) that are within a radius of 10 meters from each sampling location, assuming that 
they hold the same sediment type (Fig. 3.4). Finally the assigned classes of the k-means 
algorithm were plotted and gridded in GIS (Fig. 3.5). It can be seen that higher mean grain 
sizes correspond to the more negative values of PC1 and the lower mean grain sizes is 
corresponding to increasing PC1 values. Still, within an acoustic class the mean grain size 
shows significant variation, indicating that other parameters than mean grain size contribute 
to the variations in the PC1 values. 

 An important observation is that the PCA classes are separated by parallel “cuts” in 
the principal components space. This indicates that the initial features are highly correlated 
and even the first principal component alone would be enough to describe all of the data 
variation. In case of another data source is added, for example parameters derived from the 
bathymetric measurements, both PC1 and PC2 are expected to add to the method’s 
discriminating performance. 
 

 
Figure 3.4: Plot of the first two principal components for three different acoustic classifications with 
4, 5 and 6 classes (plot a, b, and c respectively). The black symbols refer to corresponding locations 
within a radius of 10m from each ground truth sample.  
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Figure 3.5: Classes resulting from combination of PC1 and PC2 using the k-means clustering method. 

 

Bayesian technique 

The Bayesian technique consists of the steps: identification of the number of classes, 
fitting the histogram for the outer beams, relating neighboured beams, and assigning data to 
the classes.       

In order to identify the optimal number of classes we used data from different beams 
from port and starboard sides. This happened in order to utilize the maximum of 
information provided by each side. For the port side we selected the beams that correspond 
to grazing angles of 50, 48 and 46 degrees, whereas for the starboard side we selected 
beams with grazing angle 44, 40 and 38 degrees (these beams were chosen as beam 50, 48 
and 46 were quite noisy). Considering that the results of the selected sets of beams are 
consistent with regards to the number of classes, we present the results for six classes, 
which satisfy the χ2 criterion for all of the selected beams. A number of six classes was also 
found to provide a maximum class separability with minor overlap of adjacent classes. This is 
evident from Fig. 3.6, which shows the fit of 6 PDFs for the three outer beams at port side. 
The class boundaries at these beams are extracted from the intersection points of the PDFs. 
Together, these PDFs provide an average distribution of BS values among the acoustic 
classes. The final assignment of classes was guided by the statistics of these outer beams 
and was based on the assumption that the remaining beams would express the same 
distribution.  

Table 3.2: Correspondence of sediment classes from micro-corer locations that fall within 
each Bayesian class. 

Class Sediment type 

1 clayey silt 

2 Silt 

3 clayey silt with 1-2% coarse material 

4 clayey silt with >2% coarse material 

5 sand with 2-10% shell fragments 

6 sandy silt with 10-25% shell fragments 
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The derived classification was exported to GIS, the result of which is shown in Fig. 3.7. 

Each class represents a range around a central dB value. The classes 1-6 express a gradient 
from low to high backscatter intensities (Table 3.2) and therefore can be examined against 
physical properties of sediment samples, through linear regression. Once the final classes 
were assigned to the rest of the beams, we gridded the results using a 2x2 meter bin size. 
Regarding areas with overlapping classes we applied the maximum value given that there 
were no differences larger than 1 class. The Bayesian technique produced classes that show 
strong agreement between neighbouring beams and transects. It can be noticed that the 
geospatial distribution of PCA classes is relatively similar to that of the Bayesian classes (Fig 
3.5 and Fig. 3.7). 
 

 

 

Figure 3.6: Example of the 
overall curve fitting (red line) 
of the histogram values and 
PDFs for 6 classes from the 
selected beams of 50, 48 and 
46 degrees (port side). Note 
the fair agreement of each 
Gaussian (PDF) for the three 
adjacent beams. 

 

 
Figure 3.7:  Acoustic classes resulting from combination of beams 20-60 from both port and 

starboard sides. 
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3.4 Discussion 

Optimal number of classes 

Finding the optimal number of clusters is a common problem in unsupervised 
classification techniques (Canty 2007). There are several algorithms to determine the 
optimal number of classes based on statistical criteria in addition to visual examination of 
the data (Dunn 1973, Calinski and Harabasz 1974). In this study the cluster validity rules 
include: a) the χ2 goodness of the fit criterion for the Bayesian classification and b) the total 
sum of distances and the silhouette coefficient for the k-means classification (Eleftherakis, 
2013). The χ2 criterion allows determining the optimal number of classes prior to the 
classification whereas the latter validate the resulting clusters once classification is 
performed. To extend the validation process of the Bayesian technique we investigated the 
correspondence between its classification and the information from the sediment analyses. 

Given that earlier studies have demonstrated the correlation of mean grain size and 
other statistics with backscatter values (Collier & Brown, 2005; Ferrini & Flood, 2006; 
McGonigle et al., 2014) we decided to perform a multivariate linear regression (Simons et 
al., 2007). The sample parameters considered in the multivariate correlation analysis are the 
mean grain size of the fine fraction (<500 µm), and the percentage of the coarse fraction 
(>500 µm) given that they yield better correlation coefficients (Table 3.3). 
For this, we write 

 

0 1 1 2 2y c c x c x               [3.2] 

 

with the coefficients describing the linear relationship between y, i.e. the acoustic class or 
corresponding backscatter value, and x1 and x2 the two sediment parameters under 
consideration.  
Defining matrix A as the matrix containing ones in the first column and in the remaining 
three columns all 15 measurements of x1 and x2 respectively, we have 
 

y c A
ur r

          [3.3] 

 

where the column vector y
ur

 contains the Bayesian classification result at the 15 micro-corer 

locations. Vector c
r

 contains the three coefficients. The least-squares solution to the above 
system equation is  
 

 
1ˆ T Tc y


 A A A
urr

          [3.4] 

 

For ĉ
r

 we find [2.5, 0.16, 0.007] which results in: 

       Acoustic class= 2.5 + 0.16*coarse + 0.007*Mz                                                                   [3.5] 

 

Where: coarse is the percentage of the coarse fraction and Mz is the mean grain size of the 

fine fraction (in μm).   
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By using these estimates for the coefficients of the percentage of coarse-grained 
material and the mean grain size to predict the classification results and by correlating our 
modelled predictions with the real measurements, we find a linear correlation coefficient of 
0.79 (Fig. 3.8). Another observation is that especially for the lower acoustic classes, the 
above equation predicts higher classes. Care has to be taken when drawing conclusions from 
the above presented comparison between acoustic classification results and the analysed 
sediment parameters. First of all, the number of samples is very limited as for some of the 
acoustic classes, only a single sediment sample is available. Secondly, many of the samples 
have been taken in areas that show variability with regards to the acoustic classes. Still, this 
good correlation supports our selection of 6 classes based on the outer beams and the 
application of the χ2 criterion.  
 

 

Figure 3.8: Class 
prediction results 
using a linear 
relationship between 
the percentage of 
coarse-grained 
material and the mean 
grain size of the fine 
fraction. 
 

 

 

In the above described processing, a multivariate correlation was carried out. When 
considering univariate correlations with the acoustic classes, the highest correlation 
coefficient (see Table 3.3) is found for the correlation between the percentage of the coarse 
fraction and the acoustic classification results. This indicates that in relatively homogeneous 
fine sediments even small additions (1-20%) of coarse material is capable to alter the 
backscatter signal significantly (Fig. 3.9). It gives clear evidence for the sensitivity of 
backscattering with respect to volume scattering processes which cannot be derived from 
seafloor surface video data (Calvert et al., 2014). We infer that small variations of the coarse 
fraction create a gradient of sedimentary zones which at the end are detectable by our 
proposed classification. The lower correlation between acoustic class and sediment mean 
grain size indicates some insensitivity of backscatter on mean grain size for very fine grained 
sediments. In addition, the three classes derived from the visual examination of underwater 
video (sparse/dense epifauna and/or pebbles, uncovered mud Fig. 3.10) show a close 
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relationship with acoustic classes resulting from the Bayesian technique. We infer that 
different percentages of seafloor coverage by shells, shell hash and/or epi-benthic organisms 
can produce different acoustic classes. Also evident is that the high resolution achieved in 
our acoustic classification is comparable to the fine scale classification results from the video 
analyses. This is seen in the almost coinciding transition points in both the acoustic classes 
and video classes (Fig. 3.10). Based on the above we conclude that the number of acoustic 
classes can be affected by variable percentages of coarse grained material within generally 
fine-grained sediments. In addition, the percentage of seafloor coverage by epibenthic 
organisms and pebbles has an influence as well; often coarser sediment and benthos occur 
together.  
 

 

 
 

Figure 3.9: Color-coded class of each sediment sample against their mean grain size. The numbers 

above the bars indicate the percentage of the coarse fraction (>500 μm). Squares around sample 

numbers indicate the presence of shell fragments in these samples. 
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Figure 3.10: Color-coded 
macroscopic description 
of seafloor cover from 
underwater video plotted 
over the Bayesian acoustic 
classes. Video: orange: 
uncovered mud, red: 
dense epifauna/pebbles, 
green: sparse 
epifauna/pebbles. 

 

 

 

Advantages of the Bayesian technique and comparison with the 

PCA 

By applying the Bayesian technique on data from an uncalibrated MBES we found that 
the method proved robust enough despite the missing sonar calibration. The method 
allowed identification of classes across the swath of the MBES. This is in contrast with 
techniques that are based on the full backscatter curve (Hamilton & Parnum 2010, 
Simons&Snellen 2008). Although these methods show high correlation with ground truth 
they are not able to resolve across swath sediment variations, which is the case for natural 
seafloors. As a result the Bayesian technique provides an acoustic discrimination of the 
seafloor in high resolution being able to resolve acoustic variations on the scale of the MBES 
footprint ideally.  

A novel approach in this study is that the number of classes was determined by a 
combination of beams simultaneously. In previous applications of Amiri-Simkooei et al. 
(2009) and Simons & Snellen (2009) only one beam was utilized and in Siemes et al. (2010) 
three beams were used separately. The outer beams, which have the greatest discriminative 
potential, are used to determine both the number of classes and the distribution of BS 
measurements among these classes, i.e. the percentage of BS values assigned to each class. 
Relating the BS values at other, less discriminative beams (closer to nadir) to the distribution 
of classes found for the outer beams, increases their classification potential. 

Although there was high correlation between ground truth and the Bayesian classes 
we recognize that the number of sediment samples per class is not sufficient to establish a 
thorough study of the relation between acoustic class and sediment parameters such as 
mean grain size or the abundance of a coarse sediment fraction. Sampling of ground truth 
sediments was based on bathymetry and backscatter mosaic evaluation and hence some 
samples fall along and close to the boundaries of acoustic classes. This has an effect on the 
correlation of ground truth with the classes. Ideally, future applications should include more 
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ground truth samples from each classified area. Regarding the performance of the two 
acoustic classification techniques, we examine it in terms of correlation with grain size 
statistics and overall description of class extent. As shown in Table 3.3, the classification 
based on the PCA features expressed lower class correlation with grain size parameters 
whereas the Bayesian technique classes appear to correlate better. It is also clear from Table 
3.3 that hierarchically the percentage of coarse grains, the mean grain size and the mode 
(the most frequent grain size in the sediment sample) rank in a descending manner for both 
classification approaches. The better performance of the Bayesian technique is attributed to 
the fact that the dB values for each of the acoustic classes are derived with an approach that 
can be considered model-based. The model consists of a sum of Gaussians with a mean and 
standard deviation that are determined by maximizing the agreement between the 
modelled histogram and the measured histogram of backscatter values.  No model underlies 
the derived dB ranges per acoustic class in the PCA approach; it is purely data driven. 
Despite the differences in correlation coefficients, the two methods yielded classes of similar 
spatial extent.  

 

Table 3.3: Correlation coefficients for each type of classification and major grain size 
parameters.  

Classes Coarse Mean Median Mode Combined* 

PCA 0.5 0.53 0.4 0.48 0.6 

Bayes 0.8 0.47 0.18 0.44 0.8 

*Combined result takes into account only the highest values, i.e. excluding the median and mode in 

both instances. 
 

 

Implications on classification resolution and fine scale habitat 
mapping 
 

An important aspect of our study is that the Bayesian technique allowed producing a 
classification map of high spatial resolution with a 2x2 meters bin size (Fig. 3.7). The issue of 
spatial resolution in seafloor mapping has been addressed by earlier studies (Greene et al., 
1999; Greene et al., 2007; Le Bas & Huvenne, 2009; Brown et al., 2011). McGonigle et al. 
(2009) support that in order for a habitat map to be useful for real world applications the 
scale of the data used for classification should at least match the scale of the mapped 
features. Greene et al. (2007) discriminate seafloor habitats in 4 major groups according to 
their spatial scale (Table 3.4). Currently, techniques based on backscatter acoustic mapping 
are able to provide classes at a fine spatial scale (Siemes et al., 2009; Siemes et al., 2010). 
These, however, still have to find their way into the area of habitat mapping. For example, 
regarding the meso- and macro-habitat studies, only little has been done yet regarding high 
resolution acoustic classification on this scale level (Kostylev et al., 2003; Durand et al., 2006; 
Savini et al., 2014). Often use is made of image/video mapping instead of acoustic 
classification. However, this includes manual or supervised classification that might come 
with a subjective error (Brown et al., 2011). In addition, it is difficult and more time 
consuming to obtain 100% coverage of an area with visual mapping. 
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Although fine spatial resolution can nowadays be achieved in unsupervised 
classification, there are still a number of items to be resolved. These are related mainly to 
the transition zones between sedimentary classes (Kostylev et al., 2003; Lucieer & Lucieer, 
2009).In addition to the spatial resolution, also the degree to which the method can 
discriminate between different sediment types is of importance.  

A significant improvement bridging the gap between spatial resolution and acoustic 
discrimination capability was done by Fonseca et al. (2009). They combined the high 
correlation of the ARA technique and ground truth data, with backscatter mosaics in order 
to gain better spatial resolution. In their approach they relied on discrete homogeneous 
acoustic units in the mosaic which were characterised by the ARA analysis. This however, 
suffers from the assumption that fine scale sedimentological features should also exist in 
broader scales in order to be resolved by the ARA. This is not always the case; for example it 
is typical that sand ripples (Fig. 3.11) with a wavelength of 1-10 meters in shallow water (10-
15 m) can hold various grain sizes depending on current direction or changes in 
sedimentation. Hence, sediment variations on a meter scale cannot be resolved by the ca. 
50 meters swath footprint that the ARA relies on in 10-15m water depth. As a consequence 
the ARA method is ideally applied when mapping coarser scales e.g.: mega-habitats.  

The finer the spatial scale becomes (e.g.: macro- and microhabitats) the less within-
habitat sediment heterogeneity exists. This means that modern techniques should be able 
not only to fully exploit the MBES spatial resolution, but also to discriminate rather small 
acoustic contrasts of different sedimentary seafloor units. In our example, seafloor features 
such as 5 to 10m wide trails of dumped oysters shells as well as sand ripple-scale variations 
could be resolved (Fig. 3.11). Acoustic variability of the oyster trails as captured by the 
Bayesian classification indicates that they express a variable degree of density within the 
dumping area. The variability of sediment types in the area of sand ripples can be explained 
by the fact that the area was a former estuary exposed to tidal activity. Following the 
establishment of the dam in 1971, the sand ripple troughs started to accumulate fine 
grained terrigenous material and phytodetritus in a gradual pattern based on the 
bathymetry (Fig. 3.11 lower). Consequently, this creates an acoustic contrast that is resolved 
by our classification technique. Because of our findings and as an analogous to spatial 
resolution we would like to introduce the term geoacoustic resolution to describe the scale 
at which different types of sediment can be resolved using a certain acoustic 
classification/characterisation technique. Key aspects of this concept are: 
 

1) The backscatter measurements per beam; the beam footprint is in general at a scale 
relevant to seascape features. 

2) The Gaussians (Fig. 4.3). They express the geoacoustic resolution in practice; the 
more separate the Gaussians are, the better the geoacoustic resolution.  

 
The geoacoustic resolution can be measured in dB values and is related to the 

difference of the mean value between classes (Fig. 3.6). The within-class standard deviation 
of BS values  defines the number of classes that can maximally be discriminated based upon 
the backscatter values and the range of each class. The smaller the resulting difference 
between the mean (central) BS values of each class the better is the geoacoustic resolution 
(given small standard deviation within class). The majority of literature includes regional 
seafloor mapping where MBES backscatter classification results can distinguish between 
major sedimentary facies with increased acoustic contrast (e.g. sand from gravel) but when 



Evangelos Alevizos, Acoustic Seafloor Classification  2017

 

60 
 

the transition from one sedimentary unit to the other becomes smoother in terms of grain 
size (e.g. silt to fine sand) the need for a higher geoacoustic resolution exists. The more 
similar (neighbouring) sedimentary classes an acoustic classification method can discern, the 
higher is its geoacoustic resolution.  

 

Table 3.4: Major habitat types according to their spatial extent (from Greene et al., 2007). 

Habitat Dimensions Map scale Physiography 

Megahabitat a few km to 10s of km >= 1:1000000 
Shelf, slope, abyssal 

plain 

Mesohabitat 
10s of meters to a few 

km 
1:50000 - 1:250000 Semounts, canyons 

Macrohabitat 1-10 meters 1:1000-1:50000 
boulders, outcrops, 

reefs 

Microhabitat cm - 1 meter up to 1:1000 
individual reef, 
crevaces, cracks 

 
A technique with increased geoacoustic resolution can provide valuable information 

about fine scale sediment dynamics and interactions of benthos with various grain sizes. This 
kind of information about fine scale sediment variability is crucial for habitat mapping at 
seascape scale and the geoacoustic resolution can be used as a measure of this 
achievement. According to our fine scale classification (Table 3.2) our geoacoustic resolution 
is high enough to discriminate different grades of silt mixed with sand, shells and shell 
fragments up to 25%.   
 

 

Figure 3.11:  
Upper: Acoustic classes with high 
geoacoustic resolution of fine scale 
sedimentary features such as trails of 
dumped oysters (ellipse) and sand ripples 
with low contrast in grain sizes due to 
terrigenous sedimentation(rectangle). 
Lower: Greyscale mosaic (2m bin) of 
backscatter intensities with bathymetric 
contours, to illustrate the comparability of 
acoustic classes above with fine scale 
seabed features 
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3.5 Conclusions 
 
In this study we examined the capabilities of two unsupervised methodologies in 

acoustic classification of seafloor. Furthermore, we compared their results with grain size 
data in order to validate their performance. We can conclude that the Bayesian technique 
was more suitable for quantitative validation with ground truth given that it outputs acoustic 
classes that are related to dB values. We discovered that this method is capable to detect 
changes in relatively homogeneous sediments owed to minor fluctuations of the coarse 
fraction content. In addition, the produced acoustic classes express the effect of volume 
scattering. Another important finding is that the Bayesian technique provided acoustic 
classes for groups of neighbouring beams resulting in high spatial resolution of the final 
classification map. As a result we were able to resolve fine scale sediment variations of 
features such as dumped oysters trails and sand ripples.  

These findings raise the necessity for discriminating sedimentary units with low 
acoustic contrast. Therefore we suggest the term geoacoustic resolution for describing the 
ability of an acoustic classification technique to resolve similar (neighbouring) sedimentary 
classes. We infer that mapping of macro and micro habitats requires not only high resolution 
MBES datasets but also processing techniques that better exploit these datasets and 
discriminate fine scale sedimentary features. Through high spatial and geoacoustic 
resolutions a map can inform decision makers on a scale comparable to that of the ground 
truth data. 

This study demonstrates the efficiency of the Bayesian technique in discriminating fine 
unconsolidated sediments holding various percentages (up to 25%) of coarse-grained 
material (>500 μm). These types of sediment are comparable to pelagic sediments in terms 
of grain size composition. Hence we want to highlight the suitability of the method 
particularly for (AUV/ROV-based) deep sea studies where sediment sampling is significantly 
limited by time.  
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4. Multi-angle backscatter classification and sub-bottom 

profiling for improved seafloor characterization 
 

 

This chapter was published in June 2017 in the Special Issue: “Seafloor backscatter from 

swath echosounders: technology and applications” of Marine Geophysical Research journal: 

Alevizos E., Snellen M., Simons D.G., Siemes K., Greinert J., 2017, Multi-angle backscatter 
classification and sub-bottom profiling for improved seafloor characterization, Marine 
Geophysical Research , Special Issue "Seafloor backscatter from swath echosounders: 
technology and applications", pp.1-18, DOI:10.1007/s11001-017-9325-4 
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Abstract 

This study applies three classification methods exploiting the angular dependence of 
acoustic seafloor backscatter along with high resolution sub-bottom profiling for seafloor 
sediment characterization in the Eckernförde Bay, Baltic Sea Germany. This area is well 
suited for acoustic backscatter studies due to its shallowness, its smooth bathymetry and 
the presence of a wide range of sediment types. Backscatter data were acquired using a 
Seabeam1180 (180 kHz) multibeam echosounder and Sub-Bottom Profiler data were 
recorded using a SES-2000 parametric sonar transmitting 6 and 12 kHz. The high density of 
seafloor soundings allowed extracting backscatter layers for five beam angles over a large 
part of the surveyed area. A Bayesian probability method was employed for sediment 
classification based on the backscatter variability at a single incidence angle, whereas 
Maximum Likelihood Classification (MLC) and Principal Components Analysis (PCA) were 
applied to the multi-angle layers. The Bayesian approach was used for identifying the 
optimum number of acoustic classes because cluster validation is carried out prior to class 
assignment and class outputs are ordinal categorical values. The method is based on the 
principle that backscatter values from a single incidence angle express a normal distribution 
for a particular sediment type. The resulting Bayesian classes were well correlated to 
median grain sizes and the percentage of coarse material. The MLC method uses angular 
response information from five layers of training areas extracted from the Bayesian 
classification map. The subsequent PCA analysis is based on the transformation of these five 
layers into two principal components that comprise most of the data variability. These 
principal components were clustered in five classes after running an external cluster 
validation test. In general both methods MLC and PCA, separated the various sediment 
types effectively, showing good agreement (kappa>0.7) with the Bayesian approach which 
also correlates well with ground truth data (r2>0.7). In addition, sub-bottom data were used 
in conjunction with the Bayesian classification results to characterize acoustic classes with 
respect to their geological and stratigraphic interpretation. The joined interpretation of 
seafloor and sub-seafloor data sets proved to be an efficient approach for a better 
understanding of seafloor backscatter patchiness and to discriminate acoustically similar 
classes in different geological/bathymetric settings.  
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4.1 Introduction 
Acoustic mapping of seafloor sediments 
  

The applicability and effectiveness of multibeam echosounder systems (MBES) in 
mapping seafloor sediments has improved significantly in recent years. By characterizing the 
seafloor in terms of its geo-acoustic properties, several studies have mapped benthic 
habitats (e.g. Brown & Blondel, 2009; Brown et al., 2011). In general this approach exploits 
the affinity of benthic species for seafloor areas that exhibit certain sediment properties, 
particularly grain sizes or hardness of the sediment. These correlate to acoustic properties 
that correspond to particular backscatter intensity levels (Collier et al., 2004; Fonseca & 
Mayer, 2007; McGonigle & Collier, 2014). Other examples for habitat mapping using 
acoustic information are given e.g. in Blondel et al. (2006) who applied a multi-frequency 
approach to map deep sea corals; Ierodiaconou et al. (2007) combined video and image 
analysis with MBES data for mapping algae and invertebrate biotopes; Le Bas and Huvenne 
(2009) investigated various methods for processing acoustic data for benthic habitat 
mapping and Che-Hasan et al. (2012a,b and 2014) used Angular Response Analysis (ARA) for 
classifying the seafloor and link this to benthic habitats.  

Additionally to studies using seafloor backscatter, others integrated backscatter with 
sub-bottom profiling (SBP) data as an approach for seafloor characterization. Sweeney et al. 
(2012) utilized MBES backscatter and high resolution CHIRP data for interpreting a low 
backscatter feature on the New Jersey (USA) continental margin, whereas Fakiris et al., 
(2014) combined side-scan sonar data with 3.5 kHz SBP data for benthic habitat mapping in 
the Lourdas Gulf (Greece). Siemes et al. (2010) used sub-bottom profiler data to investigate 
the reason for high seafloor backscatter data in areas with very fine sediment. The SBP data 
indicated the presence of gas in the area, which increase the measured seafloor backscatter 
strengths. Another example is given by Schneider von Deimling et al. (2013) who applied 
ARA on low frequency MBES data in conjunction with SBP data for identifying gas layers in 
the sediment of Eckernförde Bay (Germany). This shows that MBES and SBP datasets can 
complement each other for a better seafloor and sub-bottom property understanding. 
Acoustic seafloor classification results can be characterized further by correlating them to 
ground truthing but also SBP data if sub-seafloor reflectors have an expression on the 
seafloor, i.e. are partially exposed. 
   

Objectives 

This study investigates the usefulness of within-angle and between-angle variability of 
MBES backscatter values for seafloor classification based on MBES backscatter data derived 
from high density seafloor soundings. We apply a Bayesian probability method on 
backscatter values for each incidence angle and we compare its results against classification 
results based on multi-angle backscatter layers using Maximum Likelihood Classification 
(MLC) and Principal Components Analysis (PCA). The Bayesian method uses the backscatter 
measurements per beam and classifies sediments at the resolution of the average beam 
footprint. Information about the backscatter angular response is not directly used; however 
the angular dependence (influence of the grazing angle) of the backscatter must not be 
removed from the data. In contrast to that, the traditional Angular Response Analysis (ARA) 
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matches the measured angular responses to a set of modelled angular response curves by 
varying the model input parameters until a maximum match is obtained. Traditional ARA 
results show only low spatial resolution since in most cases ARA is based on a fit of half of 
the swath of the MBES. In addition absolute backscatter strengths and thus well-calibrated 
MBES systems are needed for these backscatter measurements. In practice, backscatter 
measurements are often subject to imperfect calibration. 

To counteract these drawbacks, we propose using empirical ARA (Beyer et al., 2005). 
This method is not dependent on absolute backscatter measurements and uses seafloor 
patches that are significantly smaller than half the swath width, which is considered a 
novelty in the field of backscatter processing and interpretation. The empirical ARA is based 
on stable, but not absolute backscatter measurements and is applied as an alternative to 
traditional ARA because of its insensitivity to systematic biases (Lurton & Lamarche, 2015) 
and thus offers better backscatter processing opportunities for seafloor classification. 
Hughes Clarke (1994) and Parnum (2007) highlight the necessity that data for ARA should 
ideally be derived from small scale homogeneous patches of the seafloor to better resolve 
sediment differences. The strategy most often used to maximize class separability in 
traditional ARA studies is to combine them with backscatter mosaic segmentation results 
(Fonseca et al., 2009; Che-Hasan et al., 2012a,b; Rzhanov et al., 2012). Angular responses 
derived from segments representing homogeneous acoustic types are assumed to provide 
better discrimination capability. However, segmentation of backscatter mosaics relies on 
subjective settings selected by the user which has at the end implications for the selection 
of soundings belonging to a segment specific ARA response. In this study, we set the 
minimum dimensions of seafloor patches for extracting the ARA to 5x5 meters assuming 
that within these patches sediment variability is minimal/not existing. This selection is 
justified by the high density of soundings per seafloor unit.   

By comparing the performance of the different backscatter classification approaches 
we aim to test their suitability in resolving a wide range of sediment types using only the 
raw backscatter data and their angular dependence. Classification results are being assessed 
and characterized using grain size and SBP data.   

 

4.2 Methodology 
Study area 
  

Eckernförde Bay (Eck Bay) has a diverse marine ecosystem and has in parts assigned a 
Site of Community Importance (SCI) under the Nature 2000 habitats directive. The study 
area has two basins with maximum depths of 20 to 30 m separated by the Mittelgrund area, 
a local elevation feature with a minimum depth of 8 meters. Approximately 99% of the 
slope values in the entire area range between 0-5 degrees, which translates into a smooth 
seafloor morphology. The entire area shows a high variability of sediment types, ranging 
from coarse sand with pebbles and boulders to silty clay. According to Jensen et al. (2002), 
Mittelgrund represents a relict morainic sill and is composed of glacial and marine 
sediments with variable thicknesses; predominantly Mittelgrund consists of glacial till and 
sands (Jensen et al., 2002). 
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Figure 4.1: Overview map of the study area with bathymetry and contours, sediment samples 
locations, and the high density line-spacing survey (black rectangle). Soundings in the legend of the 
right image refer to a 5x5 meter area. 

 

Earlier geological, geochemical and geophysical studies in the area showed that the 
marine continuation of a glacial sand aquifer is responsible for freshwater seepage at places 
where the overburden sediments are not sealing due to coarser grain sizes (Jensen et al., 
2002; Müller et al., 2011). Whiticar (2002) realized that the presence of pockmarks in Eck 
Bay is caused by this freshwater seepage and not, as suggested for several other pockmarks, 
by methane ebullition (Hovland & Judd, 1988). In general, the southern part of the bay is 
formed by an incised channel filled with sediments of several meters of thickness whereas 
the northern part of the bay holds sediments with a vertical extent that could not be 
determined by the performed sub-bottom profiling because of gas blanking with free gas 
accumulating one to two meters below the seafloor (see also Jensen et al., 2002). The 
deeper parts of the bay contain finer sediments (mainly silt) under highly anoxic 
geochemical conditions due to high organic matter concentrations (Whiticar, 2002). 
Nittrouer et al. (1998) and Bentley et al. (2002) described the fine-scale stratigraphy of the 
deeper parts as areas in which most of the sediment consists of pelletized layers between 1 
and 10 cm thickness alternating with slightly coarser (10% silt-sand) storm layers. 
Consequently, the study area contains a broad spectrum of seafloor sediment types, which 
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in conjunction with the smooth seafloor bathymetry offers a unique opportunity for 
dedicated MBES backscatter studies.  

 

Multibeam data 

The study area was surveyed by MBES between 2012 and 2015 onboard RV Alkor and 
RV Littorina. On both vessels, an ELAC Seabeam 1180 MBES was used operating at 180 kHz. 
The surveys mainly covered the wider area of Mittelgrund whereas towards the west the 
data get sparser. In particular the 2012 surveys covered a narrow 1x10 km corridor from the 
northern part of Mittelgrund to the northernmost coast of Eck Bay with a dense line spacing 
(20-50 m) as part of a 3D seismic survey. This survey plan yielded dense soundings per 
seafloor area for various incidence angles (Fig. 4.1). The MBES data were corrected for 
sound speed and tidal effects using the ELAC-HDPPost software. The complete processed 
data were exported as ASCII data for further analyses in GIS software packages. In addition 
raw backscatter data for each beam were extracted from the sonar files. They were used for 
acoustic classification using two unsupervised and one supervised methodologies; these are 
described below. The bathymetry grid and the backscatter mosaic of the area were 
generated using a 2 by 2 meters cell size.  

 

Bayesian unsupervised classification based on individual beam 
angles 

The raw backscatter data were processed in Matlab using the unsupervised Bayesian 
classification technique developed by Simons & Snellen (2009) and Amiri-Simkooei et al. 
(2009). This technique is based on the central limit theorem; applied to backscatter analysis, 
this means that the backscatter intensities of a specific type of seafloor will have a Gaussian 
distribution when examined at a single beam angle or a number of adjacent beam angles. 
This technique fits a number of Gaussian curves to the histogram of backscatter values 
recorded for the beam(s) under consideration over the entire study area. For areas with 
more than a single sediment type, the total backscatter histogram can be approximated by a 
number of Gaussian curves, each Gaussian corresponding to a certain sediment type. To 
find the number of Gaussians that are minimally needed to obtain the best possible 
agreement between the measured and the modelled histograms, the x2 criterion regarding 
the best fit to the entire histogram is considered. The minimum number of Gaussian curves 
that satisfy the x2 criterion, represents the optimum number of classes that can be 
discriminated based on the backscatter response (Amiri-Simkooei et al., 2009; Siemes et al., 
2010; Snellen et al., 2013). For determining this number, outer beams at about 40° 
incidence angle are considered because the number of scatter pixels in the beam footprint 
is high, resulting in the best possible discrimination of sediment types. The derived number 
of Gaussian curves is then used to fit the histograms for all other incidence angles. Based on 
the resulting fits, acceptance regions of backscatter values are obtained for each incidence 
angle (or set of adjacent beams grouped as ‘one’ incidence angle) by applying the Bayes 
decision rule for multiple hypotheses. Each acceptance region corresponds to a certain 
acoustic class. The main advantages of this technique are: 1) that no absolute sonar 
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calibration is needed, 2) that it accounts for ping-to-ping variability, 3) that it can resolve 
different seafloor characteristics along the swath and 4) that it performs a statistical control 
on the optimal number of seafloor classes. A detailed description for applying the Bayesian 
approach to classify soft sediments can also be found in Alevizos et al. (2015). The final class 
assignment is performed for each beam and results can be exported as ASCII files and 
further analysed in GIS software packages. 

 

Empirical Angular Response Analysis and MLC based on angular 
layers  

The angular dependence of seafloor backscatter varies with the physical properties of 
the substrate (Fonseca & Mayer, 2007) and this has been used in many studies providing 
semi-quantitative information on surficial sediment properties (Beyer et al., 2007; Lamarche 
et al., 2011; Rzhanov et al., 2012; Huang et al., 2013). Although methodology constitutes a 
robust and physical model approach, it tends to lack sufficient spatial resolution when 
applied to most MBES datasets. Since half of the sonar swath is usually considered as a 
single measurement for ARA, the resulting classification patches are at least a few tens of 
meters in size, even in shallow water (in 10m water depth half of a 130° wide swath is 22m). 

In addition, the traditional ARA approach requires MBES calibration. In the literature, 
approaches have been presented to compensate for these drawbacks; empirical approaches 
have been examined (Beyer et al., 2007) and strategies have been suggested to improve the 
spatial resolution of ARA (Fonseca et al., 2009). In this study, we follow an alternative 
approach that exploits the high sounding density of the used MBES surveys (Fig. 4.1) for 
extracting and utilizing the backscatter angular dependence without losing spatial 
resolution. The high density of the seafloor ensonification in most of the study area allowed 
the extraction of angular backscatter measurements from selected 5x5 m seafloor patches 
(training areas) which are assumed to have a homogeneous sediment cover. Each of these 
patches includes several hundreds of evenly spaced soundings (Table 4.1, appendix for 
chapter 4). The selection of seafloor patches was based on existing ground truth data 
(sediment samples) and the results of the Bayesian classification (Fig. 4.2). The high geo-
acoustic resolution of the Bayesian approach (Alevizos et al., 2015) produces acoustic 
classes that discern minor differences between similar sediment types. In this regard, each 
extracted angular profile has a unique geometry representing different types of sediment 
(Fig. 4.2, Table 4.1 appendix for chapter 4).  

Instead of the traditional ARA, where the full measured angular profile is used for a fit 
with a modelled angular profile, here we use the empirical ARA. The scheme for the 
resulting supervised acoustic classification was developed analogous to multispectral 
imagery classification. The measured backscatter intensity was gridded into individual 
layers, using the Inverse Distance Weighted (IDW) algorithm on the data points from 
individual beams at 20, 30, 40, 50 and 60 degrees of beam incidence angle (Fig. 4.2). In the 
end, five angular backscatter intensity layers with 5x5 m grid cell size were produced for the 
same area with small differences in overlap due to variable beam coverage. These layers 
were classified using the Maximum Likelihood Classification (MLC) algorithm implemented 
in ArcMap. The MLC considers that backscatter intensity values of a certain seafloor type 
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follow a Gaussian distribution. This applies for most of our training sample data (Table 4.1, 
appendix for chapter 4) given that they are derived from local homogeneous areas.   

 
 

 

Figure 4.2:  Angular responses plot of selected 5x5 m patches belonging to different acoustic 
sedimentary classes. Ground-truth sample number in brackets indicates from which locations the 
patches were extracted. These were used as training areas (a priori knowledge) for the MLC. Black 
rectangles indicate the selected angles for producing the angular layers. 

 

The MLC algorithm is commonly used for multispectral satellite image classification 
and is also applied in seafloor mapping. Erdey-Heydorn (2008) and Calvert et al. (2014) 
applied MLC in order to classify benthic habitats using multiple layers of bathymetry, 
bathymetric derivatives and backscatter data. The supervised approach chosen in this study 
is similar to the approach described in Che-Hasan et al. (2012b) who used 71 individual 
angular response layers with a set of supervised algorithms including the MLC. They 
considered half of the sonar swath for the ARA whereas in this study angular data from 5x5 
meters patches from training areas are used in the MLC as a priori knowledge.   

Because data acquisition in 2012 and 2014-2015 took place with different sonar 
configurations, we performed a comparison before classification. The comparison (Fig. 4.3) 
was based on separate examinations of soundings from two seafloor patches (5x5 meters) 
with different sediment types that have been surveyed in 2012 and 2014-2015. These two 
patches were the only places sufficiently ensonified during all previous surveys. Although 
using two patches only may not be sufficient for statistical assessment of all ground truth 
locations, they provide an indication regarding the stability of the backscatter 
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measurements over the different years and surveys. After validating the backscatter 
stability for two different seafloor types (gravel and sand) we hypothesize that the stability 
also holds for other seafloor types in the study area.      
 

 
Figure 4.3: Comparison between soundings from seafloor patches at sediment sample locations 
investigated during different surveys (2012 mobile SeaBeam 1180 on RV Alkor; 2014-2015 fixed 
installed SeaBeam 1180 on RV Littorina). 
 

Principal Components Analysis using angular layers 

This method is derived from satellite image analysis and allows for utilizing a 
dimensionally reduced dataset (fewer layers of information) to describe the data variability 
in a more effective way. The basic concept is to use a set of spatial layers as input and 
transform them into a new uncorrelated set of layers via orthogonal linear transformation 
of the initial set of layers. The transformed layers are fewer in number and represent an 
ordinal set of principal components. The first two principal components often account for 
the maximum in data variability and thus can be classified using a standard clustering 
algorithm such as k-means. The principal components do not contain the clusters 
themselves, but their combination has the potential for producing clustering patterns. 

Before the use of k-means, a cluster validation test is performed to estimate the 
optimal number into which the principal components can be clustered. The Principal 
Component Analysis (PCA) has been repeatedly applied for seafloor classification using 
acoustic datasets. One example is the study of Preston (2009), who applied PCA to a set of 
textural layers produced from MBES backscatter. Other examples are from Amiri-Simkooei 
et al. (2011) and Eleftherakis et al. (2014), who applied PCA to a set of MBES bathymetry 
derivatives and backscatter statistics to discriminate riverbed sediments. In the present 
study we apply PCA to the set of five MBES backscatter angular layers described above and 
use the first two principal components in conjunction with the k-means clustering algorithm 
to classify the seafloor. Cluster validation was performed using the C-H criterion (Calinsky & 
Harabazr, 1974).  
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Sub-bottom profiler data 

A sub-bottom-profiler (SBP) survey in 2015 was designed to cover areas with variable 
seafloor backscatter responses seen in previous MBES surveys. The SBP survey was run with 
a SES-2000 system (Innomar) recording 12 kHz and 6 kHz simultaneously with the Innomar 
SIS© software. The system was mounted at the side of the vessel on a stable pole. The 
acquisition occurred during good weather conditions; in total 25 km of SBP data including 
two profiles along the minor and major axes of the Mittelgrund were acquired (Fig. 4.4A). 
Pre-processing included applying a bandpass filter along with stacking and smoothing based 
on two consecutive traces for data enhancement and gain adjustment. In another step, the 
bottom reflector, the acoustic basement reflector, and the top of an acoustic turbidity 
reflector were digitized and exported for further analysis using Fledermaus 3D viewer. The 
term ‘acoustic basement’ is here referred to as the continuous reflector beyond which the 
acoustic signal does not penetrate any further. The digitized reflectors were further 
analyzed using ArcGIS and EXCEL. In particular, we used the SBP navigation to extract the 
depth and acoustic class information from the Bayesian classification results for the two 
along and across Mittelgrund SBP lines (Fig. 4.4A). Visual interpretation of the sub-bottom 
was enhanced by draping the classification results on the SBP profiles.   

Sediment grain size analyses 

Sample locations were selected by visual examination of the processed backscatter 
map (Fig. 4.4A) and acoustic classification results, with the aim of sampling as many 
different acoustic classes as possible for a robust validation. In total, 22 sediment samples 
were collected using a Van-Veen grab and a multi-corer. The samples were weighed and 
separated with 500µm, 2mm and 6.4mm sieves. The fine fraction <500µm was measured 
using a laser particle analyzer (Analysette-22 NanoTec, Fritsch©). We extracted the median 
and mode of each, the fine and total fractions and integrated the results of the particle 
analysis with the weight of the sieved fractions. This was achieved by converting the grain 
sizes of the fine fraction into weight assuming spherical particles.    

 

4.3 Results 

Backscatter analysis with the Bayesian approach indicates the existence of five 
acoustic classes (AC1-AC5, Fig. 4.4B,C). It is noteworthy that an intrinsic feature of the 
Bayesian classification is that it outputs sequential classes; here this means that an 
increasing class number represents increasing backscatter intensity. Based on this we 
correlated the Bayesian classes against the derived grain size parameters (Table 4.2). 
Bayesian classes were also used for comparison with the classification results of the other 
two approaches and for the interpretation of the SBP data.  
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Figure 4.4: A) MBES backscatter mosaic of the study area (2012-2015 surveys) with sediment sample 
locations and SBP track lines (green). Red rectangles enclose the SBP profiles shown in the 
corresponding annotated Figures. B) Bayesian unsupervised classification map with locations of 
sediment samples. C) Density functions fitted to the MBES backscatter raw data from beams with 
incident angles 38 and 40 (port side) representing five major acoustic classes (curves are color-coded 
for their respective classes). Black squares indicate the intersection points of adjacent curves. 

 

Bayesian classification and correlation with ground truth data 

The Bayesian method yielded five classes, expressed by Gaussian distributions holding 
a central dB value (Fig. 4.4C). The number of classes resulted from applying the x2 criterion 
for the Probability Density Functions (PDFs) fitted to the backscatter histograms of beams 
with incidence angles of 38° and 40°. Using these two neighboring beams simultaneously for 
class validation, the robustness of the optimum number of classes is increased with better x2 
values and a better separation of the fitted PDFs (Fig. 4.4C). The suitability of incidence 
angles from the middle range of the swath is related to the significant different backscatter 
behavior of different sediment types in this range of incidence angles (for further 
explanation, see Discussion paragraph). The geo-acoustic resolution of the Bayesian 
classification (Alevizos et al., 2015) made it possible to map storm deposits within the upper 
ten centimeters of clayey/muddy sediment in the central area of the northern deep part of 
the Eckernförde Bay (samples 9, 10, 11, Fig. 4.4B) as the two separate acoustic classes AC2 
and AC3. In general the sediments in the northern deep part have been described by 
Nittrouer et al. (1998) and Bentley et al. (2002) as sediments consisting of pelletized layers 
between 1 to 10 cm thickness alternating with slightly coarser storm layers (10% silt-sand). 

Acoustic classes AC2 and AC3 (sediment samples 9 and 11) show only a small increase 
in coarse material (0.5 – 4 %) within a generally fine grained matrix (Table 4.3, appendix for 
chapter 4). We interpret these as storm deposits in which the coarse fraction produces the 
slightly stronger backscatter in the central deep part of the bay. 
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In an additional step, each class was correlated with different parameters of the grain 
size results (median, mode, and coarse fraction percentages, see Table 4.2) validating the 
acoustic clustering. In particular the percentage of the coarse sand fraction (2mm-500µm) 
along with the mode and the median grain size of the fine fraction (<500µm) show high 
correlation coefficients with the five classes (Table 4.2). However, the lower the class 
number (lower dB values) the greater is the ambiguity (class overlap between classes 1 and 
2 in Fig. 4.4C).  
 

Table 4.2: Pearson’s correlation coefficients for linear regressions of acoustic classes with 
grain size parameters. 

Grain size parameter Correlation coefficient 

median (<500 µm) 0.71 

mode (<500 µm) 0.73 

2mm-500mm percentage 0.75 

6.3mm – 2mm percentage 0.67 
 

ARA-MLC and PCA classification using multi-angle layers 

The MLC algorithm used the angular information from soundings of homogeneous 
training areas (Fig. 4.2). The data of these training samples partially satisfy the basic 
assumption of the MLC concept that a particular sediment type expresses a normal 
distribution of backscatter values (Table 4.1, appendix for chapter 4). Only samples from 
classes AC1 and AC2 show a different distribution, but these classes also hold much fewer 
data points. During the MLC processing, the mean vector (Fig. 4.5B) and the covariance 
matrix of all angular layers are estimated from the training set. This information is then used 
for assigning classes to the rest of the data.  

The clear separation of the angular backscatter response curves in Fig.4.5B enhances 
the performance of the supervised classification, hence minimizing class overlap. The small 
standard deviation for class AC1 and AC4 might be responsible for the small areas assigned 
to these classes. It was found that AC4 occupies more small patches compared to the results 
of the two unsupervised methods (Fig. 4.5A, B) and shows a more abrupt transition from 
AC5 to AC3, particularly in the northern part of the bay. Data gaps in the final ARA-MLC 
classification map are due to unclassified pixels that did not hold sufficient overlap with all 
angular layers. The PCA results were clustered in five classes (as derived from the C-H 
criterion) using the k-means algorithm (Fig. 4.5C). Figure 4.5D shows these five classes in 
which the first two principal components of soundings from the 5 x 5 m patches of all 
sediment sample locations are plotted. The k-means clustering of the PCA results produced 
classes without ordinal character. It was observed that the spatial extent of each class 
corresponds very well with the spatial extent of the Bayesian classes that are ordinal. Hence 
the PCA and k-means classes were reclassified to correspond to the Bayesian ordinal classes 
order.  
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Acoustic class description and sub-bottom interpretation 

SBP data show an acoustic basement with a continuous high-amplitude reflector. The 
depth of this reflector is lowest on top of Mittelgrund where it corresponds to the seafloor 
surface; it increases to 1-2 meters along its slopes and rapidly deepens with increasing 
distance from the Mittelgrund (Fig. 4.6A). It is not possible to track the acoustic basement in 
the northern part of the bay because of gas blanking (Fig. 4.6A, symbol g), but we assume 
that acoustic basement lies several meters below the fine-grained sediment cover. 
Interpretation of the SBP data is supported by the Bayesian acoustic classes that correspond 
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with the proximity of the acoustic basement to the seafloor (Fig. 4.7, Table 4.4); the 
shallower the depth of acoustic basement, the higher the backscatter intensity. This is 
rather related to geological factors and not to the limited (<10cm) penetration of the high 
frequency (180 kHz) acoustic signal (Ferrini and Flood, 2006). Three distinct acoustic layers 
can be identified between the seafloor and the acoustic basement. The uppermost 
acoustically transparent layer of 0.5 – 1 meter thickness is found along the southern and 
northern flanks of Mittelgrund (Fig. 4.6A). Directly below, a 0.5 to 1m thick layer with 
chaotic reflectors can be observed. This layer reaches the seafloor mainly on the shoulder of 
Mittelgrund, where it is locally covered by the uppermost acoustically transparent layer (Fig. 
4.6A, enlargement).  

 

Table 4.4: Summary sedimentological and acoustic description of the Bayesian classes (mbs: 
meters below seafloor). 

Bayes 
class 

Central 
dB 

value 

Backscatte-
ring factors 

SBP units 
% Coarse 
(>500µm) 

Jensen et al., 
(2002) 

Depth of 
acoustic 

basement 
(mbs) 

1 -70.3 grain size - - 
Littorina mud (with 

gas) 
>>2 

2 -68 grain size - <=1 
Littorina mud (with 

gas) 
>>2 

3 -61 
grain size, 

shells 

uppermost 
transparent 

layer 
1 - 4.1 

Late Glacial sand 
(fine fraction) 

0.5 - 2 

4 -55.9 
grain size, 

epibenthos, 
shells 

chaotic 
layer, 

hyperbolae 
15 

Late Glacial sand 
(coarse fraction) 

0 - 0.5 

5 -50.9 
grain size, 

epibenthos, 
shells 

acoustic 
basement 

>>20 

Subsurface: 
Quaternary sand, 
exposed: Littorina 
sand & gravel / Till 

0 ( or few cm) 

 

Away from Mittelgrund, a more than two meters thick layer with parallel reflectors 
covers the northern and southern basins of the bay. In the north, this layer is blanked by 
free gas accumulations approximately 2 meters below the seafloor (Fig. 4.6A symbol g). 
Apart from continuous reflectors, sparse or dense hyperbolic reflectors were found as the 
uppermost acoustic layer in the westernmost part of Mittelgrund (Fig. 4.6B enlargement, 
symbol h). When overlaying the Bayesian acoustic classes on the sub-bottom profiles, AC3 
mostly overlays the transparent uppermost layer on the Mittelgrund flanks (Fig. 4.6A, B). 
AC4 corresponds with the outcrop of the chaotic reflector layer at the southern flank of 
Mittelgrund (Fig. 4.6A). Away from the flanks, AC4 corresponds to hyperbolic reflector 
layers (Fig. 4.6B, symbol h). It is assumed that AC5 (highest backscatter intensity) covers a 
large portion of the shallowest part of Mittelgrund, which mainly consists of glacial till. 
There is no layering visible in the SBP data from this area due to the very hard reflection at 
the seafloor surface (Fig. 4.6A, B). It should be noted that AC3 away from the Mittelgrund 
also appears as patches within AC2 (Fig. 4.4B, 4.6A). AC1 covers the deeper parts of the area 
and locally alternates with AC2. The top of the acoustically opaque layer in the 
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northernmost part of the profile is highlighted in Fig. 4.6A. In the southern part, acoustic 
blanking occurs only locally in the deeper part of a paleo-channel (Fig. 4.6A).   

In the following we present the characteristics of each Bayesian class along with their 
relationship to SBP interpretations and ground truth data following Folk’s sediment 
classification (Folk, 1954): 

 
Acoustic class 1 (AC1) mud/clay: According to two ground-truth samples this class 
represents the top of anoxic mud and clay deposits covering mainly the deep parts of the 
study area, where thick (> 2 meters) sediment accumulations exist with parallel reflectors in 
SBP data (Fig. 4.6A).  

Acoustic class 2 (AC2), gravelly/sandy mud: Based on grain size analysis of five  samples, 
this class represents muddy and clayey sediment, similar to AC1, but holds a small 
percentage (< 1%) of coarse grained material (including clasts, shells and shell fragments). 
This class is mainly found in the deep basin of the bay and at the foot of Mittelgrund.  

Acoustic class 3 (AC3), sand: According to nine samples, this class consists of at least 80% 
fine sand (Table 4.4) with varying percentages (1-20%) of coarse sand and a small amount 
(<1%) of gravel-sized particles. Seafloor patches of this class are found in the deep basin, on 
the flanks of the Mittelgrund and within the pockmarks SW of Mittelgrund (Fig. 4.4B). 
According to the SBP data interpretation (Figs. 4.6A, B) class AC3 is characterized by the 
presence of a thin (up to 1m) transparent acoustic layer on both the northern and southern 
flanks of Mittelgrund. Grab samples from this class consistently recovered bivalves 
(Macoma balthica, Astarte sp.), numerous tubes of Pectinaria worms and several Ophioura 
specimens. This indicates that the backscatter character of AC3 might also be affected by 
the presence of macro-benthos. 

Acoustic class 4 (AC4), gravelly sand: Sediments of this class (four samples) include a 
moderate amount (5-30%) of coarse sand, a small amount of gravel (1-8%) as well as shells 
and occasionally pebbles in a medium sand matrix (>50%). This class is related to a thin layer 
of chaotic reflectors outcropping at the southern part of Mittelgrund (Fig. 4.6A,B) and to the 
presence of hyperbolic reflectors at the westernmost slope of Mittelgrund (Fig. 4.6B, symbol 
h).  

Acoustic class 5 (AC5) sandy gravel: Two sediment samples of this class are characterized by 
the coarsest sediments recovered from the study area, consisting of 30-40% medium sand, 
at least 60% coarse sand and 2-14% gravel. Shells and pebbles are also present in the 
samples and we assume that the top of Mittelgrund corresponds to the exposed acoustic 
basement (Fig. 4.6A, B).  
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Figure 4.6: A) Sub-bottom profile (location on Fig.4.4A) crossing the minor axis of Mittelgrund. In the 
southern part the incised paleo-channel is clearly visible, filled with a well layered sediment package. 
In the northern part, gas trapped in the upper 1-2 m of sediment (g) prevents the signal from 
penetrating into the deeper sediment layers (Jensen et al., 2002). Acoustic class 3 dominates the 
Mittelgrund flanks, B) Sub-bottom profile (location on Fig.4.4A) along the western tip of Mittelgrund. 
Acoustic class 4 correlates to hyperbolic reflectors (symbol h, enlarged image). 

 

 

 
Figure 4.7: Boxplot illustrating the relation of 
Bayesian acoustic classes to the depth of the 
acoustic basement below the seafloor. 
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4.4 Discussion 
Angular response classification, comparison of single with multi-
angle approaches 
 

In this study we examine the within-angle and between-angles backscatter variability 
using different methods for defining seafloor acoustic classes with high spatial resolution. 
The Bayesian method is employed to estimate the optimum number of classes; this 
approach performs cluster validation before the final assignment of classes. This is an 
advantage compared to other unsupervised methods, which usually require some kind of 
external cluster validation tool (Verfaillie et al., 2009). However, the assumption of the 
Bayesian method—that the backscatter values within each seafloor type should have a 
Gaussian distribution—has been criticized because seafloor sediments or benthic habitats 
appear multi-modal by nature (Che-Hasan et al., 2012b). Sediment inhomogeneity in the 
study area is evident and different seafloor types can generate a similar backscatter 
response. For example, AC3 (sand) seems to be the same class as gravelly/sandy mud. The 
same is true for AC4; here the backscatter is the result of either boulders on the seafloor or 
coarse sediments from exposed layers. This ambiguity is also addressed in Eleftherakis et al. 
(2014). Therefore we suggest that combining various sensors such as MBES and parametric 
SBP along with sufficient ground truth data can offer a better discrimination of sedimentary 
classes.  

In the study area the majority of the bathymetric surface has a slope of less than five 
degrees, so that no specific corrections of backscatter values are needed to account for the 
true grazing angle. This reduces pre-processing efforts considerably. The reference 
incidence angles used to drive the Bayesian classification lie in the mid-range of the MBES 
swath, this is in agreement with previous studies using the backscatter angular dependence 
(Lamarche et al., 2011; Hamilton & Parnum, 2011; Che-Hasan et al., 2014) and also with 
studies using the Bayesian approach (Alevizos et al., 2015). The selection of middle range 
beams is well suited for obtaining a realistic number of classes (best fit of five Gaussian 
curves according to the x2 criterion) and hence to reliably differentiate various seafloor 
types. The good performance of the Bayesian classification using incidence angles of 38° and 
40° is also supported by Lamarche et al. (2011), stating that reliable backscatter 
measurements from angles closer to the nadir (<20°) are hindered by specular reflection 
that dominates the backscatter, whereas measurements in the outer range (>60°) are prone 
to strong angle dependencies and thus are less coherent.  

Results from methods using angular layers (ARA-MLC and PCA) are compared to the 
Bayesian classification map which serves as reference, by examining their contingency 
matrices using Cohen’s kappa as a measure of agreement. Usually contingency maps are 
produced by the combination of a classification map and a ground truth (reference) map for 
the same area. In this case the Bayesian classification map has the role of the reference map 
and is compared with the two multi-angle approaches. The relative agreement between the 
classes is assessed via the percentages of accurately classified pixels (Bayes_acc, PCA_acc 
and ARA-MLC_acc; Table 4.5) for each method. For the PCA and ARA-MLC methods, 
PCA_acc and ARA-MLC_acc represent the respective percentage of pixels in agreement with 
the Bayesian class, while Bayes_acc represents the reliability of this agreement. As an 
example from Table 4.5, 93% of the pixels classified as class AC1 by the PCA method are in 
agreement with the Bayesian results. As the Bayesian approach has 22% more pixels 



Evangelos Alevizos, Acoustic Seafloor Classification  2017

 

79 
 

identified as AC1, the Bayes_acc value only gives 78% reliable agreement compared to the 
PCA classification for AC1. Additionally, the agreement between the three methods can be 
assessed using the classification results for each sediment sample location in Table 4.3 
(Appendix). The contingency tables show that both the PCA and MLC approach produce 
comparable results with good agreement relative to the Bayesian method (Table 4.5). 
However, there are some fluctuations in the agreement between some acoustic classes. The 
highest overall agreement occurs between the unsupervised methods (Bayes and PCA). We 
observed that for classes AC5 and AC4, the PCA method generally agrees with the Bayesian 
approach, whereas there are minor differences regarding the percentage of pixels classified 
as classes AC1 to AC3 (Table 4.5). In contrast, the ARA-MLC approach shows a lower degree 
of agreement with the Bayesian map, particularly for classes AC1 and AC4. Despite these 
observations, the high Cohen’s kappa values indicate that seafloor patches were classified 
consistently and that class assignments do not occur by chance.   

The high sounding density allowed producing separate backscatter mosaics from 
selected angles. Between 20 to 60 degrees incidence angle there is little overlap between 
adjacent angular profiles, so beam angles from that range were selected to produce angular 
layers used by MLC and PCA. In this regard, the Bayesian classification was useful in 
quantifying the separation between the angular responses, hence maximizing the 
discrimination capability of the training set for the MLC. This highlights that Bayesian 
classification and ARA are a good complementary tool set. The Bayesian approach examines 
backscatter variability along a “narrow corridor” of middle range incidence angles 
quantifying the difference between angular responses in a statistically robust way. 

The combination of empirical ARA with the MLC algorithm provides an automated 
sediment classification tool that depends on acoustic properties of the seafloor area under 
investigation. Sufficient ground truth information is required for both the classification and 
validation processes. In this study, applying empirical ARA to data from non-calibrated MBES 
was possible because the angular response profiles of the different sediments were 
sufficiently separated (Fig. 4.2, Fig.4.5B). The backscatter values for the areas of training 
samples 7 and 9 (for classes AC1 and AC2 respectively), are not normal distributed and 
considerably skewed (Table 4.1, appendix for chapter 4). The less good performance of the 
empirical ARA-MLC method for these two classes can be interpreted as a result of lack of 
normal distribution which is a prerequisite for the MLC method. Che-Hasan et al. (2012b) 
suggested that the MLC method does not work for sediments with a high degree of 
homogeneity. However, it has to be mentioned that they incorporated 71 different variables 
in their MLC, while it has been suggested that MLC is not suitable for data with high 
dimensionality and using only a limited amount of training data (Benediktsson et al., 1995). 

Considering our data, it is not clear whether the low performance of the empirical 
ARA-MLC method is an algorithm shortcoming or if a poor data quality is the reason. Once 
more, if training samples with continuous angular backscatter responses can be used, the 
performance of the MLC for sediment differentiation can be more reliably evaluated. It is 
also suggested that future studies should make use of more than five angular layers in order 
to examine the capability of MLC to adequately classify (better discriminate) similar seafloor 
types.  

The PCA and k-means approach, based on multi-angle layer information appears to 
discriminate the different sediment types in the study area efficiently (Fig. 4.5D). Although 
the five angular layers are highly correlated (r2>92%), the resulting first two principal 
components are uncorrelated and describe more than 95% of the between-angle 
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backscatter variability. The spatial correspondence and agreement between the Bayesian 
and PCA classification maps can also be assessed by their contingency matrix.  
 

Table 4.5: Contingency matrices showing the number of pixels classified and the relative 
accuracy percentages for the three methods (numbers in bold: Bayes_acc, PCA_acc, and 
ARA_MLC_acc). 

   Bayes and PCA (kappa=0.91)   

P
C

A
 m

ap
 

Bayes map 

  Class 1 Class 2 Class 3 Class 4 Class 5 %PCA_acc 

Class 1 114642 9054 13 0 0 93 

Class 2 31990 64667 1769 2 0 66 

Class 3 109 8285 121610 27591 86 77 

Class 4 4 23 3607 62012 24605 69 

Class 5 0 2 13 5261 114517 96 

%Bayes_acc 78 79 96 65 82   

 Bayes and MLC (kappa=0.76) 

 
M

LC
 m

ap
 

Bayes map 

  Class 1 Class 2 Class 3 Class 4 Class 5 %MLC_acc 

Class 1 41237 81878 592 0 2 33 

Class 2 26179 60997 11249 0 3 62 

Class 3 299 14081 134397 6182 2722 85 

Class 4 2 1843 15231 18247 54928 20 

Class 5 1 534 145 985 118128 99 

%Bayes_acc 61 38 83 72 67   

 

Joint interpretation of sub-bottom structures and seafloor acoustic 
classes 

Overlaying the Bayesian acoustic classes on SBP data and considering the results from 
Jensen et al. (2002) and Whiticar (2002) a good understanding of the wider Mittelgrund area 
stratigraphy can be supported. Acoustic class AC5 near Mittelgrund maps the exposed 
acoustic basement (Fig 4.6A,B) of glacial till or Littorina sand and gravel as described by 
Jensen et al. (2002) (Table 4.4). Other acoustic classes could be attributed to specific sub-
bottom layers that pinch out at the seafloor, determining the seafloor backscatter (Table 
4.4). Jensen et al. (2002) suggest that only one sediment type covers the glacial till on the 
Mittelgrund flanks, whereas the acoustic classification of this study could define two 
different seafloor types on the flank areas. These two classes (AC3 & AC4) can be linked to a 
finer and coarser fraction of Late Glacial sand as identified by Jensen et al. (2002). In this 
respect the layer with a chaotic character reaching the seafloor in the proximity of the 
Mittelgrund shoulder is related to AC4, representing the coarser fraction of Late Glacial sand 
(Fig. 4.6A, enlargement). AC3 which is related to the upper transparent reflector that covers 
large part of the Mittelgrund flanks probably represents finer material from Late Glacial 
sand deposits and seems to be an important substrate for the local benthic communities. 
Jensen et al. (2002) describe these deposits as laminated or massive fine sand and silt that 
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marks the transition into the basin. We assume that patches of AC3 in the deep basin (Fig. 
4.6A) represent the coarser material of the storm deposits mentioned earlier (Nittrouer et 
al., 1998). AC3 also comprises the seafloor within the pockmarks SW of Mittelgrund (Fig. 
4.6B) and vibrocore samples from within a pockmark in the same area (Jensen et al., 2002) 
confirm the existence of sand and gravel. Class AC1 can be simply characterized as Littorina 
mud (Jensen et al., 2002), but AC2 may be interpreted in two ways. Its occurrence at the 
foot of Mittelgrund is probably associated with deposits that are also characterized as 
Littorina mud whereas its appearance in the deep part of the basin possibly represents the 
finer fraction of sediments deposited during storms (Nittrouer et al., 1998).  

Bayesian acoustic classes correlate with the maximum penetration depth of the SBP 
signal (the depth of the acoustic basement; Fig. 4.7). This paradoxical relationship between 
hydro-acoustic signals, with large difference in sediment penetration, highlights the 
connectivity of the two acoustic datasets in terms of their geological implications. It can be 
assumed that the depth of the acoustic basement is related to geological processes (e.g. 
transgressional erosion, sedimentation, reworking) that have taken place in the area and 
affect the coarseness of the surficial sediment. Accordingly, the variability in coarseness is 
reflected in the acoustic classification of the seafloor surface backscatter. It is inferred that 
areas with softer sediments allow a greater penetration of the SBP acoustic signal, which 
explains the relation between acoustic classes and acoustic basement.   
 

4.5 Conclusions 

Using gridded layers of MBES backscatter from various beam incidence angles proved 
useful for sediment class differentiation for both supervised and unsupervised approaches. 
These gridded layers were obtained from surveys resulting in high density soundings per 
seafloor area enabling to resolve acoustic classes in a higher spatial resolution than 
traditionally achieved. Single-angle analysis of raw backscatter data was performed using 
Bayesian statistics. This method performs cluster validation autonomously; the results 
correlated well with grain size analysis and provided a useful classification map for 
comparison with two multi-angle methods.   

Combining multi-angle backscatter layers with empirical ARA-MLC gave promising 
results for discerning sediment classes at high spatial resolution. This is particularly 
interesting, as traditional ARA methods lack spatial resolution. The high density of soundings 
in the area supported the extraction of distinct angular backscatter responses from smaller 
seafloor patches; compared to other ARA studies described so far, the resulting maps are 
significantly more detailed. This is an advancement of the traditional half-swath and BS 
mosaic segmentation approaches, maximizing the between-class separation. 

The applied empirical ARA method could be applied to uncalibrated sonar data once 
the extracted angular measurements were consistent for each seafloor class/type, and 
clearly separated from each other. PCA using multi-angle layers resolved the same number 
of classes as the Bayesian approach, highlighting the consistency of results between all 
three approaches.  The incorporation of high resolution SBP data helped to characterize 
acoustic classes and added valuable information on the vertical and horizontal distribution 
of exposed stratigraphic layers. The acoustic classes representing fine sediments correlated 
with areas of a deeper SBP signal penetration. We can summarize that dense MBES 
backscatter measurements offer the advantage of extracting angular responses from fine-
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scale seafloor patches without the need to perform backscatter mosaic segmentation. In 
this way, not only the spatial resolution of classification maps is improved but also the 
sedimentary classes are optimally separated. Future MBES survey planning may need to 
consider the acquisition of such high density of soundings per seafloor area, which would 
offer the possibility for accurate ARA-based seafloor classification on footprint-scale. 
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5. Quantification of the fine-scale distribution of Mn-nodules: 

insights from AUV multi-beam and optical imagery data fusion 
 

 

Part of this chapter has been presented at the GEOHAB 2017 (Halifax, Canada) conference: 

Alevizos, E., Schoenning, T., Köser, K., Snellen, M., Greinert, 2017, Merging AUV-based 
multibeam and image data to map the small-scale heterogeneity of Mn-nodule distribution, 
GEOHAB 2017, Halifax, Canada, (oral presentation)  

This chapter has been prepared in final form to be submitted for publication. 
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Abstract 

Autonomous underwater vehicles (AUVs) offer unique possibilities for exploring the 
deep seafloor in high resolution over large areas. We highlight the results from AUV-based 
multibeam echosounder (MBES) bathymetry / backscatter and digital optical imagery from 
the DISCOL area acquired during research cruise SO242 in 2015. AUV bathymetry reveals a 
morphologically complex seafloor with rough terrain in seamount areas and low-relief 
variations in sedimentary abyssal plains which are covered in Mn-nodules. Backscatter 
provides valuable information about the seafloor type and particularly about the influence 
of Mn-nodules on the response of the transmitted acoustic signal. Primarily, Mn-nodule 
abundances were determined by means of automated nodule detection on AUV seafloor 
imagery and nodule metrics such as nodules m-2 were calculated automatically for each 
image allowing further spatial analysis within GIS in conjunction with the acoustic data. 
AUV-based backscatter was clustered using both raw data and corrected backscatter 
mosaics. In total, two unsupervised methods and one machine learning approach were 
utilized for backscatter classification and Mn-nodule predictive mapping. Bayesian statistical 
analysis was applied to the raw backscatter values resulting in six acoustic classes. In 
addition, Iterative Self-Organizing Data Analysis (ISODATA) clustering was applied to the 
backscatter mosaic and its statistics (mean, mode, 10th, and 90th quantiles) suggesting an 
optimum of six clusters as well. Part of the nodule metrics data was combined with 
bathymetry, bathymetric derivatives and backscatter statistics for predictive mapping of the 
Mn-nodule density using a Random Forest classifier. Results indicate that acoustic classes, 
predictions from Random Forest model and image-based nodule metrics show very similar 
spatial distribution patterns with acoustic classes hence capturing most of the fine-scale 
Mn-nodule variability. Backscatter classes reflect areas with homogeneous nodule density. A 
strong influence of mean backscatter, fine scale BPI and concavity of the bathymetry on 
nodule prediction is seen. These observations imply that nodule densities are generally 
affected by local micro-bathymetry in a way that is not yet fully understood. However, it can 
be concluded that the spatial occurrence of Mn-covered areas can be sufficiently analysed 
by means of acoustic classification and multivariate predictive mapping allowing 
determining the spatial nodule density in a much more robust way than previously possible.   
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5.1 Introduction 
Mn-nodules exploration 

Research on Mn-nodules received increased attention in the last decade due to 
increasing prices for ores rich in Cu, Ni or Co, i.e. metal resources that are contained in Mn-
nodules. In nature, the largest Mn-nodule occurrences are found in the deep sea, e.g. the 
equatorial Pacific between the Clarion and Clipperton fracture zone (CCZ), the Peru Basin as 
well as the Atlantic and Indian Ocean (Petersen et al., 2016). In the typically muddy 
sediments of the deep sea, Mn-nodules form an important hard substrate providing a 
habitat for deep sea sessile fauna such as sponges, corals and associated organisms 
(Vanreussel et al., 2016; Purser et al., 2016). Therefore, mapping Mn-nodule fields is a two-
fold task, comprising not only the assessment of Mn-nodules and their density distribution 
for accurate resource assessment ,but also the improved understanding of the natural 
habitat heterogeneity and its relation to the deep sea ecology. Knowledge about Mn-nodule 
habitats will support mitigation strategies for mining-induced impacts. Since an increasing 
number of countries move forward with exploitation plans for Mn-nodules in the CCZ, 
strategies for a detailed mapping of the deep sea Mn-nodule fields might become 
mandatory in order to proceed with licensing procedures prior to any mining activity. 

Deep sea mining will cause substantial disturbances of the deep sea ecosystem since 
Mn-nodules, the primary hard substrate, will be removed and massive re-sedimentation of 
the top 20 to 30cm of sediment of the mined area will occur (Bluhm et al., 1995; Vanreussel 
et al., 2016).Thus, efforts have been made to investigate the effects of potential mining 
disturbances in the past (e.g. Thiel et al., 2001) and currently during the project “Ecological 
Aspects of Deep Sea Mining” as part of the Joint Programming Initiative Healthy and 
Productive Seas and Oceans (JPI Oceans). To study in detail the potential effects of a deep 
sea disturbance by Mn-nodule mining to benthic fauna, a plough-experiment was 
performed in 1989 in the Peru Basin as part of the DISturbance and reCOLonization project 
(DISCOL, www.discol.de). A plough of 8m width was towed 78 times over a 2nmi wide 
circular area (February-March 1989) to generate dense and less dense impact sub-areas. 
Photographic surveys, sediment and biological sampling before and after the disturbance 
(September 1989, March 1992, February 1996), showed that the plough marks were well 
visible even after 26 years and that the benthic fauna did not recover to its initial state. The 
data used in this study were collected during the SO242-1 cruise to the DISCOL area during 
summer 2015, 26 years after the DSICOL experiment.  
 

The DISCOL study area  

The DISCOL working area is situated 560 nmi SW of Guayaquil on the Pacific Oceanic 
Plate in the Peru Basin (Fig. 5.1) in about 4150 m water depth. The larger DISCOL area 
ranges from 3800m to 4300m water depth (Fig. 5.1B) and is characterized by N-S oriented 
graben and horst structures with a deep N-S elongated basin with water depths down to 
4300m. An 11 km wide seamount complex in the NE along with a second seamount complex 
to the SW and three higher mounds to the NW clearly show that the DISCOL area is not 
located on a flat and homogenous deep seafloor. 
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The ploughed DISCOL Experimental Area (DEA) itself is located on a relatively smooth, 
slightly elevated part of the seafloor with a central valley of about 20m depth that dips 
southward (Fig. 5.2A). When inspecting the bathymetry data generated by the autonomous 
underwater vehicle (AUV) in more detail, the central part of the area shows a 20m deep 
valley, the floor of which is comprised by low-relief N-S trending ridges giving the impression 
of a braided river system (Fig. 5.2A). Despite the rich morphological features in the study 
area, it does not contain steep slopes and represents a rather smooth seafloor (<5 degrees).  

 

 

Figure 5.1: A) The DISCOL area location in 
the Peru Basin (red star). B) Ship-based, 
shaded bathymetry of the wider DISCOL 
area with 40 m pixel size. The black 
rectangle represents the boundaries of the 
AUV MBES dataset used in this study 
(Fig.5.2). 
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Acoustic mapping of Mn-nodules and study objectives 

Acoustic mapping has proved to be a useful tool for supporting deep sea mineral 
resource assessments. The initial studies mentioned below, showed promising results for 
Mn-nodule detection and quantification, however, progress in more detailed and 
meaningful method development and data processing capabilities has remained slow, 
mainly due to fluctuations in the global interest of deep sea mining. The majority of surveys 
performed for Mn-nodule mapping purposes rely on acoustic remote sensing and near-
bottom photography (de Moustier, 1985). The applicability of acoustic methods is based on 
the clear acoustic contrast of at least 11 dB between the background deep sea soft 
sediment and the nodules (de Moustier 1985). Weydert (1985) found that the nodule size is 
proportional to the average backscatter strength for low frequency signals (<30 kHz). In 
addition, Weydert (1990) concluded that it is possible to map the percentage of seafloor 
covered by nodules based on backscatter measurements of sonar frequencies higher than 
30 kHz , whereas for a frequency of 9 kHz it is possible to use the backscatter response to 
determine whether the nodule diameter is greater than 6 cm or smaller than 4 cm. Masson 
and Scanlon (1993) suggested that lower sonar frequencies produce a much weaker 
acoustic contrast between nodules and surrounding sediments for nodules of given size. 
They concluded that on a seafloor covered with mixed-size nodules larger nodules will have 
a greater impact on the backscattered energy than smaller ones. They also suggested that 
minor differences of nodule coverage will have a considerable effect in backscatter values. A 
more recent study by Chakrabotry et al. (1996) suggested that the nodule coverage is 
proportional to the backscatter strength and that for low frequency (15 kHz; wavelength ca. 
10 cm) the main type of scattering is Rayleigh scattering (wavelength/10 < nodule size) for 
nodules and coherent scattering for fine sediments.  

During one of the first deep sea studies for acoustic mapping of Mn-nodules, de 
Moustier (1985) utilized a multi-beam echo-sounder (MBES) sonar combined with near-
bottom acoustic measurements and photographs from a deep towed camera system to 
infer nodule coverage. He managed to obtain high agreement between relative backscatter 
intensity classes and three types of nodule coverage as interpreted from seafloor imagery 
(dense, intermediate and bare). At that time, his results highlighted the great potential of 
MBES technology in deep sea mineral prospecting. In more recent years Lee and Kim (2004) 
utilized side-scan sonar (SSS) to examine the relation of regional nodule abundance with 
geomorphology. According to their qualitative analysis, lower backscatter values are related 
with abyssal troughs whereas increased backscatter values are related to abyssal hills. 
Additionally, Ko et al. (2006) attempted to examine the relation between MBES bathymetry 
and slope with nodule density in the equatorial Pacific without identifying a solid pattern. 
Most recently, Okazaki and Tsune (2013) utilized AUV-based MBES, SSS and image data for 
Mn-nodule abundance assessment and its relation to deep sea micro-topography.  

More recent projects regarding resource assessment of Mn-nodules at large scales 
(0.1’ by 0.1’ grid cell size) have been based on various spatial modelling and decision making 
techniques (ISA, 2010). Most commonly, the kriging method has been applied on sparse 
ground truth data (obtained by physical box-corer sampling) while logistic regression and 
fuzzy logic algorithms were applied in multivariate data sets of Mn-nodule-related 
environmental variables such as sediment type, sea surface chlorophyll and Ca 
Compensation Depth (CCD) (Agterberg & Bohnam-Carter, 1999, Carranza & Hale, 2001). 
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In this study we analyse AUV-based MBES and image data for quantitative mapping of 
Mn-nodule densities in the Peru Basin. Particularly, we utilize local ground-truth information 
(Mn-nodule measurements from AUV photographs) in order to investigate a) its relation to 
acoustic classification maps and b) its potential use for predictive mapping of Mn-nodules in 
wider areas where only hydro-acoustic information is available. Therefore, we apply two 
unsupervised methods (Bayesian probability and ISODATA) for seafloor acoustic 
classification and a machine learning algorithm (Random Forest) for Mn-nodule density 
predictions beyond the areas that were optically imaged using the AUV.  

By applying different algorithms for unsupervised classification, we aim at comparing 
their results against quantitative ground truth data of nodule metrics from automated 
analyses on AUV imagery. This way, we will assess the ability of classification methods in 
discriminating areas with distinct nodule densities. To our knowledge, this is the first time 
the Random Forest algorithm is applied for predictive mapping of Mn-nodule densities. 
Therefore, we examine its performance and the influence of various AUV MBES data on the 
Mn-nodule prediction results.     

5.2 Methodology 
AUV MBES data acquisition and processing 

The data in this study were collected using the AUV “Abyss” (built by HYDROID Inc.) 
from GEOMAR, during cruise SO242-1 where various AUV missions were flown. The AUV is 
equipped with a RESON Seabat 7125 MBES sensor with 200 kHz operating frequency, 256 
beams with 1 by 2 degree opening angle along and across track, respectively. From the 
original PDS2000 sonar data, files backscatter snippet data were extracted into s7k format 
whereas bathymetry data were extracted into GSF format. Prior to exporting, MBES 
bathymetric data were filtered within the PDS2000 software.  

Bathymetry data from different AUV dive-missions were jointly used for interpolating 
one single grid of bathymetry and backscatter (Fig.5.2). Latency and roll-related artefacts 
affected bathymetry in places due to a none-constant time delay for roll values creating 
uncorrectable artefacts in the resulting grid. Therefore, the bathymetry was smoothed by 
applying a Gaussian filter with a 10 m x 10 m rectangular window with 3 and 5 standard 
deviations as smoothing factors in SAGA GIS. Filtered bathymetry was visually inspected for 
artefacts using the hill-shade function in SAGA GIS, giving satisfactory results. Vertical 
differences between the smoothed grid with the originally processed surface were 
everywhere less than 1 m, highlighting that the filtering did not cause significant smoothing 
and removal of finer details. The filtered bathymetric grid was used for calculating a variety 
of derivatives listed in Table 5.1. The MBES backscatter data were processed in two ways. 
First, the s7k/GSF pairs were automatically corrected (for radiometric and geometric bias) 
and mosaicked in QPS FMGT (Fig. 5.2B). In addition, backscatter mosaic statistics were 
calculated and exported as GEOTIF files using a 10 m x 10 m neighbourhood. The raw 
snippets data were exported prior to any processing using a combination of in-house 
conversion software and QPS DMagic for merging beam data with ray-traced easting and 
northing. The raw snippets data were transformed from 16-bit amplitude units to dB using 
the formula in Eq. (5.1):  

 
Backscatter (dB) = 20*log10(amplitude)                                                                                         [5.1] 
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Figure 5.2: A) AUV MBES bathymetry with black lines indicating the tracks of the AUV image survey. 
Closely spaced track lines covering a rectangular area in the lower part of the image correspond to 
the areas shown in Fig. 5.7. B) AUV backscatter mosaic. The polygons delineated in red represent 
nodule-free areas as observed from underwater video data.  
 
 

Raw backscatter data were processed by applying the Bayesian approach on certain beams 
as described in Alevizos et al. (2015 and 2017) whereas the gridded data were analysed with 
Random Forest (RF) regression trees and ISODATA clustering (see section below). An 
overview of the software used to process and classify each type of dataset is presented in 
Table 5.2. 
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Table 5.1: Description of MBES features (bathymetric derivatives and backscatter statistics) 
that are used as explanatory variables in random forests predictions. 
 

Explanatory 
variables 

Description 

From bathymetry Scale: 6 m cell size 

Depth AUV MBES, smoothed with Gaussian filter (5σ) 

Slope ArcGIS slope algorithm in percent units 

BPI 

Relative position of pixels compared to their 
neighbors. Inner radius 10m, outer radius 100 m 

(Iwashahi and Pike, 2007) SAGA GIS terrain analysis 
toolbox 

LS factor 
The integrated slope length and inclination, formula 
from Moore et al. (1991), SAGA GIS terrain analysis 

toolbox 

Terrain Ruggedness 
Index (TRI) 

Measure of the irregularity of a surface in 5m radius 
neighborhood (Iwashahi and Pike, 2007), SAGA GIS 

terrain analysis toolbox 

Concavity 
Measure of negative curvature of a surface (Iwashahi 

and Pike, 2007), SAGA GIS terrain analysis toolbox 

From backscatter Scale: 10x10 m neighborhood, 6 m cell size 

mean 
Average dB value of pixels falling within the 

neighborhood (FMGT module) 

mode 
Most frequent dB value of pixels falling within the 

neighborhood (FMGT module) 

10% quantile 
Value of neighborhood pixels describing the lower 

10% of the total dB distribution (FMGT module) 

90% quantile 
Value of neighborhood pixels describing the 90% of 

the total dB distribution (FMGT module) 

 

Seafloor imagery and automated image analysis 

AUV surveys were undertaken for collecting close-up images from the seafloor using a 
camera system recently described by Kwasnitschka et al. (2016). In this system the camera is 
mounted behind a dome port along with a 15mm fish-eye lens that produces extreme wide-
angle images. This type of lens and dome port configuration induces significant distortions 
to the image which need to be corrected prior to any image analysis processing. Surveying 
at altitudes of 4-8m above the seafloor and using the novel state-of the-art LED flash system, 
the AUV collected several hundred-thousand seafloor images at a 1Hz interval. The 
respective AUV surveys were designed to cover a large part of the study area with a single-
track dive pattern and also to focus on two selected areas running track lines 5m apart for 
dense 2D image mosaicking (Fig. 5.2A). Each image was individually georeferenced using the 
AUV navigation and altitude data. This way, each pixel of the AUV imagery is translated to 
an actual portion of the seafloor.   
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Table 5.2: Datasets and methods applied in this study. 

 

Hardware 

AUV RESON 7125 
DeepSurveyCam 

(Kwasnitschka et al., 
2016) 

Software MBES bathymetry MBES backscatter (snippets) Imagery 

Processing 

PDS2000 (sonar data), 

SAGA GIS (xyz, grids), 

ArcMap (grids) 

Matlab (raw data), 

Fledermaus FMGT (corrected 

BS and mosaicking) 

in-house software, 

ArcGIS 

Classification / 

prediction 

Random Forests 

(MGET) 

Bayesian (raw data), 

ISODATA, Random Forests 

Mosaic and statistics 

Random Forests 

(MGET) 

 

For the automated image analyses (e.g. Mn-nodule counting), all images were 
smoothed by a Gaussian filter to remove noise and then converted to grayscale for 
computational speedup. Following, the images were corrected for inconsistent illumination 
due to the varying AUV altitude using the fSpice method described by Schoening, et al. 
(2012). The central (sharpest, best illuminated) region of each image was cropped and 
thresholded by an automatically tuned intensity limit before contours in the resulting binary 
images were detected and fused to blobs of pixels that served as nodule candidates. Each 
nodule candidate was finally fitted with an ellipsoid to account for potentially buried parts 
of the nodule. The sizes of these ellipsoids constitute the nodule size distribution within one 
image from which descriptive parameters were derived. This kind of automated image 
processing resulted in quantitative information such as: image area (square meters), 
number of nodules (n), percentage of seafloor covered by nodules (amount of nodule pixels 
divided by total amount of image pixels), and the threshold sizes (estimated 2D surface) of 1, 
25, 50, 75 and 99 percent quantiles of the nodule size distribution (comparable to a particle 
size analysis). A detailed publication on the nodule delineation algorithm can be found in 
Schoenning et al. (2017), while the source code is available online as Open Source 
(https://doi.pangaea.de/10.1594/PANGAEA.875070).  

In this study, we considered the number of Mn-nodules per square meter as a 
normalized measure of nodule density in order to avoid overestimation of Mn-nodules due 
to multiple-detections between overlapping images. This metric is derived from the ratio of 
the number of nodules detected to the area (m2) of the image footprint (the size of the 
central ‘good’ part of the image). Therefore the results of the predictive mapping are 
presented with 6 m x 6 m resolution which is representative for the majority of image 
footprint sizes. 

 

Seafloor classification and prediction methods  

Three different approaches were applied for a predictive Mn-nodule mapping. The 
first approach is an unsupervised method based on Bayesian statistics applied on raw 
snippet data. It examines the within-beam backscatter variability in the entire area in order 
to estimate the optimum number of seafloor classes. The output acoustic classes can then 
be validated with available ground-truth data. The second approach, is based on the 

https://doi.pangaea.de/10.1594/PANGAEA.875070
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ISODATA algorithm (an unsupervised method as well), applied on gridded backscatter data. 
This algorithm can automatically adapt the number of classes to the data for given minimum 
and maximum values set by the user. Finally, a supervised machine learning method was 
applied on gridded bathymetric and backscatter data. This method requires a training set in 
order to model the complex relationship between the Mn-nodules occurrences and the 
bathymetry, bathymetric derivatives and backscatter information. The algorithm outputs a 
prediction grid for Mn-nodule densities and also estimates the importance of each input 
variable in accurately predicting Mn-nodule densities.   

Bayesian probability on beam backscatter  

The raw backscatter data were classified by applying the Bayesian methodology 
developed and implemented by Simons and Snellen (2009) and Amiri-Simkooei (2009) and 
applied by Alevizos et al. (2015). In order to enhance the method’s performance, strong 
outliers in the raw data were filtered by using a variance threshold set to 100 (i.e. 10 
standard deviations). Thus, beams with a snippet data variance greater than 100 were 
disregarded from the classification process. The remaining snippet data were averaged for 
each beam for obtaining the mean relative backscatter intensity. The Bayesian method is 
based on the central limit theorem and the assumption that acoustic backscatter 
measurements of a homogeneous seafloor type would express normal distribution when 
derived from a certain incidence angle. Therefore all backscatter values were grouped per 
beam angle and their histograms were examined separately. At first, a number of Gaussian 
curves were fitted to each histogram and the goodness of fit was assessed by the χ2 criterion. 
The minimum number of Gaussian curves that fitted well the overall distribution pattern of 
the histogram values (i.e.: χ2 is less than 2), was considered as the optimum number of 
classes. Not all beam angles provided the same number of Gaussian curves; therefore it was 
important to identify those beam angles that gave consistent results about the number of 
classes. Usually the mid-range incidence angles provided the most consistent results 
(Alevizos et al., 2015) regarding the Gaussian fitting; hence beams from this range were 
utilized as reference in order to derive the optimum number of classes. Once the reference 
beams were identified, the mean and standard deviations of each Gaussian curve were used 
as conditions for classifying the backscatter values for the rest of the beams. 

The Bayesian technique does not require the MBES to be calibrated and allows for 
class assignment per beam, thus maximizing the spatial resolution of the final map. The 
most important aspects of the Bayesian technique are the internal cluster validation based 
on χ2 criterion and the increased geo-acoustic resolution, allowing for maximal acoustic 
discrimination of similar seafloor types (Alevizos et al., 2015).  

 

ISODATA classification for grids 

The ISODATA classification was applied to the backscatter mosaic and its derived 
statistics (Table 5.1) using the ISODATA algorithm implemented in SAGA GIS. ISODATA 
stands for Iterative Self-Organizing Data Analysis and has been applied in several marine 
mapping studies involving backscatter information (Diaz, 1999; Hühnerbach et al., 2008; 
Blondel and Gomez-Sichi, 2009). The fundamentals of ISODATA processing are described in 
detail by Dunn (1977) and Memarsadeghi et al. (2007). A particular advantage of this 
method apart from its fast execution is that it estimates a suitable number of classes by 
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dividing clusters with large standard deviations and by merging similar clusters at the same 
time (Diaz 1999). This is done automatically and the user only defines an empirical minimum 
and maximum number of classes.   

 

Random Forest predictive mapping for grids 

To exploit the full range of MBES gridded data and for comparison purposes, 
supervised classification was applied to the bathymetry, bathymetric derivatives and 
backscatter statistics (Table 5.1). Applying a machine learning algorithm was encouraged 
due to the abundant ground-truth data (nodule metrics from automated image analysis) 
and the high resolution of the various MBES layers. The Random Forest algorithm as 
implemented in the MGET toolbox for ArcGIS was used (http://mgel2011-
kvm.env.duke.edu/mget). Initially developed by Breiman (2001) it has shown good results in 
marine predictive habitat mapping (Stephens and Diesing, 2014; Lucieer et al., 2013; Che-
Hasan et al., 2014). The algorithm requires a training data set with the response variable 
(here: nodule density from AUV imagery analysis results) and a set of explanatory variables 
(here: bathymetry, bathymetric derivatives, backscatter) as inputs in order to model the 
relationship between them. The training set provides the required “knowledge” about the 
response variable and its corresponding explanatory variable’s values. At the next stage, an 
ensemble procedure based on several regression trees of random subsets of the 
explanatory variables is iteratively applied for classifying/predicting Mn-nodule density per 
grid-cell using a-priori information from the training sample. The prediction at a certain grid-
cell is defined by the majority votes of all random subsets of trees (Gislason et al., 2006).  

During the iterative processing, the Random Forest will reserve randomly selected 
parts of the training sample for internal cross-validation of the results (out-of-bag sample). 
During each iteration, one explanatory variable is neglected and its importance score is 
calculated according to its contribution to the resulting prediction error. The variable 
importance calculation is considered one of the main advantages of the Random Forest 
algorithm. An important step prior to Random Forest application is data exploration. With 
data exploration it is possible to identify which explanatory variables are capable to 
discriminate patterns of nodule density in the study area better. A standard approach is to 
explore the probability density function of the response variable with each of the other 
gridded variables (e.g. slope, BPI, etc.). These plots give first indications about the 
distribution type of the response variable for a given explanatory variable. The explanatory 
variables presented in Table 5.1 were chosen as good descriptors of nodule density in the 
area based on the probability density functions of arbitrarily chosen classes of nodule 
density (Fig. 5.3, appendix of chapter 5). The arbitrary classes where based on the quantiles 
method for classifying the nodule density histogram. It has to be noted that the arbitrary 
classes were used only for data exploration and not for the prediction of nodule densities.  

All descriptor-grids were resampled to 6 m x 6 m pixels in order to be compatible with 
the average effective area of the AUV images upon which nodule metrics were computed. 
An appropriate selection of training samples is fundamental for modelling the relationship 
between the response variable and the gridded descriptor data. Particularly, the training 
samples need to span the entire range of the study area capturing most of the data 
variability. They have to contain as diverse values as possible regarding both the nodule 
density and the corresponding gridded descriptor data.    
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5.3 Results 
Automated nodule detection from AUV images 

The automated nodule detection algorithm results for nodule density (number of 
nodules m-2) are shown in Fig. 5.4. The dense point cloud offers a detailed view of the 
nodule spatial distribution which can significantly enhance the interpretation of nodule 
density in conjunction with MBES bathymetry. In Fig. 5.4 the nodule density fluctuates in a 
pattern of alternating bands. By colorizing the seafloor surface and the bathymetric profile 
cross-section according to nodule density values, it can be seen that higher nodule densities 
appear on smooth slope features where the seafloor appears locally concave or terraced 
and also on the foot of these slopes which appear relatively lower compared to the 
surrounding area. By colouring the AUV bathymetry according to the nodule density it 
became clear that MBES derivatives may be useful for quantifying the nodule distribution in 
the entire study area. We thus calculated bathymetric derivatives such as BPI, concavity, 
slope and slope-related derivatives (LS factor, TRI) to be included in predicting nodule 
densities. 

 

Figure 5.4: A) Points with 
nodule measurements derived 
from automated nodule 
detection, draped on AUV 
bathymetry, showing Mn-
nodules per square meter 
from perspective view, B) 
Longitudinal section of 
bathymetric profile from same 
area highlighting the local 
scale morpho-bathymetry of 
Mn-nodule fields. 
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Bayesian acoustic classification of raw BS data  

The Bayesian method identified six classes based on the analysis of beams with 
incidence angles between 38 and 42 degrees (Table 5.3). Despite the variance-based 
filtering, it was not possible to compensate for the remaining effects on beam incidence 
angles in the middle range and towards the nadir. We believe that these effects are 
responsible for the stripe-like classification at the outer part of the swath. The selection of 
six classes resulted from the agreement between two adjacent beams (Table 5.3) and the 
relative lower overlap of the Gaussian curves. The finally derived classes are ordinal; 
meaning that from class 1 to class 6 there is an increase in backscatter intensity. The spatial 
distribution of the acoustic classes expresses a gradient of high to low backscatter classes in 
the N-S direction (Fig. 5.5A). The nodule-free areas holding lowest backscatter values are 
captured clearly.     

 

Table 5.3: Averaged central dB values of the Gaussians derived from reference beam angles 
on both sides of the AUV MBES. 

Acoustic 

class 

PORT: (38o & 40o) central 

value (dB) 

STARBOARD: (40o & 42o) 

central value (dB) 

1 -60.7 -61.2 

2 -59.4 -59.7 

3 -57.4 -58.1 

4 -56.3 -56.3 

5 -54.8 -54.8 

6 -52.8 -52.7 

 

ISODATA applied to BS data 

The ISODATA algorithm was applied to the mean, mode, 10% and 90% quantiles of the 
backscatter mosaic. These datasets are considered more suitable than the raw backscatter 
data, as they hold a more realistic representation of backscatter spatial variability and they 
are slightly correlated (correlation coefficients: 0.5-0.9) with the mean backscatter. The 
ISODATA algorithm was set to produce an optimal number of clusters for different ranges of 
cluster amounts (minimum number of clusters from 2 to 5; maximum number of clusters 
from 6 to 10). The results for all possible pairs regarding the minimum and maximum 
clusters were divided, indicating five or six clusters as optimal. To have comparable results 
with the Bayesian method, six clusters were selected for further analyses.  Although the 
algorithm does not output classes with ordering, the ISODATA classes were reclassified 
based on their nodule statistics to be comparable with Bayesian results (see discussion 
section). The classes show a decreasing amount of nodules from north to south with the 
nodule-free areas being sufficiently demarcated.  
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Figure 5.5: A) Bayesian classification map based on AUV backscatter beam data, B) ISODATA 
classification map based on AUV backscatter neighbourhood statistics (mean, mode, 10th Q and 90th 
Q, see Table 5.1).  

 

Random Forest predictions using bathymetry derivatives and BS 
data 

The RF was performed in two steps: the training and the prediction step. First a 
sensitivity test was carried out using different percentages of training samples (Fig. 5.6B) 
and fitting models with 200 and 1000 trees. This test is essential for examining the optimal 
settings prior to applying a predictive model. It also helps in quantifying the stability of 
results (given the random character of the process) by running the model with optimal 
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settings repeatedly. For quantifying the model accuracy we used the percentage of variance 
explained by the out-of-bag samples (RF algorithm output report) whereas for assessing the 
prediction results, calculation of R2 was applied for measuring the correlation between the 
predicted and measured nodule density. According to the sensitivity analysis, a training set 
with 30% of the total amount of images with Mn-nodule statistics was sufficient to explain 
more than 70% of the variance of the out-of-bag sub-sample when training 200 trees. 

  
Figure 5.6: A) Random forests prediction map of Mn-nodules densities, Sensitivity analysis results: B) 
Percentage of training sample size and performance of RF model in terms of percentage of variance 
explained (out-of-bag). C) Importance scores of MBES explanatory variables, based on average 
percentage increase of mean prediction error from ten model runs. 

 

It was also found that this accuracy value is not improving significantly when 
increasing the training sample size (Fig. 5.6B). By maintaining the same amount of training 
samples (30% of the total images acquired, ca. 2700 images) while using ten different parts 
of the data as training sample (ten-fold cross-validation), the model performance was 
relatively consistent (69-72%) regarding the out-of-bag variance explained (Table 5.4). These 
results refer to the Mn-nodules m-2 analyses. In addition we tested the predictability of the 
2D size of nodules using the 50% and 75% quantiles of 2D sizes in square centimetres. The 
resulting out-of-bag variance explained was found to be much lower (35-40%), 
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independently from the number of trees and the size of the training sample set. By using the 
results from the ten-fold cross-validation (or sensitivity test) we extracted the mean 
importance score of each bathymetry and backscatter parameter (Fig 5.6C). Considering the 
prediction of Mn-nodules m-2, the mean backscatter data was found to be the most 
influencing variable which constantly scored first, followed by the BPI, bathymetry and 
concavity. After the sensitivity test an optimal model using 30% of all images as training data 
and growing 200 trees (1000 trees did not produce better results) was developed using the 
explanatory variables for prediction of nodule densities. The final results of the RF method 
express a gradient from higher to lower nodule densities from North to South (Fig. 5.6A). An 
independent subsample of nodule measurements was used for validating the prediction 
results. This validation sample consists of measurements selected at least six meters away 
from any training location, to avoid the introduction of autocorrelation effects on the 
validation process which could overestimate the performance of the model. The value of 6m 
was selected as the majority of images cover a 6 m x 6 m area on the seafloor. A comparison 
between the image-based Mn-nodule measurements and the averaged predicted values 
based on ten different RF runs show a good average correlation based on the R2 coefficient 
(Table 5.4). This implies that there is a correlation between Mn-nodule density and MBES 
data, although there is some degree of uncertainty that remains in the prediction model 
(see Appendix).  

 

Table 5.4: RF model performance for minimum optimal settings of training sample and 
number of trees regarding prediction of Mn-nodule densities. 

Training set size: 30% (ca. 2700 images) Trees: 200 

Model run# 
OOB variance 

explained% 

Predicted/Measured 

correlation (R2) 

1 72.5 0.69 

2 73.0 0.69 

3 70.6 0.68 

4 70.2 0.70 

5 72.2 0.70 

6 72.6 0.71 

7 69.3 0.69 

8 71.1 0.71 

9 72.9 0.68 

10 70.6 0.71 

average 71.5 0.7 

5.4 Discussion 
Our results show that AUV imagery is capable to provide detailed information about 

Mn-nodule densities hence assisting quantitative mapping of the Mn-nodule distribution on 
the seafloor. Consistency and repeatability of quantitative methods are fundamental factors 
in mapping studies and therefore automated image analysis is crucial in this regard. Expert 
assessments of several tens of thousands of images are practically not possible in a 
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reasonable time frame and include a high rate of subjectivity. Thus, automated analysis of 
imagery is regarded as a very suitable method for quantitative mapping of Mn-nodules. This 
however comes at the cost that usually AUV image surveys are spatially restricted due to 
the low altitude above the seafloor. For larger scale quantitative mapping of nodule fields, 
AUV imagery data need to get spatially linked with AUV hydro-acoustic data supporting with 
data from all regions of interest at the seafloor. Results from image analysis can then be 
used as alternative information for acoustic class validation and predictive mapping.  

Although image analysis results do not constitute ground-truth information they are 
the best available data to correlate with acoustic classification and prediction results. By 
exploring the relationship between Mn-nodule data with bathymetry, bathymetric 
derivatives and acoustic backscatter, we aim to identify potential linkages that allow 
extrapolation of nodule information to larger areas to assess mineral resources, determine 
benthic habitats or learn about geological processes that might influence nodule growth. 
The following paragraphs discuss the performance of the applied classification and 
prediction methods highlighting the potential use of high resolution Mn-nodule density 
maps. The various sources of errors induced throughout the data analyses are considered in 
appendix of chapter 5. 

 

Fine scale spatial variability of Mn-nodule density 

Both, the unsupervised classifications (ISODATA, Bayesian) and the random forest 
prediction results are largely comparable to the nodule detection measurements map (Fig. 
5.7). Hence, both classification and prediction data, and nodule measurements reflect a 
similar spatial distribution pattern of nodule densities. The Mn-nodule densities seen in the 
imagery highlight a pattern of alternating high and low density bands on bathymetric slope 
features. According to studies on the fine scale (tens of meters) distribution of Mn-nodules 
as summarized by Margolis and Burns (1976) higher nodule densities are related to hilltops, 
slopes and the foot of slopes. The authors particularly highlighted that e.g. nodule sizes vary 
significantly over short distances; unfortunately there were no methods to capture this 
variability sufficiently at the time of this study. The correlation to the bathymetry is 
supported by the variable importance plot of the RF model (Fig. 5.6C). This plot shows that 
both bathymetry and backscatter features contribute significantly to the prediction of the 
Mn-nodule densities with  variables such as mean backscatter intensity, fine scale BPI, and 
concavity as good predictors. The predictive potential of these variables needs to be 
validated in future studies using MBES data from different study areas.  

Both unsupervised acoustic classes and the Random Forest prediction suggest a 
gradient of decreasing nodule densities from north to south while the RF quantitative map 
(Fig. 5.6A) shows more gradual changes regarding the fine-scale spatial distribution of Mn-
nodules. The northern part of the MBES survey is located very close to, and partly within, a 
seamount area. According to towed camera video footage these seamounts comprise 
ancient volcanoes that are now covered with deep sea fine sediments. In addition, a few 
pillow-basalt outcrops were found along with basalt slabs being exposed on the seamount 
slopes. Greater nodule densities can be observed from these images suggesting that 
accumulated nodules or exposed basalt rocks may be assigned to the same acoustic class 
that represents higher acoustic intensities. In the random forest prediction, high nodule 
densities could be confused with basalt rock as well (Fig. 5.6A, black arrows). Video data can 
be used in order to differentiate these seafloor types in the acoustic classes. Greater nodule 
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densities in the vicinity of the seamounts area can be explained by the findings presented by 
Vineesh et al. (2009) and Sharma et al. (2013). These two studies propose that in the 
proximity of abyssal hills and slopes, abundant basalt fragments act as nodule nuclei that 
favour nodule development. 
 

 
Figure 5.7: Inter-comparison of quantitative methods results from the same coverage area 
(Rectangle made by dense black lines in Fig. 5.2 A): A) Mn-nodules per image-point (automated 
nodule-detection from optical images), B) ISODATA classes (10m cell size), C) Bayesian classes (6m 
cell size), D) RF Mn-nodule density prediction map (6m cell size). 

 

Away from the seamount area, the nodule density variations follow a banded pattern 
of high and low density alternations with localized depressions representing nodule-free 
areas (Fig. 5.2B). The band-pattern variation is not fully understood by the datasets available 
in this study; however, it is assumed that it is the result of a combination of the deep sea 
benthic boundary layer hydrodynamics, local sediment movement and active tectonics that 
impacts pore fluid migration. It is not clear why and how the nodule-free areas are formed 
and why we observe moderate nodule densities in broad deep plains of the area. Margolis 
and Burns (1977) suggest that bathymetric valleys are more influenced by sedimentation 
hence not favouring nodule growth, but that hill tops and bathymetric slopes are covered by 
a greater amount of nodules due to a lower impact of local sedimentation. Whether this 
explanation is also true for the described study area remains speculative. In any case, 
backscatter data clearly indicate where areas of higher and lower Mn-nodule densities exist, 
allowing for future investigations of the underlying factors.   
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Assessing the Mn-nodule acoustic classification  

To assess the performance of unsupervised classification methods in clustering 
homogeneous areas of Mn-nodules, we examined the within- and between-class variability 
of the Mn-nodules densities (nodules m-2). The assessment is based on the descriptive 
statistics of nodule measurements from each class (Table 5.5) and box-plots of nodules m-2 
from each class (Fig. 5.8). The box-plots assist to better illustrate the separation between 
classes as well.   

To evaluate the separation of Mn-nodule densities that fall within different acoustic 
classes (Bayesian and ISODATA), we performed a Welch ANOVA along with a Games-Howell 
test for testing whether the mean values between the classes differ significantly. This test 
was selected, because the Levene’s test (Martin & Bridgmon, 2012) indicated that there is 
no homogeneity between the class variances for both classification methods (p<<0.05).  

Particularly the results of the Welch ANOVA for nodule populations belonging to the 
same Bayesian class (F(5,905)=700, p=<<0.05) and ISODATA (F(5, 2520)=810, p<<0.05) 
support the finding that the mean values of Mn-nodules densities differ significantly 
between the different classes. This finding supports that classification results effectively 
resolve acoustically homogenous areas of nodule patches which are statistically distinct to 
each other.  

Regarding the Bayesian classification results, the ordinal type of the classes can be 
noticed both in the statistics and the box-plots (Table 5.5, Fig. 5.8A). The mean and median 
values of nodules m-2 are increasing with increasing class number suggesting that higher 
backscatter values are related to higher nodule densities. Class 1 represents the lowest 
nodule densities but without including samples of zero nodules, this would make this class 
more distinguishable with an even lower mean value. Some class overlap can be observed in 
the box-plot for the Bayesian classes; the within-class standard deviation is increasing with 
acoustic class number, suggesting larger ambiguity for areas with increased nodule density. 

 

Table 5.5: Descriptive statistics highlighting the within-class variability of Mn-nodules for 
both classification methods. 

Bayes – Mn-nodules m-2 

Class samples mean median mode St.dev. 

1 91 1.4 0.7 0.4 1.4 

2 1760 1.7 0.9 0.9 1.9 

3 2200 3.6 3.6 3.6 2.4 

4 2347 4.6 4.5 4.6 2.7 

5 1500 5.5 5.1 4.9 3.4 

6 756 7.5 7.3 6.4 3.6 

ISODATA – Mn-nodules m-2 

Class samples mean median mode St.dev. 

1 3468 2.2 1.4 0 2.3 

2 2732 3.5 3.5 2.9 2.3 

3 2800 4.8 4.7 4.7 2.4 

4 570 5.9 6.1 4.9 3.2 

5 628 7.0 6.9 5.2 3.6 

6 964 7.7 7.3 6.6 3.6 
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 Classes resulted from the ISODATA clustering hold similar standard deviations 

suggesting a similar degree of within-class variability. Overall, Mn-nodule density classes 
express high within-class variability with almost 50% of within-class measurements spanning 
in a wider range of values causing class overlap (Fig. 5.8). This can be attributed to few 
factors such as inaccurate navigation between the different AUV deployments, 
shortcomings of the image-based nodule detection algorithm and noise in the backscatter 
data (see Appendix). However, it can be inferred from the box-plots for each unsupervised 
method that seafloor areas of homogeneous Mn-nodule density can be discriminated by 
classifying the MBES backscatter information only. 

No useful results were obtained for the 2D size of nodules (in cm2) when examining 
their descriptive statistics and box-plots with acoustic classes. This might be explained by 
limited interfering between acoustic wavelength and the nodules radii. The high frequency 
(200 kHz) MBES signal results in ca. 8 mm pulse-wavelength for 1500 m s-1 sound speed in 
seawater. This wavelength is significantly shorter than the average nodule size in the study 
area (>3 cm) suggesting that the dominant backscattering is sensitive to nodule density and 
not to nodule size. Early acoustic studies on Mn-nodules were based on low frequency 
sonars; therefore there is little or no information about the acoustic backscatter of nodules 
at high MBES frequencies (> 100 kHz). However, results from this study are in agreement 
with findings of Weydert (1985) according to which, frequencies higher than 30 kHz are 
more suitable for mapping the nodule density than the nodule size. This can be attributed to 
the fact that high frequency signals are more susceptible to surface roughness which is 
caused by fluctuating nodule densities. Therefore it is suggested that backscatter would 
increase with increased nodule density given that seafloor roughness increases as more 
nodules occur per seafloor area.  
 

 

 

Figure 5.8: Box-plots of nodule densities 
grouped by acoustic class to illustrate the 
between-class variability. A) Variation of 
measurements, from samples belonging A) 
to the same Bayesian classes and B) same 
ISODATA classes. Blue rectangle bottom 
and top represent the 25% and 75% 
percentiles respectively whereas the red 
line indicates the median value. The 
whiskers extend to the minimum and 
maximum value of the samples that are 
not considered outliers (i.e.: they are no 
more than ±2.7σ apart). Outliers are 
marked with red crosses. 
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Implications of acoustic mapping on Mn-nodule resource 
assessment and benthic habitat characterization 

Obtaining high resolution seafloor acoustic classes and quantitative spatial predictions 
of the Mn-nodule density provides useful information for deep sea mining and impact 
management. The obvious application is a more realistic resource assessment (total tonnage 
of Mn-nodules per area) which can assist a better delineation of particular areas with mining 
interest on large and small scales. Resource assessment can be based on semi-quantitative 
information provided by acoustic classes that correspond to particular Mn-nodule densities 
or quantitative results from the RF predictive map. In addition, quantitative maps of Mn-
nodule densities can be used to support extrapolations of benthic biota densities to seafloor 
areas where benthic information is not available. This is possible by considering the nodule 
substrate as surrogate for habitat mapping of certain biota. Surrogacy for mapping deep sea 
ecosystems has been incorporated in the study of Anderson et al. (2011); the authors point 
out, that geomorphic classes can be used for discriminating habitats in broad scales of tens 
to hundreds of kilometres. They also highlight that any surrogacy approach should be based 
on the correlation between the physical variables (e.g. bathymetry, backscatter) and the 
biological patterns that appear in the study area. In Vanreussel et al. (2016) and Amon et al. 
(2016) it is shown that seafloor covered with more Mn-nodules features higher epifaunal 
densities. This relation might be further evaluated to have a better and verified relationship 
between nodule and biota densities allowing estimating biota abundances in larger areas 
that have only been mapped acoustically.  

5.5 Conclusions 
AUV-based optical and acoustic mapping at high spatial resolution opens up new 

opportunities for mapping Mn-nodule fields. In this study, automated image analysis 
provided dense, quantitative information about Mn-nodules at fine scale. This information 
offers useful insights about the fine scale variability of Mn-nodule densities while it can be 
utilized for correlations with seafloor acoustic classes and predictive mapping. It was found 
that the Mn-nodule density within a 500 m x 500 m photo mosaic varies in a pattern of 
alternating bands (with denser and sparser amounts of nodules) according with smooth 
bathymetric slopes with a preference of increased nodule occurrence at concave seafloor 
morphologies. Areas with different nodule densities produced distinct backscatter classes 
that distinguished nodule populations with distinct mean density values. This suggests that 
Mn-nodule densities can be efficiently mapped with high resolution hydro-acoustic data. In 
addition, applying machine learning methodology showed great potential in quantitative 
predictive mapping of Mn-nodules through modelling the complex relation between image-
derived nodule metrics with bathymetric derivatives and backscatter statistics. In essence, 
by using a relatively small amount of AUV images (ca. 2700) as the training set it was 
possible to obtain a 70% correlation between predicted and measured Mn-nodule densities.  

High quality and spatial resolution AUV hydro-acoustic and optical data can provide a 
fast and less costly mean for Mn-nodule mapping. This has three major implications in deep 
sea studies: 1) it raises questions about what causes the Mn-nodules to follow the fine scale 
bathymetric morphology, 2) it assists in better resource assessment of Mn-nodules and 
provides the information needed for planning the optimal mining path and 3) it provides 
more accurate information about Mn-nodule substrate as a benthic habitat, hence it can be 
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utilized for better understanding the deep sea ecology and ecological impact of potential 
Mn-nodule mining.   
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6. The Hyper-Angular Cube concept for improving the spatial and 

acoustic resolution of MBES backscatter angular response 

analysis 
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Alevizos E., 2017, An object-based seafloor classification tool using recognition of empirical 
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Abstract 

This study presents a novel approach that is based on high dimensional data, for 
improving the performance of angular response analysis (ARA) on multibeam backscatter 
data in terms of acoustic class separation and spatial resolution. This approach is based on 
the Hyper-Angular Cube (HAC) data structure which offers the possibility to extract one 
angular response from each cell of the cube. The HAC consists of a finite number of 
backscatter layers, each one representing backscatter values corresponding to single 
incidence angle ensonifications. The construction of the HAC layers can be achieved either 
by using dense soundings from highly overlapping mutlibeam surveys (iHAC) or by producing 
several backscatter mosaics each one being normalized at a different incidence angle 
(synthetic HAC). The latter approach is considered here for the first time and it can be 
applied on multibeam data with standard overlap, thus minimizing the cost for data 
acquisition. The synthetic HAC is as efficient as the iHAC produced by actual soundings, 
providing distinct angular responses for each seafloor type. The HAC data structure 
increases acoustic class separability between different acoustic features. Moreover, the 
results of angular response analysis are applied on fine spatial scale (cell dimensions) 
offering more detailed acoustic maps of the seafloor. Considering that angular information 
is expressed through high dimensional backscatter layers, we further apply three machine 
learning algorithms (random forest, support vector machine and artificial neural network) 
and one pattern recognition method (sum of absolute differences) for supervised 
classification of the HAC, using a limited amount of ground truth data (one sample per 
seafloor type). Results from supervised classification are compared with results from an 
unsupervised method for inter-comparison of the supervised algorithms. It was found that 
all algorithms (regarding both the iHAC and the synthetic HAC) produced very similar results 
with good agreement (>0.5 kappa) with the unsupervised classification. Only the artificial 
neural network required the total amount of ground truth data for producing comparable 
results with the rest of the algorithms.  
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6.1 Introduction 
Seafloor acoustic mapping with multibeam echosounders (MBES) faces the emergence 

of new data acquisition styles, which also trigger the development of new data processing 
and interpretation approaches. Acquiring MBES datasets using multiple frequencies 
(Hughes-Clarke et al., 2015) or acquiring backscatter dedicated MBES surveys (Augustin & 
Lamarche, 2015; Alevizos et al., 2017) has enormously increased the volume of data per 
seafloor area, leading to increased dimensionality of MBES datasets. At the same time, 
novel data processing methods appeared for improving the accuracy and detail of geo-
information about the seafloor. Although sparse in number, there are studies that have 
paved the way for more advanced seafloor mapping. Particularly, those techniques which 
incorporate the angular dependence of the seafloor are considered more robust and 
preferable for seafloor classification. This is due to the fact that angular dependence of 
backscatter is a physical property of the seafloor which has been validated both by model 
and in situ data (APL, 1994; Fonseca et al., 2009).  

Combination of angular response analysis (ARA) with modern remote sensing methods 
such as object based image analysis (OBIA) and machine learning algorithms are considered 
state-of-the-art in the field of seafloor mapping. Recent studies have incorporated these 
techniques and have produced some promising results. For instance, Che-Hasan et al. (2012) 
applied various supervised classification techniques integrating backscatter measurements 
from 71 incidence angles for benthic habitat mapping. Furthermore, Che-Hasan et al. (2014) 
utilized the random forest algorithm in conjunction with ARA features (such as skewness 
and kurtosis of angular curves) and bathymetric features for benthic habitat mapping, while 
Rzhanov et al. (2012) employed ARA and pattern recognition methods for classifying 
sediment types. Both studies (Che-Hasan et al., 2014; Rzhanov et al., 2012) applied object 
based image analysis (OBIA) for backscatter mosaic segmentation. Similarly, Huang et al. 
(2013) combined bathymetric features and angular response curves using a neural network 
model for mapping seafloor sediments.  

In most cases two major issues arise in traditional ARA of MBES backscatter data. 
These issues are related to the spatial resolution of ARA results and the separability of 
angular responses. The issue of spatial resolution occurs because angular responses are 
usually extracted from coarse seafloor patches with the size of half of the MBES swath. In 
addition, the separability of backscatter responses has an impact on discrimination of 
various seafloor types. Another problem considered in the studies of Che-Hasan et al. (2012) 
and Alevizos et al. (2017) is the performance of traditional supervised classifiers using a 
restricted amount of ground truth data along with high dimensional spatial datasets. The 
first two issues are highlighted by Hughes-Clarke et al. (1994), Parnum (2007) and Fonseca 
et al. (2009). They propose that ARA should be based on backscatter measurements from 
homogeneous seafloor areas in order to better discriminate their angular responses. In 
addition, Huang et al. (2013) and Rzhanov et al. (2012) raise the necessity for calculating an 
n-dimensional backscatter matrix (n is the number of incidence angles) using the 
measurements from each incidence angle, for extracting angular responses per cell and thus 
increasing class separation and the spatial resolution of the classification map.  
The idea of such a matrix has been presented first by Hughes-Clarke et al. (1994) and 
initially implemented by Parnum (2007) using only sparse soundings. According to their 
concept, the cells of a matrix should be densely populated with backscatter values from 
multiple incidence angles (yielded by MBES surveys with high degree of overlap >>100%) 
which result in dense soundings per seafloor area. Despite the practical limitations of such 
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surveys, the advantages of the resulting datasets are significant regarding discrimination of 
acoustic classes. Additionally, the resulting classification maps can be constructed with a 
spatial resolution comparable to that of ground truth data and the MBES footprint (meters 
scale); a fact that increases their validity and usefulness for the end-users (McGonigle et al., 
2009). Since the implementation of Parnum (2007) the above concept of an n-dimensional 
backscatter matrix has only later been employed again, in the studies of Alevizos (2017) and 
Alevizos et al. (2017) where they took advantage of the high density of MBES soundings 
resulted from a backscatter dedicated survey with >100% overlap. Interpolation of 
backscatter values from individual incidence angles was used for producing angular 
backscatter layers which then are stacked together to form the so called Hyper-Angular 
Cube matrix (HAC) that is presented here (Fig.6.1).  

 

Study objectives 

Considering that extracting angular responses from the lowest level of acoustic 
elements (i.e.: the grid-cells of a backscatter layer/mosaic) is the way forward in improving 
the performance of ARA and that the HAC provides this possibility in a solid way, we focus 
the scope of this paper on utilizing a HAC from MBES data with high overlap and 
alternatively from MBES data with standard overlap. We present a new method to construct 
a HAC from MBES data with standard overlap in order to overcome the practical limitations 
of backscatter dedicated surveys, thus minimizing the time and cost of the fieldwork. This 
method has not been considered in literature according to our knowledge until now. In 
addition we examine and compare the performance of four supervised machine learning 
classifiers in terms of class separation and how to deal with a restricted amount of training 
data along with the high-dimensional HAC dataset. Building a high resolution HAC from 
MBES data of standard overlap and exploiting a small amount of ground truth samples for 
classification will have an impact on future backscatter studies by decreasing the cost of 
data collection but at the same time maximizing the usability and quality of acoustic and 
ground-truth datasets.         

6.2 Methodology 
The Hyper-Angular Cube matrix  

The hydro-acoustic dataset was obtained in 2012 using an ELAC 1180 MBES sonar at 
180 kHz. The survey track lines have varying spacing from 15 to 40 m resulting in dense 
ensonifications per seafloor area (Fig.6.2B). Accordingly we produced 23 interpolated 
backscatter layers for separate incidence angles in the range of 10 to 65 degrees in steps of 
2 degrees in the middle range beams and 3 degrees for the beams close to nadir and outer 
range. Interpolation for each of the 23 backscatter layers was performed using the IDW 
algorithm with 10 meters search radius and output cell size of 5 meters. Stacking of all 
layers defines a hyper-angular cube structure (interpolated HAC or iHAC hereafter) for 
which an angular signature per cell can be extracted.  
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Figure 6.1: Example graph of the HAC matrix showing the stack of angular layers and an angular 
response derived from a single cell.  

 

This approach requires dense soundings per seafloor area. However since collection of 
such data increases the ship-time and total cost of the MBES survey it is not always the most 
suitable option to follow. Alternatively we examine a method for obtaining a HAC matrix 
efficiently and without the costs of a backscatter dedicated survey (i.e.: with >100% overlap). 
Our approach is based on producing backscatter mosaics (using MBES data with normal 
overlap) each one being normalized with different reference angle values. Usually, a 
backscatter mosaic is produced by normalizing the backscatter intensities falling within a 
sliding window according to the value of middle range incidence angles (e.g.: 30o, 40o or 40o 
-60o average). Using the middle range incidence angles as reference for normalizing the 
backscatter values (removing the angular dependence) is a standard practice which has 
been supported by the study of Lamarche et al. (2011). They suggest that the backscatter 
intensity from the 45 degrees incidence angle can be used as a useful proxy for correlations 
with geological features, and that it has the potential for discriminating more seafloor types 
than the backscatter from the near and far range incidence angles. Thus, in most software 
packages for backscatter processing there is no option for selecting the reference angle for 
angle-normalization. One exception is MB Systems which was utilized in this study for 
producing 23 backscatter mosaics (using selected MBES lines with less than 100% overlap) 
each one being normalized at different reference angle (same as the number of iHAC layers). 
By stacking these mosaics we obtain a synthetic version of the HAC from which we can 
extract a full angular response from each individual cell.  



Evangelos Alevizos, Acoustic Seafloor Classification  2017

 

110 
 

 

Figure 6.2: A) 
Bathymetry of the study 
area with locations of 
sediment samples. B) 
Sounding density map 
with area referred to a 
5x5 m area. 

 

 

It has to be noted that for obtaining useful angular responses, the MBES sonar should 
record backscatter intensity in a stable and linear way (Lurton and Lamarche 2015). 
Importantly, the original data should be geometrically (seafloor slope, footprint area) and 
radiometrically (beam pattern, TVG) corrected so it represents changes only depending on 
the seafloor type variations. In this study it was not necessary to apply seafloor slope 
corrections to the data as the study area has a very smooth bathymetry (<<5 degrees for the 
majority of slopes).  

 

Supervised machine learning algorithms  

Soundings from within matrix cells corresponding to ground-truth locations shown in 
Table 6.1 (appendix of chapter 6) were utilized as training data in the following supervised 
classifiers: a pattern recognition approach (SAD), random forest (RF), support vector 
machine (SVM) and an artificial neural network (ANN). Each algorithm was applied on both 
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types of HAC matrices i.e.: the one made of interpolated backscatter layers (iHAC) and the 
one made from angle-normalized mosaics (synthetic HAC). These algorithms were selected 
since traditional supervised classification with the MLC method has some limitations 
regarding the quality and quantity of training samples and the dimensionality of the 
backscatter data (Benedicktson, 1999).  

In supervised classification the training data provides the “knowledge” regarding each 
defined class that assists the algorithm in classifying the rest of the (unknown) data. The 
“knowledge” consists of a set of input data including the angular responses of each 
incidence angle and the corresponding seafloor type value (categorical). In this study we use 
the term “descriptors” to refer to the angular layers of the iHAC or the synthetic HAC from 
which the angular responses were obtained.   

The pattern recognition approach used here is described in Alevizos (2017) where it 
was initially implemented. The method compares the 2D shape of known angular signatures 
with unknown ones. A similarity assessment is used for comparison of both signatures 
which are treated as 2D vectors. The level of similarity with each of the reference signatures 
determines the acoustic class membership of the unknown angular signatures. An 
adaptation of the sum of absolute differences algorithm (SAD) for 2D data is used for testing 
the similarity of angular signatures.  

The SAD algorithm was initially developed for video compression and it is widely used 
for object recognition tasks (Dawoud et al., 2011). In our implementation, the algorithm 
calculates the difference between reference and unknown backscatter values of 
corresponding incidence angles. Then, similarity criteria are applied to the sum of 
differences for each class assignment. It is implied that the lower the values of the sum of 
absolute differences the higher is the similarity between the 2D objects (angular signatures) 
under examination. The user has to set only two criteria that will influence the similarity 
assessment hence the final classification results. These criteria include the standard 
deviation offset and the majority criterion. The standard deviation offset criterion controls 
the maximum acceptable absolute differences between known and unknown angular 
signatures. It is obtained by means of data exploration of soundings falling within the 
ground-truth cells (Table 6.2, appendix of chapter 6). Soundings forming the angular 
signature of known seafloor types hold particular standard deviation for each seafloor. This 
information helps in defining tolerance boundaries for the mean backscatter values of each 
seafloor type. The standard deviation offset can be used for strict or fuzzy class membership. 
The majority criterion controls the number of incidence angles, the difference values of 
which, are falling within the acceptable standard deviation offset. Accordingly, the majority 
criterion needs always to be set as large as possible (>80%) for more robust matching. It 
should be adjusted only if backscatter information is missing for certain angles.   

The random forest (RF) is a machine learning algorithm that has been widely applied 
in image analysis and predictive seafloor mapping studies (Lucieer et al., 2013; Diesing et al., 
2014). The training process is based on “growing” several (user defined) classification trees 
using random subsets of the training sample as a-priori information. This information is then 
compiled into a non-parametric model for classifying the grid-cells of the input layers. The 
prediction at a certain grid-cell is defined by the majority votes of all random subsets of 
trees (Gislason et al., 2006). Growing of classification trees is iterative, so each time (during 
the training) the RF will reserve randomly selected parts of the training sample (out-of-bag 
sample) for internal cross-validation of the results. With each iteration, one descriptor value 
is neglected and its importance score is calculated according to its contribution to the 
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resulting prediction error. Descriptor importance is considered one of the main advantages 
of the RF algorithm. The RF approach has been initially applied together with ARA by Che-
Hasan et al. (2012, 2014). They used angular responses extracted from half swath 
measurements within objects (groups of cells) derived by automated segmentation of the 
backscatter mosaic. In this study we apply the RF on the grid-cells of layers building up the 
HAC matrices described above. The algorithm can identify non-linear relationships that 
underlie between backscatter values and the seafloor types. In addition, it outputs a rating 
with the importance scores for each angular layer indicating their influence in predicting a 
certain seafloor type.   

The SVM is a machine learning algorithm which is particularly used for supervised 
classification of terrestrial multispectral data and recently for seafloor acoustic mapping 
(Che-Hasan et al., 2012; Stephens and Diesing, 2014). Che-Hasan et al. (2012) applied SVM 
on backscatter mosaic objects whereas in this study we apply the algorithm on cells of the 
HAC layers. SVM maximizes the separation of classes in a high dimensional dataset by fitting 
a hyper-dimensional plane (or just hyperplane) to the data feature space. The hyperplane is 
produced using a kernel function when the data cannot be linearly separated in feature 
space. The selection of a particular type of kernel function depends on the data separation 
pattern (in feature space) and will have a strong effect on classification. SVM has the ability 
to identify non-linear relations within the data and does not require normal distribution of 
the training backscatter values from within each acoustic class. 

Finally, an artificial neural network (ANN) approach is examined in this study. ANNs 
are mimicking the functionality of biological neurons and they are extensively used in 
speech/face recognition but also in landscape classification studies (Coleman 2008, van 
Leeuwen 2012). They possess a number of advantages that distinguish them from common 
algorithms whereas they also hold some disadvantages. Regarding the merits of ANNs these 
include that they do not make any assumptions about the data (e.g.: normal distribution of 
training data is not a prerequisite for data analysis), they are able to identify non-linear 
relationships in high dimensional data and most importantly, they acquire learning without 
the input of physical models that describe data variability. However ANNs are considered as 
black boxes regarding input-output of data plus they require several trial-and-error 
iterations for optimally tuning of algorithm settings. In this study two training sets were 
used to support the ANN classification. The main concept of a supervised ANN is that an 
input of variables is examined in a combinatorial way regarding the production of certain 
outputs. The combination of variables leading to acceptable outputs (according to the 
training set) is determined by weight factors that strengthen the relationship between the 
input and output. Learning occurs when the ANN modifies the weight factors via a back-
propagation technique in order to minimize a user-defined error rate value. The trained 
ANN applies then its “knowledge” to the rest of the data set for classification of unknown 
elements. ANN has been applied to backscatter angular responses initially by Huang et al. 
(2013) producing promising results. However they used seafloor patches generated from a 
half swath sliding window to extract the angular responses. This fact had an effect on the 
homogeneity of the angular responses and hindered class separability in their study.  
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Training set selection 

In this study we tested all classifiers using a training set with fixed size meaning that 
angular responses from only five representative ground-truth locations were utilized 
(Fig.6.3C, Table 6.1, appendix of chapter 6). The sediment samples of Table 6.1 (appendix of 
chapter 6) were collected using a multi-corer and a Van-Veen grab. The selection of the 
training set was based on grain size analysis results and information from an unsupervised 
classification (Alevizos et al., 2017). The unsupervised method applied in Alevizos et al. 
(2017) yielded an optimum number of five classes therefore it was considered as guiding 
information for the supervised training in this study. The small amount of training set was 
chosen to fit the purpose of the study in assessing the ability of machine learning classifiers 
to perform adequate classification using a restricted amount of training set. Only the ANN 
method required the total number of ground-truth data during training for producing 
results comparable to the rest of the classifiers.  

6.3 Results 
Comparison of angular responses from dense soundings with 
interpolated and synthetic ones (HAC) 

In this study we extracted the angular responses of five different seafloor types in three 
different ways. First we extracted the original soundings from within 5x5 m rectangular 
patches corresponding to the five ground-truth locations (Fig.6.2A, Table 6.1 appendix of 
chapter 6). These resulted in multiple backscatter values for all incidence angles and each 
seafloor type being represented by a distinct cloud of measurements. In addition, we 
extracted angular responses from the cells of the two matrices (iHAC and synthetic HAC) 
corresponding to the five ground-truth locations. In the first instance the iHAC consists of a 
set of 23 backscatter layers resulted from interpolation of original dense backscatter 
measurements. In the second instance the synthetic HAC consists of backscatter mosaics 
resulted from angle-normalization using 23 different incidence angles as reference each 
time. It is observed that all three sets of extracted angular responses represent the five 
seafloor types individually and clearly apart from each other (Fig.6.3). Each angular response 
follows a hierarchical plan from coarser to finer material, meaning that angular responses of 
coarse seafloor types hold higher dB values than those of the fine types at all instances. It 
appears that the angular responses derived from the cells of iHAC correspond close to the 
mean dB values of the original angular response cloud. The angular responses derived from 
the cells of the synthetic HAC appear smoother than those derived from the iHAC and with 
positive offset between 1 to 3 dB. In general, angular responses derived from both 
interpolated and synthetic HACs are suitable for seafloor classification using ARA since they 
hold continuous and distinctive information for each of the five seafloor types. Considering 
the suitability of the above angular responses for seafloor mapping we applied the following 
supervised classifiers on interpolated and synthetic HAC data for classifying the seafloor of 
the study area. The classification maps resulted from the HAC with the interpolated angular 
mosaics are shown in Fig.6.4.            
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Figure 6.3: Angular responses of 
original soundings overlaid by: a) 
angular responses derived from cells 
of the iHAC, b) synthetic HAC, c) iHAC 
and synthetic HAC angular responses 
superimposed. Colors symbolize each 
acoustic class that has been 
characterized by ground truth data in 

Table 6.1 (appendix of chapter 6). 
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SAD: The SAD algorithm uses a set of reference angular signatures representing a known 
seafloor type (class) (Fig.6.3C) for comparison with unknown signatures extracted from each 
grid cell of the HAC. Matching is based on criteria set by the user (st. dev. offset, majority) 
and each cell is assigned with the class represented by the successfully matched reference 
signature. In this study the offset value was selected according to the standard deviation of 
dB values from each angular signature, thus different offsets were applied for each class 
(Table 6.2, appendix of chapter 6). The majority threshold was set to 90% of the total 
number of incidence angles. Some cells could be matched with up to two adjacent angular 
signatures and receive double class assignment. In this regard class overlap was quantified 
and it was found to affect class boundaries of neighboring classes (Fig.6.4). Cells without 
continuous angular signatures or cells that did not conform to the majority criterion 
remained unclassified. This algorithm is implemented in Matlab code and is described in 
Alevizos (2017).  

RF: The training sample for RF consists of several hundreds of angular backscatter values 
derived from five ground-truth locations (Fig.6.3AB, Table 6.1, appendix of chapter 6). We 
fitted models using 50, 100, 200, 500 and 1000 trees and found that all of them produce a 
zero out-of-bag error rate (OOB). This is an indication that the training sample is particularly 
effective and produces consistently correct results regardless of the number of trees used to 
fit the model. Additionally it was found that regarding variable importance some differences 
occur when fitting was done using a low (50) and high (500) number of trees. When the 
model is fitted with 50 trees almost half of the angular layers score with much higher 
importance values for predicting all classes. On the other hand when 500 trees are used for 
model fitting, the importance scores are much lower for the majority of angular layers 
regarding prediction of all classes. The individual class importance scores vary for each class 
and for the number of trees as well. In general, for the model fitted with 50 trees, the 
importance scores vary individually for each class while angular layers of 50 and 60 degrees 
incidence received consistently the lowest scores (zeros). When a model with relative higher 
amount of trees (500) is applied, the importance scores tend to differentiate more clearly 
two groups of classes. Meaning, that prediction of classes 1 and 2 is influenced more by a 
few angular layers from the near range (11, 13, 15, 17 degrees), a few angular layers from 
the middle range (40, 44 and 48 degrees) and a few angular layers from the outer range (54, 
63, 65 degrees). In contrast, prediction of classes 3 to 5 was found to be equally influenced 
by all angular layers. For this application the MGET software (http://mgel2011-
kvm.env.duke.edu/mget) was used.  

SVM: Polygons corresponding with the grid-cells of five reference ground-truth locations 
were used as training areas. The SVM requires a user-defined kernel function for fitting a 
hyperplane to separate the acoustic classes. In this study we tested a number of kernel 
functions and it was found that linear, polynomial (C0=1, deg=0.5, gamma=1) and histogram-
intersection functions provided the most convincing classification results (Fig. 6.4). In 
contrast, radial basis, sigmoid and exponential-x2 kernel functions produced poor to non-
realistic classification results. The effectiveness of the above kernel functions is related to 
the separation pattern of angular backscatter values in feature space. Therefore a suitable 
kernel function is one that fits better the class boundaries in the hyper-dimensional feature 
space. The SVM used in this study was implemented in the OpenCV library provided by 
SAGA GIS. 
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ANN: We run ANN using a) the polygons holding the five reference ground-truth locations 
and b) all polygons holding ground-truth information (18 locations) (Fig.6.2A, Table 6.1 
appendix of chapter 6). The classification results show a more realistic appearance when the 
total amount of ground-truth data was used for training. One single layer was chosen for 
model simplicity and a Gaussian function (alpha=1, beta=1) was applied as activation 
function that adjusts the weight factors of model outputs during the learning process. An 
activation function is fundamental for ANN learning and its selection is not related to the 
features of the training set. The Gaussian function was chosen because it was the only one 
to produce reasonable classification results that are comparable to the results of the three 
classifiers applied. The number of neurons was set to 18, the same as the number of training 
areas (Huang et al., 2013). The ANN used in this study was implemented in the OpenCV 
library provided by SAGA GIS.  

 

Figure 6.4: Supervised 
classification maps 
using the angular 
responses from five 
ground truth locations 
corresponding to the 
cells of the iHAC as 
training data (Table 

6.1, appendix of 
chapter 6). For the 
ANN map all 18 ground 
truth locations needed 
for training.   

 

Validation  

All classifiers produced very similar classification results (Fig.6.4, Table 6.3) and thus 
show great potential in automated supervised seafloor classification using high dimensional 
MBES backscatter datasets with a limited amount of ground truth data for training. Only the 
ANN classifier required a greater amount of training data (threefold) for producing 
classification results comparable to the other classifiers. The final classification maps 
express an agreement in the areal percentage per class but also it can be seen that all 
classes cover comparable geographical areas among each of the maps.  Table 6.3 shows 
results of each supervised classification map when compared to the classification map of 
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Alevizos et al. (2017). This map is considered to represent sediment variability in a more 
objective way, since it has been produced by an unsupervised method that performs cluster 
validation. The comparison was done with the Map Comparison Kit implemented in (Visser 
and de Nijs, 2006, http://mck.riks.nl/) and agreement was quantified using kappa, 
kappa_histogram and kappa_location coefficients. The kappa coefficient is a standard 
measure of agreement between two categorical maps while kappa_histogramm expresses 
the agreement regarding the amount of cells belonging to each class and kappa_location 
expresses the agreement of class assignment by location (i.e.: high kappa_location score 
means that all areas have been classified similarly between the two maps). All scores 
suggest strong agreement between each classification map and the Bayesian classification 
map of Alevizos et al. (2017) with minor fluctuations. The scores of the classification maps 
produced using the synthetic HAC appear slightly lower than the scores of the classification 
maps produced using the interpolated HAC, but this difference is not statistically significant 
(i.e.: both iHAC and synthetic HAC scores in Table 6.3 belong to the highest ranking of 
agreement). This difference occurs because the backscatter mosaics of the synthetic HAC 
contain some noise in the nadir and outer range which was not possible to remove from the 
data, leading to misclassification of a small number of cells.   

 

Table 6.3: Agreement scores between classification maps produced with the iHAC and the 
synthetic HAC data and the *Bayesian classification map from Alevizos et al. (2017), 
calculated using the Map Comparison Kit. 

HAC 
(interpolation) 

Agreement scores with 
Bayesian classification 

map* 
 

synthetic HAC 
(normalization) 

Agreement scores with 
Bayesian classification 

map* 

Machine 
learning 

classification 
map 

Kappa K_Loc K_Hist 

 

Machine 
learning 

classification 
map 

Kappa K_Loc K_Hist 

SAD 0.61 0.70 0.86 
 

SAD 0.53 0.66 0.83 

RF 0.73 0.86 0.86 
 

RF 0.61 0.67 0.81 

SVM 0.68 0.84 0.81 
 

SVM 0.54 0.66 0.82 

ANN 0.68 0.77 0.88 
 

ANN 0.55 0.69 0.81 

6.4 Discussion 
Effectiveness of the HAC matrix for improving spatial and acoustic 
resolution of ARA   

Until now, the main approach to overcome the problem of acoustic class homogeneity 
in ARA studies was by segmenting the backscatter mosaic into objects (groups of cells) using 
algorithms requiring several user-defined parameters. Then angular responses were 
extracted from soundings falling within each object, assuming that they better discriminate 
the corresponding seafloor types. The concept examined in this study takes ARA one step 
forward by introducing the HAC matrix.  
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The HAC matrix allows for extraction of angular signatures from the lowest level of 
spatial constituents (i.e.: the grid-cells of the HAC layers) eliminating the need for 
backscatter mosaic segmentation. Angular signatures derived from fine scale homogeneous 
seafloor areas (grid-cells similar to the average MBES footprint size) are relevant to the scale 
of ground-truth data, supporting highest possible separation of seafloor types. In this way, 
along swath seafloor variations can be resolved and acoustic classes can be assigned for 
each grid cell and not coarse seafloor patches. These two facts are expected to advance 
seafloor mapping by offering more detailed acoustic classification results that are consistent 
with seafloor acoustic properties (i.e.: angular dependence of backscatter). Highly detailed 
seafloor classification maps can effectively depict fine-scale variations of sediments on the 
seafloor and provide valuable input to benthic habitat and other studies that rely on 
effective separation of seafloor sediments.  

The layers building the HAC matrix may result either from interpolation of spatially 
dense backscatter values of each incidence angle (iHAC) or by producing normalized 
backscatter mosaics using different incidence angle for reference each time (synthetic HAC). 
The iHAC requires backscatter dedicated MBES surveys with more than 100% overlap for 
obtaining dense soundings per seafloor area. Since backscatter dedicated MBES surveys are 
time-consuming (thus costly) the synthetic HAC is a useful alternative. The shape of angular 
responses yielded from the iHAC may appear less smooth than those derived from the 
synthetic HAC. This occurs because the cell values of the iHAC reflect the effects of the 
natural seafloor variability from actual soundings values while the synthetic HAC cell values 
represent angular variability based on calculation of average local backscatter intensity. 

The HAC concept is an objective way to derive homogeneous angular responses in 
contrast to applying backscatter mosaic segmentation. Mosaic segmentation requires 
expert knowledge which can be subjective and by varying the segmentation parameters, 
different angular responses may be obtained. Considering the results of this study we 
suggest that future backscatter studies should either rely on dense backscatter soundings 
(for using the iHAC ) or on MBES surveys with conventional overlap but producing several 
backscatter mosaics normalized for different incidence angel each time that are used to 
generate the synthetic HAC. In addition a small amount of highly overlapping lines 
may/should be collected over known seafloor for validation purposes.   

 

Suitability of machine learning algorithms for advanced seafloor 
mapping using the HAC 

Testing the performance of the four applied machine learning classifiers (SAD, RF, SVM, 
ANN) has revealed valuable information about new capabilities for automated MBES 
backscatter interpretation. A particular aspect in this study is the application of these 
algorithms on the HAC matrix. This type of data structure allows for exploiting the angular 
dependence of backscatter within a new processing concept while preserving the high 
spatial resolution of angular backscatter layers. One important finding is that the majority of 
the above classifiers produce valid classification results by using only a small but 
representative amount of ground truth training data. Thus, careful selection of ground-truth 
information is crucial for the performance of machine learning classifiers. It is suggested 
that each seafloor type should be represented by at least one training area. This implies that 
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even the minimum amount of ground truth data (one sample per seafloor type) is enough 
for classification, as long as the data come from acoustically and geologically distinct areas. 

As a result, careful planning of ground truth sampling prior to classification should 
take place and it should consider variations in backscatter data as well. In case that the 
training set consists of polygon cells (for e.g.: SVM, ANN) the cell size should be set at the 
same size as the grid-cell size of the HAC layers. This affects the quality of angular responses 
considered and will have an impact on the class separation when the sediment variability is 
high within a few meters. It is implied that very large cell sizes will result in more mixed 
angular signatures and may produce inconsistent classification results. The same holds for 
the case when the training data are points (for e.g.: SAD, RF). Angular responses of 
reference seafloor types should be continuous and sufficiently separated from each other. 

Backscatter values that are encompassed by either training areas or points are not 
required to have normal distribution when the described classifiers are used. Performing 
accurate seafloor classification by using high dimensional acoustic data even with a small 
training set is a very common situation in the field of seafloor mapping. The above 
algorithms in conjunction with the HAC structure will decrease the time and cost for ground-
truth data collection, by using effectively a smaller but representative amount of seafloor 
samples.  

6.5 Conclusions 
 

In this study the concept of the HAC matrix was considered for improving the 
application of ARA using multiple angular backscatter layers. There are two ways of 
constructing the HAC layers. One that is based on interpolation of actual soundings (iHAC) 
from single incidence angles (i.e.: from backscatter dedicated surveys with high overlap). 
The other is to produce backscatter mosaics using a different normalization angle each time 
(synthetic HAC). Both HAC types yield comparable angular responses per cell that is the 
finest element of the matrix layers. This guaranties that angular responses come from 
naturally homogenous areas of the seafloor hence no backscatter mosaic segmentation is 
required. In addition, acoustic classes are assigned per cell, increasing the spatial resolution 
of the classification map. Acoustic maps of the seafloor with high resolution are more 
informative and provide trustworthy comparisons with the ground truth data.  

The synthetic HAC provides the possibility to collect MBES data with standard overlap 
and obtain angular responses per cell as efficiently as with using an iHAC. Thus, the 
synthetic HAC minimizes the costs of backscatter dedicated surveys and seems as a 
promising alternative in ARA classification. The high dimensionality of the HAC matrices 
makes them ideal inputs to machine learning algorithms for advanced supervised seafloor 
classification by incorporating the angular backscatter information. Machine learning 
algorithms require the input of ground truth data for training. Practical limitations are 
usually responsible for collecting small amount of ground truth data and this consists of 
another challenge in seafloor mapping. In this study we tested the performance of four 
machine learning algorithms using the HAC layers and only one sample per seafloor type for 
classification. All four algorithms produced very comparable results that were in agreement 
with classification results from an unsupervised method (reference). The SAD, the RF and 
the SVM algorithms produced very comparable results using only one training sample per 
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seafloor type. In contrast, the ANN algorithm utilized three times the amount of ground 
truth data for producing similar classification results. The HAC approach described here 
shows potential in future ARA studies by maximizing acoustic class homogeneity and 
providing improved class separability. The use of machine learning algorithms in conjunction 
with high dimensional angular backscatter layers provides a reliable tool for fast, automated 
seafloor classification that integrates angular backscatter information.     
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7. CONCLUSIONS 
7.1 Acoustic class separation  

Effective identification of seafloor types using ASC methods requires that the acoustic 
characteristics of seafloor show some uniqueness which can be measured. Examining the 
acoustic characteristics of various seafloor types using statistical tools is essential for 
objective and repeatable results in ASC. Bayesian methodology applied on various hydro-
acoustic data sets (chapters 3, 4 and 5) has led to important conclusions about the 
suitability of this unsupervised approach in revealing the dominant acoustic characteristics 
contained in backscatter data and how they are linked to geological seafloor types.  

 

Figure 7.1: Plot of a 
2D histogram from 
Parnum, (2007) with 
dominant angular 
responses of major 
seafloor types. 

 

7.1.1 Quantification of class separation – coupling of Bayesian 
method with ARA 

Case studies and model results have indicated that the backscatter from middle range 
beams (20 – 60 degrees) or the so called “plateau regime” of angular backscatter responses 
has greater potential in differentiating acoustic classes. This happens because backscatter 
values representing various seafloor types occur mainly within well-defined ranges, the 
boundaries of which are more separated in the range of these beams. Lamarche et al. (2011) 
suggest that backscatter values from 40 to 45 degrees incidence angles are a robust proxy 
for geological interpretations. In addition, case studies in chapters 3, 4 & 5 show that 
backscatter values from 38 to 44 degrees incidence angles are more suitable for calculating 
the optimal number of acoustic classes according to the x2 criterion. Therefore these 
incidence angles were used as reference for producing a valid number of Gaussian curves 
for fitting the histogram of backscatter values resulted from all beams. More information 
about the suitability of the middle range angles for seafloor classification can be found in 
section 2.2). It has been further demonstrated, that the middle range angles are more 
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susceptible to seafloor roughness variations and also to subsurface geological features since 
they show better penetration potential. These facts offer these angles the ability to provide 
more detailed backscatter information covering a wider spectrum of backscatter responses. 

 

 
 
Consequently, basing the Bayesian method on backscatter values from middle range 

angles is a robust statistical approach for differentiating major acoustic classes which are 
defined by a set of dominant angular responses. The notion of dominant angular responses 
is derived from representation of backscatter data as a density plot which is essentially a 2D 
histogram representation of angular backscatter data. To illustrate the density plot better, 
we consider one example plot from Parnum (2007) (Fig.7.1). In his density plot he identified 
manually three dominant angular responses which are correlated with distinct seafloor 
types. In Fig.7.1 not all angular responses may be represented by the same density of 
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backscatter measurements. The same is true for Fig.7.2a,b where a total number of five 
Bayesian classes are identified and a manual classification is not possible to be made. 

Angular responses of major seafloor types occur along dense patterns whereas other 
seafloor types may not appear distinctively (Fig.7.2a,c). Although sufficient ground truth 
data can provide useful information for empirical differentiation of angular responses, it is 
advisable that a density plot of angular responses should be objectively clustered by means 
of unsupervised classification.  

Thus, we consider the Bayesian classification as an effective tool for identifying local 
maxima (from middle range angular backscatter) on density histograms (Fig.7.2b,d). These 
maxima are indicated by the Gaussian curves the mean values of which represent the 
backscatter values with maximum density along a “narrow corridor” of middle range 
incidence angles (Fig.7.2b,d). At the same time, the standard deviation value of each 
Gaussian curve delineates the boundaries between the dominant angular responses. 
Fundamentally, the Bayesian method links within- and between-angle backscatter variability 
in a statistically sound way, comprising a useful tool for identifying indirectly the dominant 
angular responses in the whole dataset.       

 

7.1.2 The concept of geo-acoustic resolution 

In every task that involves acoustic classification, there is a need for defining acoustic 
class separability. In short, there is a question about how much “apart” neighboring classes 
are and what is the minimum seafloor type difference, which can be resolved by means of 
ASC. These ideas form part of the discussion in chapter 3. Since Bayesian classes are ordinal 
categorical variables it is implied that there is a degree of similarity between consecutive 
classes. Therefore, the minimum seafloor type difference that acoustic classes can capture 
(e.g.: sandy gravel vs gravel) defines the so called geo-acoustic resolution of the method. 

The geo-acoustic resolution is considered as an essential parameter since it is a 
measure of performance of an ASC method. It is perceived as an analogous to radiometric 
resolution for satellite multispectral imagery although geo-acoustic resolution applies on 
processed data. The geo-acoustic resolution can be expressed through different statistical 
tools that measure class homogeneity or the “distance” between classes depending on the 
type of output classification results. The geo-acoustic resolution can be assessed in two 
ways: first by examining the statistical significance of the acoustic class differences (cluster 
validation) and also by using ground truth information (chapters 3, 4, 5).     
The geo-acoustic resolution is a measure of the strength of an algorithm to discern natural 
acoustic variability of similar seafloor types. Thus it is implied that the concept of geo-
acoustic resolution is only applicable in unsupervised methods since they don’t make use of 
a predefined number of classes.  

In the Bayesian method the optimal number of classes is defined by the x2 criterion. 
This criterion has also been referred as the goodness of fit between the Gaussian curves and 
the histogram curve of backscatter values from selected incidence angles. Theoretically an 
increasing number of Gaussian curves would approximate better the histogram curve thus 
leading to an ever increasing number of optimal classes. In practice it is important to 
identify the optimal number of classes; i.e.: the minimum number of Gaussians that satisfy 
the x2 criterion. This is because an increasing number of classes may still be valid in terms of 



Evangelos Alevizos, Acoustic Seafloor Classification  2017

 

124 
 

distinguishing even more homogenous seafloor classes however the differences between 
the classes may not be statistically significant. In essence, if an increasing number of classes 
do not improve class separation in terms of seafloor types then they should not be 
considered.  The output Bayesian classes are characterized by Gaussian curves holding mean 
and standard deviation values (in dB) which can be used for expressing the geo-acoustic 
resolution quantitatively. The difference between the mean values of two adjacent acoustic 
classes is considered as the minimum acoustic difference that the algorithm can discern. 
Moreover, the mean backscatter or the categorical values of each class can be correlated 
with ground truth data for assigning a seafloor type to each acoustic class.  

In case study of chapter 3 the Bayesian classes are compared against grain size 
analysis information. The most important finding is that the method identified seafloor 
types the differences of which are due to changes in the skewness of the grain size 
distribution (i.e.: percentage of coarse grained sediments) although the mean grain size 
values in general appear to be similar. In case study of chapter 4 the seafloor sediments 
comprise great variability spanning from silt/clay to gravel. Thus the Bayesian classification 
method discerned acoustic classes representing sediment classes with varying mean grain 
sizes. However, there was one acoustic class that it was represented by two different types 
of sediments. Apparently, these two types had an indistinguishable acoustic behavior. In 
case study of chapter 5 the Bayesian acoustic classes represent substrate types which are 
defined by different nodule density per seafloor area. However it was not possible to 
discern the highest nodule density class from nearby areas covered with basalt boulders. 

Based on these findings, it can be concluded that there is a great diversity of natural 
factors that affect backscatter responses when a given sonar type and frequency is used. 
Thus, the geo-acoustic resolution will be influenced by such factors and the sonar 
characteristics. The most efficient way to overcome the difficulties of unsupervised 
classification (that may not resolve similar seafloor types) is with using a sufficient amount 
of ground truth data for characterization of each acoustic class or for applying supervised 
classification, given that all seafloor types are appropriately represented by the ground truth 
data. If there is redundant ground truth data for each class, class homogeneity can further 
be evaluated with the correlation coefficient and the ANOVA method. In chapter 5, we took 
advantage of the volume of image analysis results about nodule density and examined the 
statistical difference of nodule densities belonging to each acoustic class. The most 
important finding in this study was that each Bayesian acoustic class included samples with 
statistically different nodule density. In general, the greater the number of optimal classes 
the finest the geo-acoustic resolution is, suggesting sufficient between-class differences, 
greater within-class homogeneity and thus more acoustic seafloor types can be resolved.  

 

7.2     Improvements of angular response analysis  
7.2.1 The hyper-angular cube matrix: spatial resolution, class 
separation, machine learning 
 

The hyper-angular cube provides an excellent opportunity for studying the angular 
dependence of seafloor backscatter in unprecedented detail. Chapters 4 and 6 explain the 
Hyper-Angular Cube matrix that consists of stacked backscatter layers, resulted from 
interpolated or normalized backscatter values yielded by different incidence angles. The 
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significance of the HAC is related with improving the separation between angular responses 
thus maximizing acoustic discrimination of seafloor types. This is because angular 
backscatter responses can be extracted from each cell of the HAC matrix instead of half the 
sonar swath that it is usually the case. Since the size of the HAC cells, is dictated by the size 
of the average sonar footprint, it is inferred that angular responses derived from single cells 
would represent naturally homogenous seafloor. This is because seafloor complexity that 
exists at scales finer than the sonar footprint cannot be resolved. As a result, homogenous 
angular responses will enhance the separation of mixed seafloor types and allow for more 
precise classification results. Acoustic homogeneity is generally an issue in ASC studies and 
traditional approaches of ARA do not offer convincing solutions so far, thus the HAC seems 
as a promising tool for revealing the homogeneity of distinct seafloor types. 

So far in literature the construction of the HAC layers required data from backscatter 
dedicated surveys with significant swath overlap for yielding dense soundings for each angle 
per seafloor area. This kind of data acquisition significantly increases the duration of MBES 
survey and thus its total cost.  

Considering that the concept of a high resolution HAC is the way forward in 
backscatter ARA, there is a need for minimizing/avoiding the time and cost limitations 
associated with backscatter dedicated surveys. By applying mosaic normalization for 
constructing the HAC layers (chapter 6) we obtain angular responses that are comparable to 
those responses derived from actual soundings. We consider this approach as a novelty in 
backscatter interpretation which is going to significantly improve the quality of ARA results 
without demanding the cost for backscatter dedicated surveys. It is further suggested that 
MBES backscatter processing software, should allow user-defined values regarding the angle 
of normalization for the generation of backscatter mosaics. 

The HAC matrix introduces hydro-acoustic data to a novel sense of processing and 
interpretation. With the HAC, dimensionality of data is increased allowing for description of 
seafloor backscatter from multiple aspects. In this way, specific seafloor types can be 
emphasized in particular angular layers (e.g.: seafloor with volume heterogeneity is 
expected to be more distinguishable in layers of middle and towards the outer swath 
incidence angles). The HAC matrix can be seen as analogous to a hyper-spectral data cube. 
Therefore the more angular layers, the better the discrimination capability of various 
seafloor types. The HAC is suitable for introducing new concepts in backscatter classification 
and particularly it interconnects ARA with image-based processing. In addition, the HAC can 
be ideally combined with ground truth data for applying either ARA inversion or empirical 
ARA models using advanced supervised classification approaches. This is particularly 
interesting since the dimensions of the HAC cells (from which angular responses are 
extracted) are similar to the scale of ground truth data (a few square meters area on the 
seafloor). The great variety of seafloor and sediment types that exist naturally cannot 
always be modelled by the generic seafloor types that geophysical ARA models produce. 
Alternatively, empirical ARA models produced by data belonging to the specific study areas, 
can describe seafloor variability more efficiently. In this regard the HAC layers may be 
utilized for supervised learning, thus incorporating angular information to empirical 
relationships for specific seafloor types.           

It has been found that supervised classification methods such as the MLC may perform 
well with small amount of input layers however it is not suitable for large number of layers 
(Benedicktson et al., 1995). In addition the MLC requires that ground truth information from 
each training sample has normal distribution, fact that further restricts the capability for 
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adequate classification. Accordingly, high dimensional data (such as the layers of the HAC) 
require algorithms that can handle large amount of input layers and make use of small but 
effective amount of ground truth data which do not necessarily follow a normal distribution. 
Supervised learning algorithms such as those described in chapter 6, appear promising in 
automated backscatter angular response analysis using high resolution angular backscatter 
layers. All the tested algorithms in chapter 6 produced very comparable results for five 
major acoustic classes. This was also found to be in agreement with the unsupervised 
Bayesian classification results. An additional advantage is that these algorithms require a 
small amount of training samples for producing adequate classification results (chapter 6).  

The emergence of the HAC matrix using MBES data with standard overlap along with 
the availability of sophisticated algorithms that utilize effectively a reduced amount of 
training samples is going to have a major impact in future backscatter studies. Through 
these developments, angular response analysis will be applied on high resolution 
backscatter layers producing seafloor classification maps that capture fine scale sediment 
variability without the need for increasing the cost for more data collection. Detailed geo-
acoustic maps of the seafloor will drastically revise the way of integrating MBES information 
with other data, offering great opportunities for more precise estimations of geologically-
related quantities such as benthic habitats, geomorphological structures and geochemical 
fluxes.   
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APPENDICES 
APPENDIX OF CHAPTER 3 

 

 
Figure 3.2. An example of the theoretical (red) and estimated (green) scatter pixels for beam with 

incidence angle 50 degrees of the port side versus depth.  

 

             

 

Figure 3.3: Graphical 
representation of the 
scatter pixels concept 
(modified after Simons 
& Snellen, 2009).   

 

Nθ = dA/da 

        = (HθΤ/cos2θ )(2sin(θ)/cτ)                                                                                                       [3.1] 

Where: Nθ= number of scatter pixels, dA = depends on waterdepth H and the beam opening 

angle θΤ . Whereas da depends on the water column sound speed c and the pulse length τ.  
 

 

 

 



Evangelos Alevizos, Acoustic Seafloor Classification  2017

 

138 
 

APPENDIX OF CHAPTER 4 

Table 4.1: Population statistic features and frequency distributions (x axis: backscatter (dB),  
y axis: frequency) of soundings from five sediment sample locations (5x5m patches) 

Training areas (5x5 meters) 

Sample_No: 1 
 
Acoustic class : 5 
Type: sandy Gravel 
Number of soundings: 1517 
Mean dB: -48.1 

 

Distribution 

       

Sample_No: 18 
 
Acoustic class : 4 
Type: gravelly Sand 
Number of soundings: 1442 
Mean dB: -53.9 

 
      

Sample_No: 3 
 
Acoustic class : 3 
Type: Sand 
Number of soundings: 782 
Mean dB: -61.8 

 

        

Sample_No: 9 
 
Acoustic class : 2 
Type: (gravelly/sandy) Mud 
Number of soundings: 312 
Mean dB: -64.4 
 

 

Sample_No: 7 
 
Acoustic class : 1 
Type: Mud & Clay 
Number of soundings: 287 
Mean dB: -71.7 
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Table 4.3:  Percentages and grain size statistics of the coarse and fine grain fractions, 
presence of shells from sieved data measurements and classifications results. 
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1 14.59 20.17 34.12 31.12 1/1 240.0 246.0 2600 1000 5 5 5 

2 2.23 30.89 21.96 44.91 1/1 220.0 246.0 1800 4000 5 5 5 

3 0.00 0.65 14.49 84.86 1/0 170.0 197.0 210 180 3 3 3 

4 0.00 0.49 2.56 96.95 1/0 151.8 191.5 200 180 3 3 3 

5 0.00 0.69 3.28 96.03 1/0 41.3 73.0 100 90 2 3 2 

6 0.00 0.00 0.00 100.00 0/0 23.0 44.3 50 40 2 1 2 

7 0.00 0.00 0.00 100.00 0/0 23.0 43.5 50 40 1 2 1 

8 0.00 0.00 0.00 100.00 0/0 26.3 43.0 50 40 1 1 1 

9 0.00 3.39 0.74 95.87 0/0 20.8 41.0 40 40 3 2 2 

10 0.00 0.00 0.72 99.28 0/0 21.0 43.8 40 40 2 2 2 

11 0.00 0.72 0.24 99.04 0/0 20.5 42.0 50 40 2 - - 

12 0.00 0.42 15.36 84.21 1/1 197.0 236.0 320 250 4 5 4 

13 0.00 0.27 7.89 91.84 1/0 157.0 270.0 290 250 3 3 3 

14 0.00 0.38 21.87 77.76 1/1 192.0 216.0 280 180 3 3 3 

15 0.00 0.40 4.08 95.52 1/0 206.0 236.0 220 130 3 3 3 

16 0.00 0.07 7.94 92.00 1/1 236.0 246.0 460 350 3 3 4 

17 0.00 8.06 18.38 73.57 0/1 84.0 188.0 210 180 4 3 4 

18 0.00 1.41 31.15 67.44 1/0 282.0 270.0 270 350 4 4 4 

19 0.00 0.00 7.93 92.07 0/0 226.0 236.0 310 250 3 3 3 

20 0.00 0.13 5.90 93.97 0/0 56.0 258.0 280 250 3 2 3 

21 0.00 1.10 3.87 95.04 0/0 112.0 150.0 150 130 4 4 4 

22 0.00 0.00 1.31 98.69 0/0 50.8 109.0 110 90 2 3 2 
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APPENDIX OF CHAPTER 5 

 
 

 

Figure 5.3:  
Data exploration 
results showing 
probability density 
functions for 
arbitrary classes of 
nodules per image 
(<10: no nodules, 
10-184: low, 185-
270: mid, >270: 
high) for A) 
bathymetry and 
derivatives and B) 
Backscatter and 
neighbourhood 
statistics. 

 

 

 



Evangelos Alevizos, Acoustic Seafloor Classification  2017

 

141 
 

Error sources in quantitative Mn-nodule mapping  

A few error sources need to be considered when performing seafloor classification and 

nodule density estimates with optical and acoustic data acquired during multiple AUV 

deployments. 

 

1. Noisy backscatter data: Since the Bayesian approach uses the raw backscatter data, 
any final classification is susceptible to the effects of noise. Hence, beam incidence 
angles less than 20 degrees were discarded due to extreme nadir noise effects. The 
ISODATA classification was based on the backscatter mosaic and its statistics which 
are also affected mainly by nadir specular noise. It is thus strongly recommended 
that backscatter data are properly corrected for geometric and sensor-related 
effects during pre-processing and grids are also filtered/smoothed before the final 
classification.   

 

2. AUV navigation: As exact underwater navigation in 4 km water depth is generally a 
difficult task, relative misalignments of data from different deployments are very 
common. Differences in absolute positioning between two deployments can easily 
amount to 100 m. Thus correlating image based nodule densities from one 
deployment with backscatter values from another dive might introduce correlation 
errors that also impact predictability. Although the large scale spatial pattern of 
classes is well defined, these misalignments can slightly alter the position of class 
boundaries causing disagreement with the nodule density measurements in places. 
A correct and verified re-navigation of all AUV-tracks is important for all subsequent 
analyses. This was done during this study, but slight misalignments remain. 

 

3. Nodule sediment blanketing: The effect of Mn-nodules being blanketed by sediment 
needs to be considered as a source of error here as the individual nodule size and 
thus the seafloor coverage might be underestimated by automated annotation. 
Apart from natural sedimentation, the re-deposition of the plume cloud caused by 
ploughing during the first disturbance experiment (conducted in 1989), has covered 
certain parts of the nodule field which might lead to a lower nodule densities in 
those areas. This effect can artificially reduce the correlation between acoustic 
classes and Mn-nodule densities given that backscatter is not affected by sediment 
blanketing. 
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APPENDIX OF CHAPTER 6 
 

Table 6.1: Grain size analysis data and Bayes class (Alevizos et al., 2017) for sediment 
samples 1-18 shown in Fig.6.2A. Green cells indicate the five samples used for deriving the 
different angular responses in Fig.6.3. 

sam
ple  

W% 
>6.3m
m 

W%   
2-
6.3mm 

W%  
2mm-
500µm 

W% 
<500µ
m 

Shells/ 
pebbles 

d50 
(<500
µm) 

Mode 
(<500
µm) 

D50 all 
(µm) 

mode 
all 
(µm) 

Bayes 
class 

1 14.59 20.17 34.12 31.12 1/1 240.0 246.0 2600 1000 5 

2 2.23 30.89 21.96 44.91 1/1 220.0 246.0 1800 4000 5 

3 0.00 0.65 14.49 84.86 1/0 170.0 197.0 210 180 3 

4 0.00 0.49 2.56 96.95 1/0 151.8 191.5 200 180 3 

5 0.00 0.69 3.28 96.03 1/0 41.3 73.0 100 90 2 

6 0.00 0.00 0.00 100.00 0/0 23.0 44.3 50 40 2 

7 0.00 0.00 0.00 100.00 0/0 23.0 43.5 50 40 1 

8 0.00 0.00 0.00 100.00 0/0 26.3 43.0 50 40 1 

9 0.00 3.39 0.74 95.87 0/0 20.8 41.0 40 40 3 

10 0.00 0.00 0.72 99.28 0/0 21.0 43.8 40 40 2 

11 0.00 0.72 0.24 99.04 0/0 20.5 42.0 50 40 2 

12 0.00 0.42 15.36 84.21 1/1 197.0 236.0 320 250 4 

13 0.00 0.27 7.89 91.84 1/0 157.0 270.0 290 250 3 

14 0.00 0.38 21.87 77.76 1/1 192.0 216.0 280 180 3 

15 0.00 0.40 4.08 95.52 1/0 206.0 236.0 220 130 3 

16 0.00 0.07 7.94 92.00 1/1 236.0 246.0 460 350 3 

17 0.00 8.06 18.38 73.57 0/1 84.0 188.0 210 180 4 

18 0.00 1.41 31.15 67.44 1/0 282.0 270.0 270 350 4 
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