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Abstract
Species distribution models (SDMs) can be useful for different conservation purposes. We discuss the importance of fitting 
spatial scale and using current records and relevant predictors aiming conservation. We choose jaguar (Panthera onca) as a 
target species and Brazil and Atlantic Forest biome as study areas. We tested two different extents (continent and biome) and 
resolutions (~4 Km and ~1 Km) in Maxent with 186 records and 11 predictors (bioclimatic, elevation, land-use and landscape 
structure). All models presented satisfactory AUC values (>0.70) and low omission errors (<23%). SDMs were scale-sensitive 
as the use of reduced extent implied in significant gains to model performance generating more constrained and real predictive 
distribution maps. Continental-scale models performed poorly in predicting potential current jaguar distribution, but they reached 
the historic distribution. Specificity increased significantly from coarse to finer-scale models due to the reduction of overprediction. 
The variability of environmental space (E-space) differed for most of climatic variables between continental and biome-scale 
and the representation of the E-space by predictors differed significantly (t = 2.42, g.l.= 9, P < 0.05). Refining spatial scale, 
incorporating landscape variables and improving the quality of biological data are essential for improving model prediction for 
conservation purposes.
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Introduction

Species distribution models (SDMs) can be useful for 
different conservation purposes such as predicting current 
or potentialspecies distribution across landscape (Franklin 
2009; Elith et al. 2010), evaluating distribution range and/
or environmental suitability for conservation assessments 
(Anderson & Martínez-Meyer 2004; Chefaoui et al. 2005; 
Ferraz et al. 2012a, b) and identifying key areas for setting 
conservation priorities (Thorn et al. 2009). As most of these 
purposes are directly related to species (and/or ecosystem) 
conservation, models should provide information at a spatial 
scale coherent to the management action scale. Accurate 
estimates of potential current distribution of target species 
are particularly important and relevant when SDM is used 
to aid conservation planning (Ferraz et al. 2012a, b). For 
modeling species over a very short time scale, dynamic and 
more proximal variables become necessary (Peterson et al. 

2011). The model accuracy should be reached by the input 
of good quality of biological data (current and accurate 
presence points) and functionally relevant predictor’s 
variables (Lobo et al. 2008; Elith & Leathwick 2009).

In this paper we tested different spatial scales and predictors 
leading us to discuss how to improve the quality of models 
aiming conservation purposes in practice. We emphasize 
the importance of fitting spatial scale attributes to the 
question and purpose of study and the incorporation of 
human aspects and landscape structure variables improving 
models for decision-making in conservation actions.We 
choose the jaguar (Panthera onca) as a target species and 
Brazil and Atlantic Forest biome as study areas since recent 
reference models (Ferraz et al. 2012a, b), validated by jaguar 
experts, are available for comparison and discussion. Also, 
an available database with recent and good quality records 
provided by the IUCN/SSC Cat Specialist Group became 
possible to model the potential current species distribution 
as proposed here. Although jaguar official red list status 
in Brazil is Vulnerable, a new approach of red listing was 
recently incorporated by national authorities. Thus, besides 
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system of mountain ranges and escarpments in Southeastern 
Brazil. Although nature reserves protect a small amount of 
the remaining Atlantic forest, the Serra do Mar has 25.2% of 
its remaining forest under protection (Ribeiro et al. 2009).

Species data and variable predictors

We used the Cat SG database provided by the IUCN/SSC 
Cat Specialist Group (CatSG) (n = 186 for Brazil, n = 54 
for Atlantic Forest biome) (Figure 1). This database was 
compiled by published data of jaguar presence records(live 
sighting, radio track location, remains, tracks or scat 
collection) provided by specialists during the workshop 
(São Francisco de Paula, Brazil, 2005), organized by the 
IUCN/SSC Cat Specialist Group to assess the status and 
conservation needs of this cat species in the Neotropics. 
All jaguar occurrence records are temporally related to the 
landscape information used (see below).

The explanatory variables (predictors) used for modeling 
comprises environmenta land landscape variables. The 

the national evaluation, a biome status has been processed 
as well. Jaguar has been considered Critically Endangered 
in the Atlantic Forest because a population reduction of 
50-90% was estimated in the past 10-15 years in the largest 
subpopulations of the Upper Paraná and is suspected at the 
Coastal Atlantic Forest (Beisiegel et al. 2012).

Material and Methods

Study area

We fit SDMs for Brazil (10° S and 55° W) and Atlantic Forest 
biome (3°-31° S and 35°-60° W) (Figure 1). Atlantic Forest, 
one of the world’s 25 biodiversity hotspots (Myers et al. 
2000), has also undergone a huge forest loss, with only 
11.7% remaining of the original forest, most of it distributed 
as small (less than 50 ha) and isolated forest fragments 
(Ribeiro et al. 2009). The three largest fragments, account 
for more than 2 million ha (more than 13% of the remaining 
forest), are located in the Serra do Mar, a 1,500 km long 

Figure 1. Jaguar database used for modeling (n = 186) and the potential current jaguar distribution in Brazil (in gray) used as a 
reference model (Ferraz et al. 2012a, b). Limits of the Atlantic Forest biome in black.
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boundary considering the reference models prediction as 
true (observed values).

As a reference SDM we used the predicted models for jaguar 
distribution in Brazil (obtained by SDM run for each biome 
separately) (Ferraz et al. 2012a) and in the Atlantic Forest 
biome (Ferraz et al. 2012a, b), all built from very accurate 
presence point information (current only) provided by the 
specialists during the Jaguar National Action Plan Workshop 
(Desbiez & De Paula 2012). All reference models were 
validated by specialists and they are been considered very 
accurate in terms of jaguar potential current distribution 
both in Brazil and Atlantic Forest biome.

Results

The potential current jaguar distribution was not successfully 
predicted by continental-scale at coarse and fine resolution, 
neither for Brazil as a whole nor considering only the 
Atlantic Forest biome boundary (Figure 2a-d), due to the 
overprediction (commission error). Most of areas considered 
as unsuitable for jaguar occurrence were predicted as suitable 
for continental scale models at both spatial resolutions. 
Although, biome-scale models (Figure 2e-h) presented 
better performance that continental-scale models predicting 
potential current jaguar distribution in the Atlantic Forest 
biome. Biome-scale models were quite similar to the Atlantic 
Forest reference model in predicting suitable areas for 
the species occurrence, with reduced commission error 
(1 – specificity) (Figure S1, see Additional Supporting 
Information available at www.abeco.org.br). In general 
the spatial resolution did not influenced model results, but 
extension scale did. Although model results were similar, 
gains in sensitivity and specificity were evident. Sensitivity 
was high (ranging from 0.63 to 0.91) for all models, while 
specificity increased from continental and coarse to biome 
and fine models (from 0.30 to 0.80) (Figure S1, in Additional 
Supporting Information).

The incorporation of landscape variables to the environmental 
models at continental scale did not alter significantly models 
results (Figure 2), but it did for biome-scale model at 
coarse resolution (BSCREnvLand) as commission error 
was reduced. Besides, this model was the one that had the 
higher omission error (0.37)

The variability of environmental space (E-space) differed 
for most of climatic variables (bio1, bio12, bio13, bio2, bio5, 
bio6) between continental and biome-scale (Figure S2, see 
Additional Supporting Information available at www.abeco.
org.br). Otherwise, elevation, bio14, percentage of forest and 
distance from water presented the same range of variability. 
Land cover was the variable that most differed between 
E-spaces modeled as only some of land-uses classes were 
common for both. The representation of the E-space by 
predictors differed significantly (t = 2.42, g.l. = 9, P < 0.05). 
Records represented 64% of the E-space variability for 
biome-scale models and 77% for continental-scale models. 
The frequency distribution of environmental values was 

environmental ones are: annual mean temperature (bio1), 
mean diurnal range (bio2), maximum temperature of 
warmest month (bio5), minimum temperature of coldest 
month (bio6), annual precipitation (bio12), precipitation 
of wettest month (bio13), precipitation of driest month 
(bio14), from Worldclim database (http://www.worldclim.
org/); and elevation from SRTM (http://www2.jpl.nasa.
gov/srtm/). Landscape variables are land-cover from ESA 
GlobCover Project (2009, http://ionia1.esrin.esa.int/); 
gradient distance from water from IBGE (2004, http://
www.ibge.gov.br/); percent tree cover from Global Land 
Cover Facility (2000-2001, http://glcf.umiacs.umd.edu/
data/vcf/). Environmental variables were available at both 
~4 km (coarse) and ~1 km (fine) (cell precision of 0.0416 
and 0.0083, respectively) spatial resolutions. Globcover, 
percent of tree cover and distance from water were resampled 
from ~1 to 4 km.

Modeling procedures

We built models in two different extents (continent and 
biome) and resolutions (coarse and fine) for two different 
approaches, using only environmental variables and 
using environmental variables plus landscape variables 
(land-use and landscape structure). So, we obtained the 
following models: 1) Continental-scale model based only 
on environmental variables at coarse (CSCREnv) and 
fine resolution (CSFREnv); 2) Continental-scale model 
based on environmental and landscape variables at coarse 
(CSCREnvLand) and fine resolution (CSFREnvLand); 3) 
Biome-scale model based only on environmental variables 
at coarse (BSCREnv) and fine resolution (BSFREnv); and 4) 
Biome-scale model based onenvironmental and landscape 
variables at coarse (BSCREnvLand) and fine resolution 
(BSFREnvLand).

We modeled jaguar distribution using Maxent (Phillips 
& Dudík 2008) using 70% of the species data for training 
and 30% for testing the models. Data were sampled by 
bootstrapping of 10 random partitions with replacements 
(Pearson 2007). All runs were set with random seed, a 
convergence threshold of 1.0E–5 with 500 iterations, with 
10,000 background points.The logistic threshold output 
format was used and models were “cut-off ” by thresholds 
converting the continuous probability in a binary model. 
Minimum training presence logistic threshold was used 
for continental models as others were too restricted and 
unreal. 10 percentile training presence thresholdwas used 
for biome models as the same was used in the reference 
model. Models performances were evaluated by the AUC 
value, omission error and the binomial probability (Fielding 
& Bell 1997; Pearson 2007). Gains in sensitivity and 
specificity for the prediction in the Atlantic Forest biome 
were assessed from coarse scale continental models to fine 
scale biome models. Continental models were cut by 10% 
percentile training presence threshold and sensitivity and 
specificity were calculated only for the Atlantic Forest Biome 

http://www.abeco.org.br
http://www.abeco.org.br
http://www.abeco.org.br
http://www.worldclim.org/
http://www.worldclim.org/
http://www2.jpl.nasa.gov/srtm/
http://www2.jpl.nasa.gov/srtm/
http://ionia1.esrin.esa.int/
http://www.ibge.gov.br/
http://www.ibge.gov.br/
http://glcf.umiacs.umd.edu/data/vcf/
http://glcf.umiacs.umd.edu/data/vcf/
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Figure  2. Jaguar distribution models at (a) continental-scale and coarse-resolution with environmental variables (CSCREnv), 
(b) continental-scale and coarse-resolution with environmental and landscape variables (CRCREnvLand), (c) continental-scale and 
fine-resolution with environmental variables (CSFREnv), (d) continental-scale and fine-resolution with environmental and landscape 
variables (CSFREnvLand), (e) biome-scale and coarse-resolution with environmental variables (BSCREnv), (f) biome-scale and coarse-
resolution with environmental and landscape variables (BSCREnvLand), (g) biome-scale and fine-resolution with environmental 
variables (BSFREnv), (h) biome-scale and fine-resolution with environmental and landscape variables (BSFREnvLand).
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Peterson et al. 2011). Accuracy models are inversely 
related to the species geographic range and environmental 
tolerance (Hernandez et al. 2006; McPherson & Jetz 2007; 
Tsoar et al. 2007). So modeling in reduced extension scale 
(e.g., biome, landscape, regional), such as the approach that 
has been used for the carnivores National Action Plans in 
Brazil (Ferraz et al. 2012a, b, c), could be a way of limiting 
the range of continental variation, and at the same time 
increasing the representation of the environmental features 
by sample presence points in the modeling formulation. 
Also, this may reduce the E-space for pseudo-absences 
selection in the model building. As Chefaoui & Lobo 
(2008) pointed out the elaboration of reliable simulations 
on the realized distribution of species unavoidably requires 
good absence data. This approach seems to be a promising 
alternative for improving models accuracy at finer-scale 
level since sampling covers the full range of environmental 
conditions within the study region. Failure to sample 
correctly can lead to erroneous organism-relationships, 
affecting predictive ability and interpretation (Vaughan 
& Ormerod 2003; Costa et al. 2010). Finally, the use of a 
higher spatial resolution, compatible with reduced extent, 
should better represents the environmental variables what 
is a requirement for using landscape structure variables as 
a functional predictor of organism-landscape relationships.

Landscape variables implied in gains only for BSCREnvLand 
as this model was the one closest to the reference model 
for the current species distribution at biome level. The 
incorporation of landscape variables lead to an increase 
in AUC values for most of models suggesting better 
performance. Probably, the landscape variables did not 
performed better here as the full range of landscape 
conditions within the extents considered were well covered 
by records (what is, in fact, desired). In this case, other 
landscape variables other than the ones used could better 
discriminate models with landscape variables from the 
ones without them. Recent works have showing promising 
results by the use of proximal variables (e.g., landscape 
features) in SDM in a very short and recent timescale 
(Buermann et al. 2008; Franklin 2009; Ferraz et al. 2010, 
2012c). Incorporating landscape variables (human aspects 
and landscape structure) as explanatory variables in SDM 
framework can lead to a real representation of the current 
status of the species distribution in a landscape (= realized 
or current distribution). It is particularly appropriate 
when current species distribution differ from historical 
distribution due to the pervasive influence of humans upon 
the environment. The incorporation of recent land-use maps 
should improve modeling since it may represent habitat 
and non-habitat patches. Also, landscape structure variables 
(e.g., percentage of forest, distance from forest remnants, 
connectivity) may represent the spatial influence of habitats 
remnants in the whole landscape.

It is recommended that the choice of predictors in SDM 
should consider its ecological relevancy to the target species 
(Elith & Leathwick 2009). Careful selection of predictors 

totally different for all variables, suggesting that the Atlantic 
Forest biome holds a high environmental variation, but 
different from the continental one.

Models presented AUC values ranging from 0.708 to 0.846 
and low omission errors (<23%) (Table S1).The incorporation 
of landscape variables lead to an increase in AUC values, 
except for CSFREnvLand. Models were significant (p < 
0.05), except CSFREnv and CSFREnvLand (Table S1, see 
Additional Supporting Information).

Discussion

The use of reduced extent implied in gains to model 
performance generating more constrained predictive 
distribution maps. SDMs were scale-sensitive improving 
significantly its prediction of species occurrence at biome 
level. Continental-scale models performed poorly in 
predicting potential current jaguar distribution, but they 
reached the potential historic jaguar distribution found by 
Torres et al. (2008, 2012). Otherwise, biome-scale models 
performed better predicting species current distribution, 
reaching the potential distribution predicted by the reference 
model (Ferraz et al. 2012b). Although, model results are quite 
similar, biome-scale models still overestimate the species 
distribution in some parts of the biome in part due to the 
wider records distribution that was used for this modeling.

Several authors have pointed out the importance of scale 
(extension and resolution) for SDM what should reflect the 
purpose of the analysis (Elith & Leathwick 2009; Franklin 
2010; Peterson et al. 2011).The selection of inappropriate 
resolution and extent, a critical step in SDM building, can 
yield misleading results (Guisan & Thuiller 2005). Vaughan 
& Ormerod (2003) emphasize that a series of spatial scales 
should be examined, increasing the understanding of 
organism-environmental relationships, identifying the most 
effective scales for predictive modeling and complementing 
the spatial hierarchies often used in conservation planning.
On the contrary to spatial scale, the spatial resolutions 
used here were not sufficiently different to influence the 
prediction as also observed by McPherson & Jetz (2007).

Specificity increased significantly from coarse to finer-scale 
models due to the reduction of overprediction reaching 
what was expected. The low values of AUC, a threshold-
independent measure of model accuracy, denote the true 
generalist nature of the species distribution obtained 
in this study (Tsoar et al. 2007; Lobo et al. 2008). The 
increase of AUC for biome-scale models when compared 
to continental-scale models is in fact and artifact of the 
restricted distribution of a species in this region, and not 
an indicator of good model performance.

It is strongly recommended that the variability of the 
environmental space (conceptual space defined by the 
environmental variables to which the species responds) 
is well represented by the sample (presence points 
database) used for modeling (Vaughan & Ormerod 2003; 
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