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Abstract: Chebulic Myrobalan is the main ingredient in the Ayurvedic formulation Triphala, which is
used for kidney and liver dysfunctions. Herein, natural nitrogen-doped carbon dots (NN-CDs) were
prepared from the hydrothermal carbonization of Chebulic Myrobalan and were demonstrated to
sense heavy metal ions in an aqueous medium. Briefly, the NN-CDs were developed from Chebulic
Myrobalan by a single-step hydrothermal carbonization approach under a mild temperature (200 ◦C)
without any capping and passivation agents. They were then thoroughly characterized to confirm
their structural and optical properties. The resulting NN-CDs had small particles (average diameter:
2.5 ± 0.5 nm) with a narrow size distribution (1–4 nm) and a relatable degree of graphitization. They
possessed bright and durable fluorescence with excitation-dependent emission behaviors. Further,
the as-synthesized NN-CDs were a good fluorometric sensor for the detection of heavy metal ions in
an aqueous medium. The NN-CDs showed sensitive and selective sensing platforms for Fe3+ ions;
the detection limit was calculated to be 0.86 µM in the dynamic range of 5–25 µM of the ferric (Fe3+)
ion concentration. Moreover, these NN-CDs could expand their application as a potential candidate
for biomedical applications and offer a new method of hydrothermally carbonizing waste biomass.

Keywords: Chebulic Myrobalan; hydrothermal carbonization; N-doped carbon dot; fluorometric
sensor; heavy metal ion; aqueous medium

1. Introduction

Carbon dots/carbon quantum dots are a new class of the most recent nanocarbon
materials. They were first discovered by Xu et al. in 2004 [1] during the purification of
single-wall carbon nanotubes (SWCNTs). In this, SWCNTs were synthesized through the
arc-discharge method. Carbon dots belong to zero-dimensional materials with quasi-spherical
shapes, and their sizes are below 10 nm [2–4]. They have had considerable attention in recent
years due to their attractive characteristics such as excellent water dispersibility, multicolor flu-
orescence emissions, prolonged colloidal durability in aqueous media, excellent photostability,
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good biocompatibility, cost-effective production, unique chemical inertness, and tunable sur-
face functionalities [5–9]. Moreover, the synthesis process of carbon dots does not involve any
hazardous heavy metals; hence, it is environmentally friendly. Due to the outstanding physic-
ochemical, optical, and biological characteristics, carbon dots have had widespread attention
from several important sectors such as sensor/biosensor, catalysis, biomedical, wastewater
purification, optoelectronic device, and anti-counterfeiting issues [10–13]. Several methods
have been proposed for synthesizing carbon dots such as microwave heating, laser ablation,
arc-discharge, electrochemical oxidation, plasma treatments, combustion/thermal pyroly-
sis, solvothermal heating, and hydrothermal carbonization methods [14–18]. Compared
with other methods, the hydrothermal carbonization route with natural precursors shows
significant advantages such as a simple setup, being green/clean and environmentally
friendly, and a cost-effective design [19–21].

On the other hand, metal ions are essential to sustain the health of humans because sev-
eral biological functions depend upon the presence of metal ions, and several enzymes require
those elements for their catalytic reaction [22,23]. Among all the necessary metal ions for regu-
lar biological functions in the human system, iron (Fe3+) plays a momentous role in many phys-
iological processes such as oxygen transport, deoxyribonucleic acid synthesis, ribonucleic acid
synthesis, enzyme catalysis, energy production, and cellular respiration/metabolism [24,25].
Notably, it has a well-known function in the blood protein hemoglobin of human blood
(a key component of red blood cells) [19,26]. Iron intake mostly comes from food such as
vegetables, fruit, eggs, and milk. The excess and deficiency of iron in the human body can
cause physiological damage and biological disorders, which perhaps result in several serious
diseases such as anemia, diabetes, arthritis, hemochromatosis, a lower immunity, a lower
blood pressure, liver cirrhosis, heart disease, kidney failure, and even cancer [5,10,27]. The
level of iron in the body needs to be monitored and maintained at an appropriate range for
sustaining the function of our body. Thus, detecting iron in potable water and the water
environment is essential. A few standard methods such as electrochemistry, inductively
coupled plasma mass spectrometry, and atomic absorption spectrometers are available
to detect Fe3+ ions [28]. The fluorescent sensor method has gained increasing attention
for the sensing (detection) of metal (heavy) ions due to its simplicity and high selectiv-
ity as well as its sensitivity, great spatial resolution, and possibility for practical, quick
monitoring [29–31]. Nevertheless, such detection methods require expensive instruments
and take a long time to process. Hence, developing a simple and cost-effective detection
method with high sensitivity and selectivity is necessary for finding Fe3+ ions.

Herein, the preparation of natural nitrogen-doped carbon dots (NN-CDs) from low-
cost Chebulic Myrobalan as a green precursor for both nitrogen and carbon by a one-step
hydrothermal-assisted carbonization approach was explored and used for the recognition
of Fe3+ ions. There have been reports of pleiotropic effects from the dried fruit extract of
Chebulic Myrobalan, also called Terminalia chebula Fructus Retz. (Combretaceae), which is
regarded as the “King of Medicine” in Tibet and is considered to be a universal panacea in
traditional Indian medicine [32]. It has been demonstrated to have anticancer, antioxidant,
antimicrobial, anti-anaphylactic, and adaptogenic activities in the literature and is described
as a laxative, diuretic, and cardiotonic substance [33]. Numerous phenolic compounds,
glycosides (i.e., triterpene arjunglucoside I, the chebulosides I and II, and arjungenin),
coumarin ligated with gallic acids (chebulin), ellagic acid, chebulinic acid, 2,4-chebulyl-
D-glucopyranose, ethyl gallate, punicalagin, and terflavin A have been reported to be
extracted from Chebulic Myrobalan [33]. Structural characterizations were employed
for the prepared NN-CDs to determine their morphology, particle size, and structural
properties. The optical studies of the prepared NN-CDs, including the ultraviolet-visible
(UV-vis) absorption spectroscopy and fluorescence excitation/emission spectroscopy, were
examined to resolve the fluorescence behavior and photostability. Later, the successfully
prepared NN-CDs were used as fluorescent sensors for the quantitative detection of Fe3+

ions by a fluorescence quenching mechanism.
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2. Results and Discussion

The surface morphologies and chemical/elemental compositions of the synthesized
NN-CDs were revealed by field emission-scanning electron microscopy and an energy-
dispersive X-ray (FE-SEM-EDX) elemental mapping analysis. As depicted in Figure 1a–d,
the accumulation of the small size of the NN-CDs resulted in a smooth surface morphology.
This accumulation may have been because of the coalescence of the NN-CDs due to the
evaporation of the solvent during the sample preparation for the FE-SEM studies. Further,
the elemental compositions of the prepared NN-CDs were revealed via an EDX elemental
mapping analysis. The EDX mapping (Figure 1e–g) displayed that the NN-CDs exhibited
carbon (green), oxygen (red), and nitrogen (yellow) elements. The elemental overlay image
of the NN-CDs (Figure 1h) confirmed that the heteroatoms (functionalities) such as oxygen
and nitrogen were consistently distributed over the carbon skeleton of the NN-CDs. The
EDX investigation of the prepared NN-CDs proved the existence of carbon, oxygen, and
nitrogen in the prepared NN-CDs (Figure S1). Apart from these elemental peaks, minor
peaks appeared around the energy of 2 keV in the EDX spectrum, which was related
to the silicon and platinum elements that originated from the silicon wafer and ohmic
contact coating during the sample preparation for the FE-SEM-EDX analysis. The elemental
percentages of carbon, oxygen, and nitrogen were approximately 63, 34, and 3, respectively,
obtained from the prepared NN-CDs; these were more evident in the bar chart (Figure 1i)
for the EDX results. From these results, we concluded that the NN-CDs had carbon, oxygen,
and nitrogen elements.
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Figure 1. (a–d) FE-SEM images with different magnifications of prepared natural nitrogen-doped
carbon dots. Elemental mapping of (e) carbon, (f) oxygen, (g) nitrogen, and (h) overlapping of all
the elements of prepared natural nitrogen-doped carbon dots. (i) Quantitative results of presented
elements in the prepared natural nitrogen-doped carbon dots.
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Furthermore, the transmission electron microscopy/high-resolution transmission
electron microscopy (TEM/HRTEM) analyses confirmed the morphology, particle size,
and degree of the crystalline/graphitic nature of the prepared NN-CDs. The TEM images
(Figure 2a,b) displayed that the NN-CDs were predominantly spherical in shape with
excellent monodispersity. The size distribution of the prepared NN-CDs was in a range
between 1 nm and 4 nm with an average diameter of 2.5 ± 0.5 nm (inset of Figure 2a).
Figure 2c,d are the HRTEM images of the NN-CDs, showing the well-resolved lattice
fringes in the core of the NN-CDs with a d-spacing of 0.21 nm corresponding with the
(1 0 0) in-plane lattice fringes of typical carbon/graphene, which suggested the crystalline
nature of the prepared NN-CDs [34].
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carbon dots.

The XRD pattern and Raman spectrum were performed to examine the crystalline/graphitic
structure of the prepared NN-CDs. Figure 3a depicts the XRD pattern of the NN-CDs,
revealing a broad peak around 2θ = 24.5◦, which corresponded with the typical (0 0 2)
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diffraction peak of standard carbon/graphene [35,36]. The calculated d-spacing value of
the NN-CDs was 0.36 nm, which was greater than that of a standard graphene interlayer
spacing (0.34 nm, d-spacing), along with the broadness character. The larger interlayer
spacing and peak broadening were associated with an amorphous carbon phase and a
moderately graphitized structure [37]. The higher interlayer spacing might also have
been due to the presence of various functional groups on the surface and the edges of the
prepared NN-CDs [38]. Hence, the prepared NN-CDs displayed a moderate degree of
graphitization/crystallinity. A small shoulder peak around 42.5◦ was associated with the C
(1 0 0) Bragg reflection of typical graphene; the calculated interlayer spacing was 0.21 nm.
Furthermore, the Raman spectrum was recorded to determine the graphitization degree of
the NN-CDs. The G-band at 1590 cm−1 was related to the vibration of the sp2 hybridized
carbon phase associated with ordered/crystalline carbon whereas the D-band at 1390 cm−1

was associated with the vibrations of the sp3 hybridized carbon phase originating from
disordered/amorphous carbon [39]. The D-band to G-band intensity ratio (ID/IG) is an
efficient indicator of the determination of the graphitization/crystallinity of carbon-based
materials [40]. The ID/IG ratio of the NN-CDs was around 0.73, indicating that the pre-
pared NN-CDs had a moderate degree of graphitization. A broad 2D band of the NN-CDs
was observed at 2800 cm−1, suggesting that the NN-CDs exhibited a few-layer graphene
structure consistent with the HRTEM results [41]. Overall, the results from the HRTEM,
XRD, and Raman studies revealed the moderate graphitic nature of the NN-CDs.
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Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy was
employed in this study to help to ascertain and examine the possible bonds (functional
moieties) present on the surface and edges of the prepared NN-CDs and is displayed
in Figure S2. The ATR-FTIR spectrum of the prepared NN-CDs showed several peaks
related to their surface bonds. The broad absorption peak spanning from 3500 to 3000 cm−1

was ascribed to the stretching vibrations of the O–H bond, which may have originated
from the source of the starting materials and physically adsorbed water molecules on the
surface/edges of the NN-CDs [42]. The absorption band between 3500 and 3000 cm−1 might
have been caused by the stretching vibrations of the N–H bond [43,44]. These presented
bonds were perhaps accountable for imparting the hydrophilicity and consequent excellent
water dispersibility of the NN-CDs. The stretching vibration of minor C–H peaks at
2952 cm−1 in the ATR-FTIR spectrum of the NN-CDs specified that the NN-CDs were
composed of few hydrocarbons. On the other hand, the ATR-FTIR spectrum of the NN-CDs
had significant peaks at 1701, 1600, 1475, 1312, 1195, and 1090–960 cm−1 corresponding
with the C=O stretching, C=C stretching, C–N stretching, O–H bending, C–OH stretching,
and C–O–C stretching modes [45,46]. The peak at 770 cm−1 could be ascribed to the out-
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plane –CH2 stretching and N–H bending vibrations of the aromatic carbon structure [47].
The existence of a C=C peak signposted that the NN-CDs had a graphitic structure whereas
the O–H, N–H, C=O, C–N, and C–H vibration modes suggested that the NN-CDs had
amine, hydroxyl, and carboxylic surface moieties.

An X-ray photoelectron spectroscopy (XPS) analysis of the NN-CDs also helped us
to portray and examine the possible chemical structure of the moieties attached to the
surface/edges of the prepared NN-CDs. Figure 4a depicts the survey spectrum of the
prepared NN-CDs. The spectrum displayed that the NN-CDs were mainly composed of a
few primary elements such as carbon, oxygen, and nitrogen, with atomic ratios of 63, 33,
and 4%, respectively (inset Figure 4a). The core level C 1s spectra (Figure 4b) displayed four
peaks that appeared at 284.4, 285.8, 287.1, and 288.4 eV, originating from the carbon in the
states of the C–C/C=C (sp3/sp2), C–N/C–OH/C–O–C, C=O/C=N, and O=C–OH groups
in the NN-CDs, respectively [48,49]. The deconvolution of the O 1s level of the NN-CDs
(Figure 4c) showed two peaks at 531.4 and 532.8 eV that were responsible for the presence of
the C=O and C–OH/C–O–C/O=C–OH groups in the NN-CDs, respectively [50–52]. The N
1s spectra (Figure 4d) exhibited three peaks at 399.3, 400.2, and 401.8 eV and were ascribed
to nitrogen in the form of pyridinic nitrogen (C–N–C), pyrrolic nitrogen (C–N–H), and
quaternary amine/graphitic nitrogen (C3–N) groups in the NN-CDs, respectively [53,54].
The pyrrolic nitrogen possibly increased the electronic cloud density on the surface/edges
of the NN-CDs, resulting in an enhanced fluorescence efficiency [48]. This XPS result was
in good agreement with the ATR-FITR analysis. Overall, these results confirmed that the
prepared NN-CDs possessed various functional groups such as carbonyl (C=O), hydroxy
(–OH), carboxyl (O–C=O), and amine (N–H) groups. More than one out of every three
carbon atoms was functionalized with oxygen, which showed that the NN-CDs exhibited
a high degree of functionalization. Moreover, the high degree of functionalization with
excellent hydrophilicity was the possible reason that the prepared NN-CDs possessed
excellent water dispersibility and fluorescence properties as well as long-term colloidal
stability in an aqueous medium [50,55].

UV-vis absorption spectroscopy and fluorescence excitation/emission spectroscopy
were used to examine the optical properties of the NN-CDs. As shown in Figure 5a, a sharp
and distinct absorption peak in the ultraviolet region with maximum absorption at 210 nm
confirmed the π–π* transition of the aromatic sp2 domains in the NN-CDs. The shoulder
bumps were centered at approximately 265 and 350 nm, resulting from the π–π* and n–π*
transitions of the C=C (aromatic sp2 domains) and C=O/C=N (heteroatom-containing
bonds) bands in the prepared NN-CDs, respectively [56–58]. The inset of Figure 5a shows
the digital photographic images of the aqueous solution of the prepared NN-CDs. When
the solution of the NN-CDs was exposed to daylight (left) and 365 nm UV light (right),
it emitted a pale yellow color and a bright cyan-blue color, respectively. The excitation
and emission fluorescence spectra of the prepared NN-CDs in the aqueous solution are
shown in Figure S3a. The most substantial fluorescence emission peak was centered at 395
nm and showed a maximum excitation wavelength at 320 nm in the fluorescence spectra
of the NN-CDs. The fluorescence spectra of the NN-CDs in Figure 5b showed that the
maximum fluorescence emission wavelength of the NN-CDs reached a peak at 395 nm
with an excitation wavelength of 320 nm. The fluorescence emission wavelength shifted
from 387 to 450 nm when the excitation wavelength changed from 290 to 390 nm at an
increment of 10 nm. During this, the fluorescence emission intensity gradually increased
until it reached an excitation wavelength of 320 nm; beyond that, a gradual decrement
was followed by the increment of the excitation wavelength. Overall, the fluorescence
emission peaks turned to redshift whilst increasing the excitation wavelength. The redshift
of the fluorescence emission of the NN-CDs was more evident when the fluorescence
emission intensity was normalized at different excitation wavelengths; the corresponding
excitation-dependent emission normalized spectrum is shown in Figure S3b. The result
revealed that the NN-CDs had an excitation-dependent fluorescence emission, which was
attributed to surface/edge defects, the quantum confinement effect, and various particle
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sizes [59–61]. The quantum yield of the NN-CDs was calculated to be around 15% with an
excitation wavelength of 320 nm by a standard fluorescence quantum yield measurement
(Equation (S1)) [3] where quinine sulfate was used as the reference.
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In order to evaluate the photostability of the prepared NN-CDs, the aqueous solution
of the NN-CDs was subjected to 365 nm UV illumination from 0 to 100 min; the fluores-
cence intensities were measured before and after the illumination. The photostability of the
prepared fluorescent nanomaterials (NN-CDs) was essential for their practical/real-time
applications. The fluorescence emission spectra of the aqueous solution of the NN-CDs
at 0 and 100 min UV illumination are shown in Figure S4. The spectra depicted that there
were no apparent changes (only less than a 5% change in its fluorescence emission) in the
fluorescence intensities of the aqueous solution of the NN-CDs even after 100 min of contin-
uous irradiation, suggesting that the NN-CDs possessed an excellent anti-photobleaching
behavior (photostability) [62]. Photos of the aqueous solution of the NN-CDs were taken
before and after 100 min UV illumination under the 365 nm UV light, which is shown in
the inset of Figure S4. The digital photographs of the aqueous solution of the NN-CDs
displayed insignificant changes in the fluorescence emission even after 100 min of continu-
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ous irradiation (the fluorescence brightness was identical at both 0 and 100 min). This also
supported the anti-photobleaching of the prepared NN-CDs.
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Figure 5. (a) UV-vis absorption spectrum and (b) fluorescence emission spectrum upon varying the
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After the careful characterization of the NN-CDs using various methods, the NN-
CDs were explored as a fluorescence probe for detecting heavy metal ions because an
excess/deficiency of heavy metal ions is dangerous to living things, especially humans.
Hence, the detection of metal ions in ecological systems is essential for society. The prepared
NN-CDs had high selectivity and specificity for sensing metal ions due to their strong
affinity with the carbonyl, hydroxy, carboxyl, and amino groups, making them ideal for
the sensitive and selective detection of metal ions. The fluorescence emission spectra were
recorded at the excitation wavelength of 320 nm by the addition of various metal ions
such as Al3+, Ca2+, Cd2+, Co2+, Cr3+, Cu2+, Fe3+, Hg2+, Mn2+, Ni2+, Pb2+, and Zn2+ with a
concentration of 500 µM. As shown in Figure 6a, the Fe3+ ions had oblivious fluorescence
quenching (a remarkable decline in the fluorescence intensity) compared with the NN-
CDs with other metal ions. The spectral results suggested that the NN-CDs had excellent
selectivity toward the detection of Fe3+ ions. In order to find the limit of sensitivity, Fe3+

ions with different concentrations were added to the aqueous solution of the NN-CDs
and their fluorescence emissions were recorded. The fluorescence emission intensities of
the aqueous solution of the NN-CDs gradually declined with the continuous addition
(increasing concentration) of Fe3+ ions, as shown in Figure 6b. In addition, the variation
in the fluorescence emission intensity (F0-F/F0) versus the concentration of Fe3+ ions was
displayed in a Stern–Volmer plot (Figure 6c). These showed a good linearity between
the fluorescence intensity and the Fe3+ ion concentration between 5 and 25 µM with a
correlation coefficient of R2 = 0.997. To further evaluate its detection ability of Fe3+ ions in
aqueous solutions, the detection limit of the NN-CDs for Fe3+ ions was calculated by the
equation Limit of Detection (LOD) = 3δ/S, where δ and S are the standard deviation (n = 5)
and slope of the linear calibration plot, respectively [8]. The LOD was estimated to be 0.86
µM, which was obviously lower than the maximum standard limit of 5.36 µM for Fe3+

ions in drinking water as defined by the World Health Organization (WHO) [8]. The LOD
of the synthesized NN-CDs for Fe3+ ions was low and comparable with earlier-reported
carbon nanoparticle/carbon dots; the corresponding results are shown in Table 1. Figure 6d
displays the digital photographs of the aqueous suspension of the NN-CDs before and
after adding Fe3+ ions under an illumination of 365 nm of UV light as well as the schematic
representation of the fluorescence emission quenching triggered by the formation of Fe3+

chelation. The digital photographs demonstrated that the fluorescence emission of the
NN-CDs was notably quenched (fluorescence turn-off) when Fe3+ ions were added into the
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NN-CD aqueous suspension. Various surface/edge functional groups such as carbonyl
(C=O), hydroxy (–OH), carboxyl (O–C=O), and amino (N–H) of the NN-CDs coordinated
with the Fe3+ ions [63]. The electron donors of the oxygen and nitrogen chelating groups
formatted the covalent bond with the Fe3+ ions compared with the other metal ions due
to its greater affinity [64]. During the formation of new bonds, the excited electrons on
the surface of the NN-CDs migrated to the vacant (half-filled) 3D orbitals of the Fe3+ ions,
facilitating the nonradiative recombination of the excitons (electron/hole) [65]. This process
resulted in the significant fluorescence quenching (turn-off) of the coordinating Fe3+–NN-
CD complex [2,66]. In addition, the ferromagnetic nature of the Fe3+ ions might also have
been a key factor causing the splitting of the discrete energy levels of the NN-CDs, thus
forming channels for the overlap of energy levels and intersystem crossing, resulting in a
decrement of the fluorescence emission.
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Figure 6. (a) Fluorescence emission changes of the aqueous solution of NN-CDs with the addition of
various metal ions at a concentration of 500 µM. (b) Fluorescence intensity of the aqueous solution
of NN-CDs with different concentrations of Fe3+ ions (0 (blank), 5, 10, 15, 20, and 25 µM). (c) The
Stern–Volmer plot of the aqueous solution of NN-CDs with increasing concentrations of Fe3+ ions.
(d) Digital photographs of aqueous NN-CD suspension before and after adding Fe3+ ions under
365 nm UV light illumination (upper) and a schematic representation of the fluorescence emission
quenching triggered by the chelation of Fe3+ ions.
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Table 1. Comparison of the fluorescent sensors for the ideal sensing of ferric ions in an aque-
ous medium.

No. Carbon Precursor Excitation (nm) QY (%) LOD (µM) Reference

1 PPD/quinol 340 – 0.53 [5]
2 B. flabellifer 310 19.4 2.01 [6]
3 P. acidus 350 14.0 0.9 [63]
4 Graphite 365 11.2 1.8 [67]
5 Crop biomass 380 3.5 5.23 [35]
6 Wolfberry 350 22 3.0 [10]
7 Sulfanilic acid 400 – 2.55 [68]
8 P. avium 310 13 0.96 [65]
9 Citric acid 350 36.8 1.4 [25]

10 Tween®80 350 75.5 6.5 [27]
11 L-glutamic acid 360 12.5 3.8 [29]
12 Lignin 340 23.68 0.77 [41]

13 Chebulic
Myrobalan 320 15 0.86 This work

3. Conclusions

This research work clearly demonstrated the option for preparing economical, eco-
friendly, and durable fluorescent NN-CDs from Chebulic Myrobalan as a versatile nanoma-
terial for selective and sensitive detection of ferric ions in an aqueous medium. In summary,
one-pot hydrothermal heating was utilized to prepare NN-CDs; the prepared NN-CDs had
excellent water dispersibility with abundant oxygen and nitrogen-containing functional
groups on their surface and edges. The NN-CDs exhibited a near-spherical shape and were
monodispersed with a narrow size distribution (1–4 nm) and exceptional stability. The
NN-CDs displayed excitation-dependent fluorescent emissions and durable fluorescence.
The fluorescent-sensing studies unanimously exposed the excellent sensing ability of the
NN-CDs toward ferric ions by fluorescence quenching (turn-off) in an aqueous medium.
The LOD of the ferric ions was 0.86 µM in a perfect linear range between 5 and 25 µM
with a linear coefficient (R2) of 0.997. This successful selective and sensitive detection of
ferric ions by quenching might have been due to the coordination (interaction) between the
ferric ions and the hydroxyl/carboxyl groups on the surface/edges of the NN-CDs. This
interaction caused a transfer of excited electrons/energy from the NN-CDs to the outer
orbital of the ferric ions, which resulted in the fluorescence quenching of the NN-CDs.
Moreover, these NN-CDs could have a broad application prospect in the field of sensors.

4. Materials and Methods
Preparation of Fluorescent NN-CDs

Carbon dots were prepared using the hydrothermal-assisted carbonization of Chebulic
Myrobalan. In a typical synthesis, the dried Chebulic Myrobalan fruit were well-ground
using a commercial mixer and grinder to obtain a fine powder. Subsequently, 500 mg
of Chebulic Myrobalan powder (CMP) was dispersed in 50 mL of double-distilled water.
The turbid CMP-dispersed solution was then subjected to a hydrothermal treatment for
24 h at 200 ◦C using a 100 mL Teflon-lined stainless steel autoclave in an oven. After the
desired time, the autoclave was cooled down to room temperature. The final product of
the carbon dots was recovered from the reaction mixture via simple filtration using a 0.22
µm microporous mixed cellulose ester membrane filter. The resulting carbon dot solution
was dried in a vacuum freeze dryer to obtain carbon dots in a powder form and these were
denoted as natural nitrogen-doped carbon dots (NN-CDs). The preparation of the NN-CDs
is briefly displayed in Scheme 1. Eventually, the obtained NN-CDs were examined by
various physicochemical analytical techniques.
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