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Abstract: Zingiber officinale Roscoe is an herbal plant native to Asia that can be found in all tropical
countries. It is used in folk medicine, food, and cosmetics. A chemical characterization and some
agronomic experiments have been carried out on Z. officinale essential oil, showing promising findings
for the biological control of fungal pathogens belonging to the genus Fusarium. The aim of this
review is to collect and update the literature covering its phytochemistry and biological activities
as a Fusarium spp. plant-based biocide. The present research was conducted using the following
bibliographic databases: Scifinder, Pubmed, and Science Direct. Thirteen papers were selected based
on the adopted criteria. Data were independently extracted by the three authors of this work, and the
final article selections were completed in a manner that avoided the duplication of data. The main
chemical compounds were α-zingiberene, geranial, and aryl-curcumene, but a remarkable difference
was found concerning the chemical compositions. Z. officinale essential oil was shown to possess
promising biological functions against Fusarium spp. These findings offer new research approaches
and potential applications as a biocontrol ingredient for Z. officinale essential oil.

Keywords: phytopathogens; essential oils; post-harvest control

1. Introduction

Several fungal species belonging to the Fusarium genus are phytopathogens and cause
severe yield and quality losses for cultivated cereal grains such as maize, wheat, and rice [1]
as well as plants such as coriander, cumin, fennel, and fenugreek [2]. Fusarium members can
also be found as contaminants in stored agricultural commodities. Globally, there are grave
concerns related to economic losses due to decreases in field production and contamination
with mycotoxins [1].

The most common phytopathogen species are F. oxysporum [3], F. graminearum [1,4],
F. verticillioides [5], and F. moniliforme. Fusarium spores are usually found in soil, and
they infect plants through their roots. Fusarium species are causative agents of vascular
system diseases that lead to the deterioration of host soft tissues and, consequently, plant
necrosis [1,3]. Concerns also include the contamination of agricultural commodities with
mycotoxins, which are secondary toxic metabolites produced by some fungal species,
especially those belonging to the Aspergillus, Penicillium, and Fusarium genera.

The Food and Agriculture Organization estimates that about 25% of the world’s
food crops are contaminated with mycotoxins; this has been recognized as a major health
and economic problem due to the acute and chronic diseases they cause in humans and
animals. Mycotoxin ingestion may lead to several health problems, such as carcinogenesis,
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neurotoxicity, and immunosuppressive effects; their toxicity may vary according to fungal
species, human age, nutrition, and length of exposure. Hundreds of mycotoxins have been
characterized, but the most relevant in terms of toxicity and occurrence are aflatoxins (AFs),
ochratoxins (OTs), fumonisins (FMs), and trichothecenes (TRCs) [6].

The conventional treatment of infectious plant diseases caused by Fusarium involves
the use of synthetic fungicides, but the adverse effects on the environment and human
health require the development of safer solutions. Essential oils (EOs) have received
attention from the research community due to their potential for developing biodegradable
and plant-based fungicides [7,8].

EOs have been extensively investigated in many research fields, including pharma-
cology, food flavoring, soaps, cosmetics, and natural insecticides [9–12]. A large number
of applications have been developed, and the scientific interest in EOs has increased in
the last few decades. With respect to food science, the efficacy of EOs as antioxidant and
antimicrobial food additives has been reported by several authors [13,14], and some inter-
esting findings have been reported regarding the reduction in lipid oxidation in extra-virgin
olive oil (EVOO) [15], antimicrobial and antioxidant activity in meat [16], the extension
of shelf-life in vacuum-packaged fish fillets [17], and the preservation of unpasteurized
fruit juice [18]. Additionally, EOs have been studied as additives for nanoemulsions [19]
and edible films for food preservation [20]. All of these findings encourage new research
concerning the use of EOs in food science.

EOs are oily liquids with a typical aromatic fragrance that are derived from a large
number of plants; they can be obtained from different anatomical parts, such as leaves,
flowers, bark, seeds, twigs, fruits, and roots. As reported by Sadgrove and Jones (2015), at
the beginning of the 16th century, the concept of Eos was conceived by a Swiss medical
pioneer who was studying a drug called “Quinta essentia” [21]. Essential oils have been
identified as complex mixtures of several volatile compounds, including monoterpenes,
sesquiterpenes, esters, ketones, aldehydes, and alcohols. A complete definition of EOs
must include the extraction method because only steam distillation, dry distillation, and
mechanical extraction from the epicarp of citrus fruits are acceptable methods that distin-
guish an EO from similar vegetal extracts, such as absolutes, concretes, alcoholates, and
oleoresins [22].

Zingiber officinale Roscoe is a perennial herb belonging to the Zingiberaceae family
and native to Southeast Asia and the Pacific Islands (Figure 1). Rhizomes are very popu-
lar in Asian folk medicine, and their traditional uses are widespread all over the world,
mainly as flavoring agents for foods and beverages and as herbal remedies. Several authors
have summarized the chemical composition of these plants [23,24], and some modern
research articles have revealed new findings concerning their potential to ameliorate mem-
ory dysfunctions [25], metabolic syndromes [26], obesity management [27], and vascular
diseases [28].
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Additionally, the antimicrobial activities of Z. officinale derivatives have been investi-
gated [29,30]; however, a specific focus on their potential as bio-microbicides is needed. The
present study aimed to investigate the antifungal effect of Z. officinale EO against Fusarium
spp. in order to describe the “state of the art” of a potential new plant-based treatment. The
results may be useful for identifying novel strategies for the control of fungal pathogens
belonging to the genus Fusarium.

2. Materials and Methods

Based on the PRISMA guidelines [31], the present review article was developed by
selecting articles from the following scientific databases: PubMed (https://pubmed.ncbi.
nlm.nih.gov/, accessed on 8 December 2021), SciELO (https://scielo.org/, accessed on
8 December 2021), ScienceDirect (https://www.sciencedirect.com/, accessed on 3 Decem-
ber 2021), SciFinder (https://scifinder.cas.org, accessed on 7 December 2021), and Wiley
(https://onlinelibrary.wiley.com/, accessed on 6 December 2021). Mendeley software
(https://www.mendeley.com/, accessed on 6 December 2021) was used to manage all
bibliography references, and the search for and selection of the articles were independently
performed by three researchers (i.e., LS, NRM, and MR) in a manner that avoided the
duplication of data. The following keywords were used: “Zingiber officinale essential oil”
and “Fusarium”. Both keywords were searched individually and in combination. Although
we considered the literature of the past 20 years, we also included some key data in the
Introduction and Discussion sections. Tables were prepared to represent the following
criteria: the country where the research was performed, the main compounds found in
the oil, the assay, the pathogen species, the results concerning antimicrobial activity, and
the positive and negative controls. As reported in Figure 2, the above-mentioned criteria
allowed the selection of 13 eligible articles, excluding 45 articles that did not meet the selec-
tion methodology either due to incomplete information or because they simply mentioned
data concerning Fusarium infection without focusing on the topic of the present study.

https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
https://scielo.org/
https://www.sciencedirect.com/
https://scifinder.cas.org
https://onlinelibrary.wiley.com/
https://www.mendeley.com/
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3. Results
3.1. Geography and Focus of the Studies

As reported in the Materials and Methods section, the selection criteria allowed us to
collect 13 articles covering a period between 2004 and 2020. India was the country in which
the greatest number of studies was performed (4), followed by Brazil and China (2) and
finally Cameroon, Egypt, Mexico, Nigeria, Romania, and Thailand (1).

Several Fusarium species were investigated, and we counted nine, four, three, one,
and one experiments concerning the species F. oxysporum, F. moniliforme, F. graminearum,
F. nivale, and F. verticillioides, respectively.

3.2. Z. officinale EO Composition

All of the selected experiments were performed on the Z. officinale rhizome without ev-
idence concerning specific pretreatments; the preferred extraction method was found to be
hydro-distillation by a Clevenger-type apparatus. Regarding the essential oil composition,
α-zingiberene, geranial, and ar-curcumene were reported seven, four, and three times, re-
spectively, in the top three compounds of the essential oil (Table 1). In accordance with [32],
α-zingiberene and ar-curcumene were the major components of Z. officinale EO; these two
compounds represented a percentage of the total EO content that ranged from 17.4% to
25.4% and from 14.1% to 16.4%, respectively. Even if the biological activity of essential
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oils may be attributed to the chemotype and the synergy between different components,
these particular molecules nevertheless deserve attention in further research. However, the
amount and the composition of the bioactive substances may vary according to different
factors such as the harvest time; the climatic, geographic, and growing conditions; the ex-
traction methods; etc. [32]. A research study from Sri Lanka [33] performed in 2021 reported
α-zingiberene and ar-curcumene among the main compounds of Z. officinale EO. The study
investigated the effect of maturity stage on the weight yield of two local varieties, Rangoon
and Siddha, in comparison with a Chinese variety. The authors found that the highest
quantity of essential oils was evident five months after sowing and decreased in the follow-
ing months. This result seems to be related to a progressive increase in the fibrous matter of
the rhizome after five months, at which point the amount of essential oil begins to decrease.
Concerning the chemical composition, α-zingiberene was identified in EO obtained from
both varieties, but with very different results. The Rangoon variety showed data regarding
α-zingiberene content levels that ranged from 9.7% to 14.2% at five and eight months,
respectively. In the same post-harvest period, the amount of α-zingiberene in the Siddha
variety was between 0.0% and 1.6%. Z. officinale EO samples obtained from Ecuador [34]
showed the presence of α-zingiberene at 17.4% of total composition and geranial at 10.5%.
Another study from India (Sikkim) [35] detected the presence of α-zingiberene at 16.3%
and 19.8% and geranial at 8.2% and 16.5% of the total composition of two local cultivars,
named Bhaisa and Majulay, respectively. In 2001, an analysis of samples of Z. officinale
EO from S. Tomé y Príncipe [36] revealed that geranial represented 13.4–16.0% of total
composition, α-zingiberene was 8.3–15.1%, and ar-curcumene was 1.5–3.4%. All of these
data confirm that EO composition can be affected by several factors, such as agricultural
practices, the variety cultivated, and climatic conditions. Additionally, storage conditions
and pretreatments can also influence the yield and composition of EOs [34]. According
to ISO 16928:2014 [37], quality standards regarding chromatographic profile have been
developed that take into account three different origin areas, namely China, India, and
West Africa, and the values for α-zingiberene, geranial, and ar-curcumene ranged from
29% to 45%, 5.0% to 11.0% and 0.0% to 3.5%, respectively, with some minimal differences
based on the area of origin. Data related to Table 1 showed great variability, and only a few
samples can be compared with the ISO standard.

Zingiberene is the molecule that is responsible for the distinctive flavor and aroma of
ginger. It is a sesquiterpene hydrocarbon, and it belongs to the mevalonate pathway [38]. It
has been investigated for its biological properties showing antibacterial, antifungal, and
antioxidant activities [39], and there are some preliminary results on its potential as a cyto-
toxic agent against some cancer cell lines [40]. Currently, there are very few data concerning
its potential against fungal pathogens belonging to the genus Fusarium. Geranial and neral,
often in a ratio of 2:1, represent a mixture of two double-bond monoterpen isomers that
comprise citral. According to the scientific literature [38], geranial belongs to the methyl-
erithrytol pathway, and this occurs by the oxidation of geraniol. The isolated molecule
and the mixture (citral) have been widely studied because they are commonly used as
fragrance, food additive, and flavor ingredients and have been associated with potential
allergenic reactions [41]. Additionally, several investigations revealed their potential as
anticonvulsants [42], estrogen modulators [43], and anti-adhesion and antibiofilm com-
pounds [44]. Finally, ar-curcumene is also a sesquiterpene hydrocarbon that participates
in the typical ginger “bouquet” and has been investigated for its antibacterial proper-
ties [32,45], apoptotic effects on SiHa cells [46], and its larvicidal and oviposition deterrence
activity [47]. Therefore, our findings revealed a lack of studies relating to the activity of the
above-mentioned compounds against Fusarium spp., even though they are widely present
in many essential oils.
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Table 1. Antifungal activity of Z. officinale essential oil against Fusarium spp.

Country
Extraction
Method/Distillation
Time (h)

Main Compounds MIC/% Inhibition
Rate/Zone Inhibition Assay Fusarium Species Positive Control Negative Control Refs.

Brazil HD/2 α-Zingiberene (22.94%), α-citral
(13.58%), geranial (10.39%) >2000 µg/mL Broth dilution method F. graminearum n.r. Fungal inoculum with

no essential oil [1]

Brazil HD/2 α-zingiberene (23.85%), geranial
(14.16%), (E,E)-a-farnesene (9.98%) 2500 µg/mL Broth dilution method F. verticillioides n.r. Fungal inoculum with

no essential oil [5]

Cameroon HD/n.r. n.r. 500 ppm Agar dilution technique F. moniliforme n.r. Fungal inoculum with
no essential oil [48]

China n.r.
α-Zingiberene (31.47%),
Beta-sesquiphellandrene (13.76%),
alfa-curcumene (10.41%)

61.4%
(280 µL) Puncture inoculation method F. oxysporum n.r. Fungal inoculum with

no essential oil [49]

Egypt HD/3
β-sesquiphellandrene (27.16%),
caryophyllene (15.29%),
zingiberene (13.97%)

75 µg/mL Broth dilution method F. oxysporum Amphotericin B Fungal inoculum with
no essential oil [50]

India HD/n.r.
Geranial (25.9%),
α-Zingiberene (9.5%),
(E,E)-alpha-farnesene (7.6%)

100%
6 µL)

Inverted Petri plate
technique/Poison
food technique

F. moniliforme n.r. Water [51]

India HD/6 α-Zingiberene (28.62%), camphene
(9.32%), ar-curcumene (9.09%)

62.5% (10 µL)
87.5% (10 µL)
75.0% (10 µL)

Poison food technique
F. graminearum
F. oxysporum
F. moniliforme

n.r. Medium without EO [52]
42.8% (10 µL)
50.0% (10 µL)
85.7% (10 µL)

Inverted Petri plate technique
F. graminearum
F. oxysporum
F. moniliforme

India HD/6 1,8-cineol (27.0%) 79.5%
(20% oil concentration) Poison food Technique F. oxysporum n.r. Medium without

essential oil [53]

India HD/3

n.r.
(Z. officinale EO and combination
of EO
Z. officinale + C. longa)

100%
(2.5 µL/mL) Broth dilution method F. oxysporum, F. nivale n.r. Medium without

essential oil [54]

Mexico HD/4 Eudesmol (8.19%), γ-terpinene
(7.88%), α-curcumene (7.28%)

FC50
(0.10 mg/mL) Inhibition of radial growth F. moniliforme Ketoconazole (60 µg) Olive oil

(4 µL) [55]

Nigeria HD/5 α-Zingiberene (18.6%), Geranial
(13.9%), Neral (10.7%)

100%
(5 µL/mL) Poison food technique F. oxysporum

60 µL/mL of
Azoxystrobin/
Difenoconazole

Medium without
essential oil [39]
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Table 1. Cont.

Country
Extraction
Method/Distillation
Time (h)

Main Compounds MIC/% Inhibition
Rate/Zone Inhibition Assay Fusarium Species Positive Control Negative Control Refs.

Romania

HD/n.r.

n.r.

F. oxysporum
(DL50 = 1139 µL/L,
DL80 = 1822 µL/L,
DL90 = 2050, and
DL95 = 2164 µL/L)

Agar dilution method

F. oxysporum

n.r. Medium without
essential oil

[56]
F. graminearum
(DL50 = 1199 µL/L,
DL80 = 1919 µL/L,
DL90 = 2158, and
DL95 = 2278 µL/L)

F. graminearum

Thainland HD/24 Camphene, 1,8-cineol, and
α-pinene 10.0 mg/L Minimum inhibition

concentration F. oxysporum n.r. n.r. [57]

n.r.—not reported. HD—hydro-distillation.
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3.3. Z. officinale EO Antifungal Activity

F. oxysporum has been the most investigated species, but some preliminary results
are also available for F. graminearum and F. moniliforme. Data concerning antifungal ac-
tivity may be strongly influenced by assay methods, and there is wide variability in the
expression of the results. Indeed, MIC values for broth dilution methods ranged from 75 to
2500 µg/mL. In addition, several studies that applied the food poison technique showed a
range of inhibition zones from 62.5% to 100% using EO concentrations between 5% and
10%. The antibacterial activity of EOs has been correlated to the destabilization of the
cellular architecture, mainly due to the breakdown of the membrane. Membrane rupture
is linked to the leakage of cellular components that involve the inhibition of membrane
transport and energy production [58]. Due to the lipophilic nature and the small size of
EO molecules, EOs are able to penetrate lipid barriers; this changes the permeability of
the cell membrane, and the main effect is the outflow of ions and cellular constituents [59].
A study performed by the authors of [60] against Aspergillus flavus reported an MIC of
0.6 µL/mL. The authors proposed as a possible antifungal mechanism the depolarization of
the mitochondrial membrane and the interference of the EO with carbohydrate catabolism.
Additionally, there are few studies regarding the antifungal activities of Z. officinale EO
(Figure 3a–c); some preliminary results have been reported on fluconazole-susceptible and
fluconazole-resistant Candida albicans strains, showing an MIC of 2500 µg/mL [61].
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Figure 3. Microbiological effects of EOs of Z. officinale. (a) Effect of Z. officinale EO on growth (top)
and ochratoxin A (OTA) production (bottom) in fungi in maize grains [62]; (b) effectiveness; and
(c) inhibitory effect of Z. officinale EOs on the growth of F. oxysporum [39].

There are several reports on the antifungal activities of Z. officinale against different
fungal species. The minimum inhibitory concentration (MIC, µg/mL) and the minimum
fungicidal concentration (MFC, µg/mL) of EO of Z. officinale were found to be 1898 ± 33.41,
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2621 ± 37.72 for Aspergillus ochraceus and 1255 ± 18.30, 1442 ± 37.81 for Penicillium verru-
cosum, respectively [62]. Comparatively, in the same investigation, it was found that the
EOs of Z. officinale showed less antifungal activity than the EOs of Cinnamomum zeylanicum
and Cymbopogon martini, but similar levels of antifungal activity to Curcuma longa and
Ocimum basilicum. Even though the results were not consistent, increasing concentrations
of ginger EO (0.5–5 × 103 µg/mL) decreased ergosterol production from 200–350 µg/mL
to ~5 µg/mL in Fusarium verticillioides [5]. The antifungal activity of ginger EOs is highly
species-dependent; certain fungal species are highly sensitive and some species are less
sensitive to the EOs of ginger. The LC50 values (µL/mL) of ginger EOs against different
fungal phytopathogens are as follows: Fusarium oxysporum (1.3), Colletotrichum falcatum
(1.5), Ganoderma boninense (2.5), Pyricularia oryzae (2.8), Rigidoporus microporus (3.5), Xan-
thomonas oryzae pv. oryzae strain A (300), and Ralstonia solanacearum (400) [39]. Surprisingly,
the rhizosphere microbiome of Z. officinale has also shown antifungal activity, which implies
an indirect antifungal role for ginger plants. For instance, Bacillus vietnamensis, isolated
from the rhizosphere of Z. officinale, was shown to inhibit Pythium myriotylum, which is
a causative agent of Pythium rot in ginger [63]. Thus, the above insights clearly suggest
that Z. officinale and its EO have antifungal properties that could be useful in the control of
potential fungal phytopathogens.

Ultimately, even if all research confirms that Z. officinale EO displays promising antifun-
gal activity against Fusarium species, additional studies are needed in order to investigate
the above-mentioned results in the context of pre- and post-harvest activities.

3.4. Effect of Z. officinale EO on Ergosterol Production Anti-Mycotoxigenic Activity

Ergosterol determination by HPLC-UV is a widespread analytical technique used in
order to quantify antifungal activity in food. Ergosterol is an indicator of fungal contami-
nation due to its natural role as a specific constituent of mycelium cell membranes, and
for this reason, ergosterol can be used as a biological marker. Moreover, ergosterol has
been used as an easily detectable and accurate indicator of potential mycotoxin presence
in foods [64]. The main roles of ergosterol in yeast cells are related to structural and hor-
monal functions, which are crucial in order to maintain and regulate the physiological
development of cell membranes in microorganisms. The mode of action of some synthetic
and natural antifungal agents may be explained as the inhibition of cell growth by elective
interference with ergosterol biosynthesis [39].

As reported in Table 2, Z. officinale EO also seems to be able to inhibit the production
of deoxynivalenol (DON) (Figure 4), a low-molecular-weight trichothecenes belonging
to a group of sesquiterpenoids produced by Fusarium spp. [65]. This mycotoxin is quite
widespread in crops such as corn, wheat, barley, and potatoes; it is responsible for gas-
trointestinal inflammation, emesis, and diarrhea in animals. In addition, humans can be
affected by DON and may show similar symptoms, but chronic effects as carcinogenic,
teratogenic, and immune-suppressive diseases have also been reported as the principal
danger. Indeed, the World Health Organization and the Food and Agriculture Organization
have recognized DON as a very critical food contaminant [66,67]. As reported by Ferreira
et al. (2018) [1], significant to total inhibition of DON production may be achieved by levels
of Z. officinale EO ranging between 500 and 2000 µg/mL, respectively.
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Table 2. Ergosterol quantification and anti-mycotoxigenic activity of several Z. officinale EOs.

Country Effects of EO upon Ergosterol
Production (Determined by HPLC) Anti-Mycotoxigenic Activity Fusarium Species Positive Control Negative Control Refs.

Brazil
Concentrations higher than
1000 µg/mL of EO caused
significant inhibition

Significant reduction in DON levels by 47.3%
(p < 0.05) at a concentration of 500 µg/mL
Total inhibition: 2000 µg/mL

F. graminearum n.r. Fungal inoculum with no
essential oil [1]

Brazil
Concentrations ranging from 4000 to
5000 µg/mL caused inhibition ranging
from 57% to 100%

Significant inhibition of FB1 production (p < 0.05)
at a concentration of 4000 µg/mL and complete
inhibition at 5000 µg/mL
Significant inhibition of FB2 production at
2000 µg/mL and complete inhibition at
3000 µg/mL

F. verticillioides
Suspension of
4 × 105 CFU/mL
(F. verticillioides)

n.r. [5]

n.r.—not reported.



Agronomy 2022, 12, 1168 11 of 16

Agronomy 2022, 12, x FOR PEER REVIEW 10 of 15 
 

 

Table 2. Ergosterol quantification and anti-mycotoxigenic activity of several Z. officinale EOs. 

Country 

Effects of EO upon 
Ergosterol Production 
(Determined by 
HPLC) 

Anti-Mycotoxigenic 
Activity 

Fusarium species Positive 
Control 

Negative 
Control 

Refs. 

Brazil 

Concentrations higher 
than 1000 μg/mL of EO 
caused significant 
inhibition 

Significant reduction in 
DON levels by 47.3% (p 
< 0.05) at a concentration 
of 500 μg/mL 
Total inhibition: 2000 
μg/mL 

F. graminearum n.r. 

Fungal 
inoculum 
with no 
essential oil 

[1]  

Brazil 

Concentrations ranging 
from 4000 to 5000 
μg/mL caused 
inhibition ranging from 
57% to 100% 

Significant inhibition of 
FB1 production (p < 
0.05) at a concentration 
of 4000 μg/mL and 
complete inhibition at 
5000 μg/mL 
Significant inhibition of 
FB2 production at 2000 
μg/mL and complete 
inhibition at 3000 μg/mL 

F. verticillioides 

Suspension of 4 
× 105 CFU/mL 
(F. 
verticillioides) 

n.r. [5]  

n.r.—not reported. 

 
Figure 4. Relationship between Z. officinale EO and mycotoxin deoxynivalenol (DON) synthesis [1]. 

Research performed by Cai et al. (2021) [59] reported preliminary results concerning 
the effectiveness of EOs and herbal extracts in the reduction in mycotoxins, including 
AFB1, AFB2, AFG1, AFG2, DON, FB1, and OTA. Despite the fact that the degradation 
mechanism of mycotoxins by EOs and their components has not been clearly elucidated, 
this field of research deserves additional investigation. Moreover, as reported in [68] by 
Mirza Alizadeh et al. (2021), EOs are able to inhibit mycotoxin synthesis due to their in-
terference with metabolic pathways and gene expression patterns in fungi. 

Figure 4. Relationship between Z. officinale EO and mycotoxin deoxynivalenol (DON) synthesis [1].

Research performed by Cai et al. (2021) [59] reported preliminary results concerning
the effectiveness of EOs and herbal extracts in the reduction in mycotoxins, including
AFB1, AFB2, AFG1, AFG2, DON, FB1, and OTA. Despite the fact that the degradation
mechanism of mycotoxins by EOs and their components has not been clearly elucidated,
this field of research deserves additional investigation. Moreover, as reported in [68]
by Mirza Alizadeh et al. (2021), EOs are able to inhibit mycotoxin synthesis due to their
interference with metabolic pathways and gene expression patterns in fungi.

4. Discussion

As reflected in the above-mentioned research, Z. officinale EO may be suggested as a
potential plant-based treatment for Fusarium infections even if further investigations are
needed. EOs are gaining more attention as promising plant-based biocontrol agents in food
crop protection due to their synergic potential as anti-phytopathogenic, weed, and pest
control treatments. Several studies revealed these findings in the previous decade, but the
development and application of commercial products based on EOs or their components
are still a long way off [7,69,70].

The application of EOs in crop protection presents advantages due to their wide-
spectrum activities, their low toxicity, their lower persistence in soils and groundwater,
and the reasonably low risk for non-target species, such as mammals and aquatic organ-
isms [69,71].

Additionally, EOs are a good candidate for organic management strategies [72,73] due
to the existence of several certified organic brands.

On the other hand, disadvantages have been pointed out concerning the use of EOs in
crop protection, such as limited effectiveness, the need for frequent and higher application
rates compared to conventional pesticides, high costs for authorization and regulatory
processes, and decreased impact due to biodegradability in the field [69].

EO activity may be enhanced by nanotechnology. As reported by Kutawa et al.
(2021) [74] and Adamu et al. (2021) [75], encapsulation and nanotechnology approaches
seem to be able to enhance the antifungal and antibacterial activities of Z. officinale EOs in
different crops. Abdullahi et al. (2020) [39] reported the potential application of Z. officinale
EO in the control of tropical plant diseases, focusing on the idea that nanoemulsion may
be able to improve its efficiency and bioavailability by allowing the controlled release of
the EO in order to obtain a more stable and soluble biopesticide prototype. The same
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authors reiterated that foliar spray and irrigation techniques may enhance the activity of
encapsulated EOs.

Moreover, in order to reduce Fusarium infections and mycotoxin contaminations, EOs
may be proposed as an alternative approach to conventional fungicides, also taking into
account some findings that highlighted the utility of appropriate crop rotation [76], pretreat-
ment with salicylic acid [77], and the use of biological control agents, such as Clonostachys
rosea [78] and lactic acid bacteria [79]; these methods have shown promising results against
infection and mycotoxin spread. Finally, a research study performed by Madege et al.
(2018) [80] determined that insecticide treatment is able to reduce Fusarium symptoms in
maize, possibly due to an easier diffusion of Fusarium infection where significant insect
damage is present. All of these findings, though they represent preliminary results, suggest
the need for a synergistic approach to crop protection, and further investigations may reveal
a new fungicide treatment or enable a reduction in conventional/synthetic fungicides.

Finally, Zingiber officinale represents one of the major spice crops produced in sev-
eral Asian countries, such as China, India, Nepal, and Thailand, with an estimation of
1.683 thousand tons per year [81]. These data may be crucial in order to develop a commer-
cial biofungicide and to plan adequate EO production, because a large quantity of rhizomes
and organized crop production may encourage the industrial scale-up process.

With this vision, Z. officinale EO could play a role in a new pivot for how anti-Fusarium
control is handled.

5. Conclusions

The present review article investigated some promising preliminary findings concern-
ing the anti-Fusarium potential of Z. officinale EO. Z. officinale EO deserves a wider in-depth
analysis in order to complete these discoveries, propose alternative research trends, and
enable potential industrial developments. New research approaches should be adopted for
the purpose of completing a general understanding of Z. officinale EO with respect to its
anti-Fusarium activity and promoting innovative crop-protection strategies. In particular,
further studies should be encouraged regarding (1) emerging nanotechnology formulations
that may enhance EO activity (nanoemulsion, nanoparticles, etc.); (2) additional research
about anti-mycotoxigenic activity; (3) synergistic anti-Fusarium activity with conventional
biocontrol agents; (4) synergistic anti-Fusarium activity with other certified-organic com-
pounds in order to investigate alternative organic management strategies; (5) investiga-
tions that relate phytochemistry with bioactivity (e.g., bioautographic investigations); and
(6) new toxicological evaluations of long-term and acute toxicity in mammals and aquatic
organisms, as well as evaluations of environmental impact and biodegradability.
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