DEVELOPING TECHNOLOGY OF CREATING WEAR-RESISTANT CERAMIC COATING FOR ICE CYLINDER

Authors:

Anatoliy V.Chavdarov,Viatcheslav A. Denisov,

DOI NO:

https://doi.org/10.26782/jmcms.spl.10/2020.06.00048

Keywords:

Wear resistance,friction factor,gas dynamic spraying,microarc oxidation,ICE cylinder sleeve,

Abstract

This paper presents the results of testing a wear-resistant ceramic coating on the work surface of an internal combustion engine (ICE) cylinder’s sleeve. A combined coating formation technology is described that consists in applying an aluminum layer to the sleeve’s work face by gas dynamic spraying and then covering this face with a ceramic layer by microarc oxidation (MAO). A tenfold reduction in the reinforced sleeve has been determined by the accelerated comparative wear rig tests of reference (new) sleeve-piston ring coupling specimens and reinforced specimens with a combined coating. The supplementation of nanoparticle admixture to MAO coating reduces the friction factor between the cylinder sleeve face and the piston ring by 25-30%. The proposed technology can be used to reinforce work surfaces of new cylinder sleeves and recover worn out ones.

Refference:

I. Aliramezani R, Raeissi K, Santamaria M, et al. Effects of Pulse Current Mode on Plasma Electrolytic Oxidation of 7075 Al in KMnO4 Containing Solution. J Electrochem Soc. 2017; 164(12): 690-698.

II. Alyuminiyevyy motor: stoit li svyazyvat’sya? [Are Aluminum Engines Worth the Cost?]. [Internet]/ 2015 August 24 [cited 2020 Mar 5], https://svpressa.ru/auto/article/130173/. Russian.

III. Chavdarov AV, Skoropupov DI, Milovanov DA, et al. Issledovaniyestoykostikeramicheskikhpokrytiypritermotsiklirovanii [Testing Ceramic Coatings for Resistance to Thermal Cycling], GOSNITI: Trudy. 2015; 121: 298-302.

IV. DudarevaNYu, Kalschikov RV, MusinNkh, et al., Studying microarc oxidation effect on aluminum alloy ice cylinder steeve wear resistance. Bull Irkutsk State Tech Univ. 2013; 9(80): 63-70

V. Famiyen L, Huang, X. Plasma Electrolytic Oxidation Coatings on Aluminum: Microstructures, Properties, and Applications. Mod Concept Mater Sci – MCMS. 2019; 2(1).

VI. IhwangIJ, Shin KR, Lee JS, et al. Formation of black ceramic layer on aluminum alloy by plasma electrolytic oxidation in electrolyte containing NA2WO4. Mater Trans. 2012; 53(3): 559-564.

VII. Intermetallicheskiysplavnaosnovenikel’-alyuminiya [Ni-Al Intermetallic Alloy]. Russian Federation Patent 2148671, C 22 C 19/05. Published in 2000. Russian.

VIII. Kang Sh-h, Tu W-b, Han J-x, et al. A significant improvement of the wear resistance of Ti6Al4V alloy by a combined method of magnetron sputtering and plasma electrolytic oxidation (PEO). Surf Coat Technol. 2019; 358: 879-890.

IX. Kiseleva SK, Zainullina, LI, Abramova MM, et al. Microarc Oxidation of the High-Silicon Aluminum AK12D Alloy. SciEduc Bauman MSTU. 2015; 7: 115–128.

X. Krishtal MM, Ivashin PV, Polunin AV, et al. Povysheniyeiznosostoykostidetaleyalyuminiyevo-kremniyevykhsplavovmetodomMDOdlyaraboty v ekstremal’nykhrezhimakhtreniya [Durability of Parts from Aluminum Alloys Improvement Using Microarc Oxidation for Functioning in Extremal Friction Conditions], Izv Samara Sci Cent Russ Acad Sci. 2013; 13 (4-3): 765-768.

XI. Lesnevskiy LN, LezhnyovL.Yu, Lyakhovetskiy MA. Plazmennyyemetodyformirovaniyaiznosostoykikhpokrytiyelementovteplovykhdvigateleyiustanovok [Plasma Techniques of Forming Wear-Resistant Coatings on Parts of Thermal Engines and Systems]. Bull Sci Tech Dev. 2015; 10(98): 31-43.

XII. MalyshevVN, Gantimirov BM, Volkhin AM, et al. PovysheniyeantifriktsionnykhsvoystviznosostoykikhMDO-pokrytiy [Antifriction Properties Improvement of Wear-Resistant MAO Coatings]. ChemPhysMesoscopy. 2013; 15(2): 285-291. Russian.

XIII. MatykinaE, Skeldon, P. Thompson, GF. Fundamental and practical evaluation of plasma electrolytic oxidation coatings of titanium. Surf Eng. 2013; 23(6): 412-418.

XIV. Miao JG, Wu R, Hao, KD, et al. Effects of Alloying Elements on Structure of Plasma Electrolytic Oxidation Ceramic Coatings on Aluminum Alloys. ApplMech Math. 2013; 310: 85-89.

XV. Peitao G, Mingyang T, ChaoyangZh, et al. Tribological and corrosion resistance properties of graphite composite coating on AZ31 Mg alloy surface produced by plasma electrolytic oxidation. Surf Coat Technol. 2019; 359: 197-205.

XVI. Pezzato L, Cerchier, P.-G, Brunelli, K, et al. Plasma electrolytic oxidation coatings with fungicidal properties. Surf Eng. 2019; 35(4): 325-333.

XVII. “Sabri L, El Mansori M. Process variability in honing of cylinder liner with vitrified

XVIII. bonded diamond tools. Surf Coat Technol. 2009; 204(6): 1046-1050.”

XIX. Shandrov BV, ShudrovFV, Nuriev RT. PrimeneniyeMDO-pokrytiykakodinizsposobovuluchsheniyaenergoeffektivnostiiekologichnostimashin [Applying MAO Coatings As One of the Techniques of Making Machines More Energy Efficient and Ecofriendly]. In: Bakhmutov S, Zaitsev S., editors. Section 7 “Tekhnologiiioborudovaniyemekhanosborochnogoproizvodstva” [“Technologies and Equipment for Mechanical Assembly Production”]. Proceedings of the 77th International Scientific and Engineering Conference of Association of Automotive Engineers (AAE) “Avtomobile- itraktorostroyeniye v Rossii: prioritetyrazvitiyaipodgotovkikadrov” [“Car and Tractor Manufacturing in Russia: Priorities for Development and Manpower Training”]. 2016. p, 205-211.

XX. Snova pro Nikasil, kotoryyAlyusil [Coming back to Nikasil Otherwise Referred to as Alyusil]. [Internet]. 2018 June 17 [cited 2020 Mar 3]. https://bmwservice.livejournal.com/264535.html. Russian.

XXI. Sposobpolucheniyaalyuminatakobal’ta [Cobalt Aluminate Production Technique]. Russian Federation Patent 2363658, C 01 F 7/04. Published in 2009. Russian.

XXII. Ustroystvodlyagazodinamicheskogonaneseniyapokrytiynavnutrenniyepoverkhnostitsilindricheskikhdetaley [Device for Gas Dynamic Coatings of Internal Surfaces of Cylindrical Items]. Russian Federation Patent 2714002, C23C4/12, C23C24/04, B05B7/14. Published in 2020. Russian.

XXIII. Vosstanovleniyetsilindrov s pokrytiyemNIKASIL [Recovering Cylinders with NIKASIL Coating]. [Internet]. 2018 June 25 [cited 2020 Mar 3]. https://www.mehanika.ru/informatory/publications/kolonka-mastera/nikasil/. Russian.

XXIV. Wang Zh, Wu L, Cai W, et al. Effects of fluoride on the structure and properties of microarc oxidation coating on aluminium alloy. J Alloy Compd. 2010; 505(1): 188-193.

XXV. Wei T, Yan F, Tian J. Characterization and wear- and corrosion-resistance of microarc oxidation ceramic coatings on aluminum alloy. J Alloy Compd. 2005; 389(1): 169-176.

XXVI. Xue W, Jin Q, Zhu Q, et al. Anti-corrosion microarc oxidation coatings on SiCP/AZ31 magnesium matrix composite. J Alloy Compd. 2009; 482 (1–2): 208-212.

XXVII. Yin B, PengZh, Liang, J, et al. Tribological behavior and mechanism of self-lubricating wear-resistant composite coatings fabricated by one-step plasma electrolytic oxidation. Tribol Int. 2016; 97: 97-107.

XXVIII. Yu H, Chen Ch. Research status of magnesium alloys by micro-arc oxidation: a review. Surf Eng. 2017; 33(10): 731-738.

XXIX. Zhang Y, Fan W, Du HQ, et al. Y. W. Zhao, Corrosion behavior and structure of plasma electrolytic oxidation coated aluminum alloy. Int J Electrochem Sci. 2017;12(7): 6788-6800.

View | Download