
Supporting information

EHGM Pseudocode

EHGM requires as input the branching step k ∈ {1, 2, . . . , n1}, the dissimilarity tensors
Z(d), d = 1, 2, . . . , n1, the size k permutation set P, and optionally an initial upper
bound C0 on the global minimum C∗. The dissimilarity tensors are calculated given the
reference hypergraph of size n1, either a previous frame hypergraph or a template
hypergraph as described in section SI:Model Fitting. The n2 input points and reference
hypergraph are used to build the lower degree dissimilarity tensors Z(d), d ≤ 2k. The
higher degree dissimilarity terms d > 2k are calculated during the search as required.
Algorithm 1 initializes the search from the first candidate set Q1 = P. The search is
easily parallelized via initializing several first branches at a time. Each explores a
disjoint section of X .

Algorithm 1 initializes arrays and variables to start the recursive branch search
(Algorithm 2). Eligible branch candidates are subset from the general queue P into Qm

via the Enqueue procedure (Algorithm 3). Each Qm contains the potential assignments
for the next k terms that satisfy both the pruning constraints and assignment
constraints specified by X . The current assignment cost C̃ is checked against the
current minimum C∗ upon reaching a complete assignment. The Backtrack procedure
(Algorithm 4) removes km−1 from Qm−1 when the path from km−1 is exhausted, which
occurs when Qm = ∅. The recursion will continue until Q1 is empty, signaling the
complete enumeration of the search space Sn.

Algorithm 1: EHGM

Input: k,C0,P,Z
(1), . . . ,Z(2k)

Output: x∗, C∗ = f (x∗)
Initialization
C∗ ← C0

H̃ = []
Ĩ = []
x̃← ∅
C̃ ← 0
m← 1
Q1 ← Enqueue(x̃,P, C̃, C∗, 1)
while Q1 ̸= ∅ do

k1 ← Q1.pop()
Ĥ1 ← H1(k1|Z(1), . . . ,Z(k))
C̃ ← Ĥ1

H̃[1] = Ĥ1

x̃← x̃ ∪ {k1}
m += 1
V isit(P, x̃, C̃, C∗,m)

end
Return: x∗, C∗
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Algorithm 2: Visit

Input: P, x̃, C̃, C∗,m
Qm ← Enqueue(x̃,P, C̃, C∗,m)
while Qm ̸= ∅ do

k̂m ← Qm.pop()

x̃← x̃ ∪ {k̂m}
m += 1
Ĥm ← Hm(km|x̃,Z(1), . . . ,Z(2k))
H̃[m] = Ĥm

C̃ += Ĥm

if m ≥ 3 then

Îm ← Im(km|x̃,Z(2k+1), . . . ,Z(mk))
Ĩ[m] = Îm
C̃ += Îm

end
if m < M then

V isit(P, x̃, C̃, C∗,m)
else if m =M then

if C̃ ≤ C∗ then
x∗ ← x̃
C∗ ← C̃

end
Backtrack(x̃,Qm−1,m)

end
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Algorithm 3: Enqueue

Input: x̃,P, C̃, C∗,m
Output: Qm

Qm ← ∅
for k ∈ P do

if (k ∩ x̃ = ∅) ∧ (C̃ +Hm(k|x̃) < C∗) then
Qm ← Qm ∪ k

end

end

Algorithm 4: Backtrack

Input: x̃,Qm−1,m
Qm−1 ← Qm−1 \ x̃m

x̃← {x̂1, x̂2, . . . , x̂m−1}
C̃ ← Σm−1

j=1 (Cm + Im)

Hypergraphical Objective Decomposition

The hypergraphical optimization objective can be decomposed according to
hyperedge multiplicity and branching step. The stratification enables
efficient search via EHGM.

Theorem 1. Assume an assignment problem objective f is in the form:

f (X|Z(1),Z(2), . . . ,Z(n1)) =

n1∑
l1=1

n2∑
l′1=1

Z
(1)
l1l′1

xl1l′1 +

n1∑
l1=1

n2∑
l′1=1

n1∑
l2=l1+1

n2∑
l′2=1

Z
(2)
l1l′1l2l

′
2
xl1l′1xl2l′2

+

n1∑
l1=1

n2∑
l′1=1

n1∑
l2=l1+1

n2∑
l′2=1

n1∑
l3=l2+1

n2∑
l′3=1

Z
(3)
l1l′1l2l

′
2l3l

′
3
xl1l′1xl2l′2xl3l′3 + ...

+

n1∑
l1=1

n2∑
l′1=1

...

n1∑
ln1

=ln1−1+1

n2∑
l′n1

=1

Z
(n1)
l1l′1...ln1

l′n1

xl1l′1 . . . xln1
l′n1
. (1)

Then, for k ∈ {1, 2, . . . , n1}, the stratification fully describes the objective f after
M = n1

k branches. Define of H1, Hm, and Im:

H1(K1|Z(1),Z(2), ...,Z(k)) :=

k∑
i1=1

Z
(1)
li1 l

′
i1

+

k∑
i1=1

k∑
i2=i1+1

Z
(2)
li1 l

′
i1

li2 l
′
i2

+ ...+

k∑
i1=1

k∑
i2=i1+1

· · ·
k∑

ik=ik−1+1

Z
(k)
l1l′i1

li2 l
′
i2

...lik l
′
ik

,

Hm(Km|K1, ...,Km−1,Z
(1), ...,Z(2k)) :=

mk∑
i1=(m−1)k+1

Z
(1)
li1 l

′
i1

+

mk∑
i2=(m−1)k+1

i2−1∑
i1=1

Z
(2)
li1 l

′
i1

li2 l
′
i2

+

mk∑
i3=(m−1)k+1

i3−1∑
i2=1

i2−1∑
i1=1

Z
(3)
li1 l

′
i1

li2 l
′
i2

li3 l
′
i3

+...+

mk∑
i2k=(m−1)k+1

i2k∑
i2k−1=1

· · ·
i2−1∑
i1=1

Z
(2k)
li1 l

′
i1

...li2k l
′
i2k

,
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and

Im(Km|K1,K2, . . . ,Km−1,Z
(2k+1), . . . ,Z(mk)) :=

mk∑
d=2k+1

mk∑
id=(m−1)k+1

id−1∑
id−1=1

...

i2−1∑
i1=1

Z
(d)
li1 l

′
i1

...lid l
′
id

.

Define Ξ
(d)
m :

Ξ(d)
m (Km|K1,K2, . . . ,Km−1,Z

(2k+1), . . . ,Z(mk)) :=

mk∑
id=(m−1)k+1

id−1∑
id−1=1

...

i2−1∑
i1=1

Z
(d)
li1 l

′
i1

...lid l
′
id

as each degree d summand of Im.
Then, the degree n1 hypergraph matching objective f can be expressed

f (X|Z(1),Z(2), . . . ,Z(n1)) =

m∑
m=1

Hm +

m∑
m=3

Im.

Proof. First consider the single branching case k = 1. This yields M = n1

k = n1

1 = n1
branches. Each branch yields one assignment; i.e. Km = l′m is assigned to vertex lm.
The initial branch selection rule H1 can only utilize the first order term:

H1(K1|Z(1)) = Z
(1)
l1l′1

.

Then the general selection rule for the second branch will: gather the first order
costs for the second assignment as well as the quadratic (second order) costs between
the first two assignments:

H2(K2|K1,Z
(1),Z(2)) = Z

(1)
l2l′2

+

2∑
i2=2

i2∑
i1=1

Z
(2)
li1 l

′
i1

li2 l
′
i2

= Z
(1)
l2

+ Z
(2)
l1l′1l2l

′
2
.

The third branching step will include H3 and I3. H3 follows from H2:

H3(K3|K1,K2,Z
(1),Z(2)) = Z

(1)
l3l′3

+

3∑
i2=3

i2−1∑
i1=1

Z
(2)
li1 l

′
i1

li2 l
′
i2

= Z
(1)
l3l′3

+ Z
(2)
l1l′1l3l

′
3
+ Z

(2)
l2l′2l3l

′
3
,

and

I3(K3|K1,K2,Z
(3)) = Z

(3)
l1l′1l2l

′
2l3l

′
3
.

Note that if n1 = 3, then H1 +H2 +H3 + I3 fully describes the third order
assignment problem:

H1 +H2 +H3 + I3

= Z
(1)
l1l′1︸︷︷︸
H1

+Z
(1)
l2l′2

+ Z
(2)
l1l′1l2l

′
2︸ ︷︷ ︸

H2

+Z
(1)
l3l′3

+ Z
(2)
l1l′1l3l

′
3
+ Z

(2)
l2l′2l3l

′
3︸ ︷︷ ︸

H3

+Z
(3)
l1l′1l2l

′
2l3l

′
3︸ ︷︷ ︸

I3

=

3∑
i1=1

Z
(1)
li1 l

′
i1

+

3∑
i1=1

3∑
i2=i1+1

Z
(2)
li1 l

′
i1

li2 l
′
i2

+

3∑
i1=1

3∑
i2=i1+1

3∑
i3=i2+1

Z
(3)
li1 l

′
i1

li2 l
′
i2

li3 l
′
i3

= f(X|Z(1),Z(2),Z(3)). (2)
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Now consider the extension to n1 = 4, yielding a fourth degree assignment problem.
The fourth branch will assign the next term, K4 = l′4. The terms H4 and I4 will then
fully specify the fourth degree problem:

H4(K4|K1,K2,K3,Z
(1),Z(2)) = Z

(1)
l4l′4

+ Z
(2)
l1l′1l4l

′
4
+ Z

(2)
l2l′2l4l

′
4
+ Z

(2)
l3l′3l4l

′
4
.

The second aggregation rule I4 will consider third order terms between branches 1, 2
and 4 as well as the fourth order term using all four assignments:

I4(K4|K1,K2,K3,Z
(3),Z(4)) = Z

(3)
l1l′1l2l

′
2l4l

′
4
+ Z

(3)
l2l′2l3l

′
3l4l

′
4
+ Z

(4)
l1l′1l2l

′
2l3l

′
3l4l

′
4
.

The fourth branch terms can now be joined with the existing terms:

H1 +H2 +H3 + I3 +H4 + I4 =

3∑
i1=1

Z
(1)
li1 l

′
i1

+

3∑
i1=1

3∑
i2=i1+1

Z
(2)
li1 l

′
i1

li2 l
′
i2

+

3∑
i1=1

3∑
i2=i1+1

3∑
i3=i2+1

Z
(3)
li1 l

′
i1

li2 l
′
i2

li3 l
′
i3︸ ︷︷ ︸

H1+H2+H3+I3

+ Z
(1)
l4l′4

+ Z
(2)
l1l′1l4l

′
4
+ Z

(2)
l2l′2l4l

′
4
+ Z

(2)
l3l′3l4l

′
4︸ ︷︷ ︸

H4

+Z
(3)
l1l′1l2l

′
2l4l

′
4
+ Z

(3)
l2l′2l3l

′
3l4l

′
4
+ Z

(4)
l1l′1l2l

′
2l3l

′
3l4l

′
4︸ ︷︷ ︸

I4

=

4∑
i1=1

Z
(1)
li1 l

′
i1

+

4∑
i1=1

4∑
i2=i1+1

Z
(2)
li1 l

′
i1

li2 l
′
i2

+

4∑
i1=1

4∑
i2=i1+1

4∑
i3=i2+1

Z
(3)
li1 l

′
i1

li2 l
′
i2

li3 l
′
i3

+

4∑
i1=1

4∑
i2=i1+1

4∑
i3=i2+1

4∑
i4=i3+1

Z
(4)
li1 l

′
i1

li2 l
′
i2

li3 l
′
i3

li4 l
′
i4

= f(X|Z(1),Z(2),Z(3),Z(4)). (3)

Now consider the arbitrary m+1 st branch. This addition will yield the full objective
for an assignment problem of size m+ 1 up to degree m+ 1:

m+1∑
p=1

Hp +

m+1∑
p=3

Ip =

m∑
p=1

Hp +

m∑
p=3

Ip +Hm+1 + Im+1 =

m∑
i1=1

Z
(1)
li1 l

′
i1

+

m∑
i1=1

m∑
i2=i1+1

Z
(2)
li1 l

′
i1

li2 l
′
i2

+ · · ·+
m∑

i1=1

m∑
i2=i1+1

...

m∑
im=im−1+1

Z
(m)
li1 l

′
i1

li2 l
′
i2

...lim l′im︸ ︷︷ ︸∑m
p=1 Hp+

∑m
p=3 Ip

+ Z
(1)
lim+1

l′im+1

+

m∑
i1=1

Z
(2)
li1 l

′
i1

lm+1l′m+1︸ ︷︷ ︸
Hm+1

+

m+1∑
d=3

Ξ
(d)
m+1︸ ︷︷ ︸

Im+1

. (4)

It is sufficient to show each degree d ∈ {1, 2, . . . ,m+ 1} hyperedge is fully accounted
for across all m+ 1 points to prove the m+1 st branch satisfies the objective f. The
hyperedge costs across all points will be decomposed into three disjoint sets, and each
set considered at a time:

{1}, {2}, {3, . . . ,m}, {m+ 1}.
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The first and final of the four cases are trivial. The first degree terms are

enumerated via the first term in Hm+1, while Xi
(m+1)
m+1 explicitly addresses the degree

m+ 1 hyperedge comprising all assignments: Z
(m+1)
l1l′1l2l

′
2...lm+1l′m+1

. We will focus on the

second and third cases. The degree d = 2 terms are formed by the addition of branch
m+ 1 are considered in term Hm+1:

m∑
i1=1

m∑
i2=i1+1

Z
(2)
li1 l

′
i1

li2 l
′
i2

+

m∑
i1=1

Z
(2)
li1 l

′
i1

lim+1
l′im+1

=

m+1∑
i1=1

m+1∑
i2=i1+1

Z
(2)
li1 l

′
i1

li2 l
′
i2

.

Let d ∈ {3, . . . ,m}. The completion is similar to the d = 2 degree case; however, the

term Ξ
(d)
m+1 in Im+1 address higher degree hyperedges up to and including degree m

concerning branch m+ 1:

m∑
i1=1

...

m∑
id=id−1+1

Z
(d)
li1 l

′
i1

...lid l
′
id

+ Ξ
(d)
m+1 =

m+1∑
i1=1

...

m+1∑
id=id−1+1

Z
(d)
li1 l

′
i1

...lid l
′
id

.

Therefore, the (m+ 1)st step fully accrues the objective f :

m+1∑
p=1

Hp +

m+1∑
p=3

Ip = f(X|Z(1),Z(2), . . . ,Z(m+1)).

Then inductively, the stratification holds such that:

n1∑
m=1

Hm +

n1∑
m=3

Im = f(X|Z(1),Z(2), . . .Z(n1)).

Now consider the plural branching rule k > 1. The proof will follow from the single
assignment branching case. The base case at the fourth branch will be established,
followed by the induction hypothesis demonstrating the branching from m to m+ 1.
First, define the terms H1, H2, H3, I3, H4, and I4:

H1 =

k∑
i1=1

Z
(1)
li1 l

′
i1

+

k∑
i1=1

k∑
i2=i1+1

Z
(2)
li1 l

′
i1

li2 l
′
i2

+...+

k∑
i1=1

k∑
i2=i1+1

...

k∑
ik=ik−1+1

Z
(k)
li1 l

′
i1

li2 l
′
i2

...lik l
′
ik

,

(5)

H2 =

2k∑
i1=k+1

Z
(1)
li1 l

′
i1

+

2k∑
i2=k+1

i2−1∑
i1=1

Z
(2)
li1 l

′
i1

li2 l
′
i2

+ ...+

2k∑
i2k=k+1

...

i3−1∑
i2=1

i2−1∑
i1=1

Z
(2k)
li1 l

′
i1

...li2k l
′
i2k

, (6)

H3 =

3k∑
i1=2k+1

Z
(1)
li1 l

′
i1

+

3k∑
i2=2k+1

i2−1∑
i1=1

Z
(2)
li1 l

′
i1

li2 l
′
i2

+ ...+

3k∑
i2k=2k+1

...

i2−1∑
i1=1

Z
(2k)
li1 l

′
i1

...li2k l
′
i2k

, (7)

I3 =

3k∑
d=2k+1

Ξ
(d)
3 , (8)

H4 =

4k∑
i1=3k+1

Z
(1)
li1 l

′
i1

+

4k∑
i2=3k+1

i2−1∑
i1=1

Z
(2)
li1 l

′
i1

li2 l
′
i2

+ ...+

4k∑
i2k=3k+1

...

i2−1∑
i1=1

Z
(2k)
li1 l

′
i1

...li2k l
′
i2k

, (9)
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and

I4 =

4k∑
d=3k+1

Ξ
(d)
4 . (10)

The terms presented thus far for the general k > 1 case fully describe all terms
concerning assignments 1, 2, . . . 4k up to degree 4k. The hyperedge multiplicities will
again be partitioned into disjoint groups:

{1}, {2, . . . , k}, {k + 1, . . . , 2k}, {2k + 1, . . . , 3k}, {3k + 1, . . . , 4k}.

The first case is trivial, just as in the single assignment branching (k = 1) proof.
Unary terms are accounted for in the first summand of each Hm. Then, consider
d ∈ {2, . . . , k}:

k∑
i1=1

...

k∑
id=id−1+1

Z
(d)
li1 l

′
i1

...lid l
′
id︸ ︷︷ ︸

H1

+

2k∑
id=k+1

id−1∑
id−1=1

...

i2−1∑
i1=1

Z
(d)
li1 l

′
i1

...lid l
′
id︸ ︷︷ ︸

H2

+

3k∑
id=2k+1

id−1∑
id−1=1

...

i2−1∑
i1=1

Z
(d)
li1 l

′
i1

...lid l
′
id︸ ︷︷ ︸

H3

+

4k∑
id=3k+1

id−1∑
id−1=1

...

i2−1∑
i1=1

Z
(d)
li1 l

′
i1

...lid l
′
id︸ ︷︷ ︸

H4

=

4k∑
i1=1

4k∑
i2=i1+1

...

4k∑
id=id−1+1

Z
(d)
li1 l

′
i1

...lid l
′
id

.

The proof for degree d ∈ {k + 1, . . . , 2k} follows immediately from the grouping
presented above, but without the initial branch selection rule term H1. Next, assume
d ∈ {2k + 1, . . . , (m− 1)k}. Degree d hyperedge dissimilarities will be contained in both
I3 and I4 terms:

3k∑
id=2k+1

id−1∑
id−1=1

...

i2−1∑
i1=1

Z
(d)
li1 l

′
i1

...lid l
′
id︸ ︷︷ ︸

I3

+

4k∑
id=3k+1

id−1∑
id−1=1

...

i2−1∑
i1=1

Z
(d)
li1 l

′
i1

...lid l
′
id︸ ︷︷ ︸

I4

=

4k∑
i1=1

...

4k∑
id−1=id−2+1

4k∑
id=id−1+1

Z
(d)
li1 l

′
i1

...lid l
′
id

.

Since d ≤ 2k + 1, the terms only appear in the third branch term I3 when the
assignment 2k + 1 is committed. The final set arises from the definition of I4 which
accrues hyperedges of degree d ∈ {3k + 1, . . . , 4k} across assignments in branches
m = 1, 2, 3, 4. The base case is fully established for the arbitrary k > 1 case. The final
step of the proof is to establish the extension of the m+1 st branch:
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m+1∑
p=1

Hp +

m+1∑
p=3

Ip =

m∑
p=1

Hp +

m∑
p=3

Ip +Hm+1 + Im+1 =

mk∑
i1=1

Z
(1)
li1 l

′
i1

+

mk∑
i1=1

mk∑
i2=i1+1

Z
(2)
li1 l

′
i1

li2 l
′
i2

+ · · ·+
mk∑
i1=1

mk∑
i2=i1+1

...

mk∑
imk=imk−1+1

Z
(mk)
li1 l

′
i1

...limk
l′imk︸ ︷︷ ︸∑m

p=1 Hp+
∑m

p=3 Ip

+

(m+1)k∑
i1=mk+1

Z
(1)
li1 l

′
i1

+ ...+

(m+1)k∑
i2k=mk+1

i2k−1∑
i2k−1=1

...

i2−1∑
i1=1

Z
(2k)
li1 l

′
i1

...li2k l
′
i2k︸ ︷︷ ︸

Hm+1

+

(m+1)k∑
d=2k+1

Ξ
(d)
m+1︸ ︷︷ ︸

Im+1

. (11)

The (m+ 1)k hyperedge multiplicities will be stratified into four groups:

{1}, {2, . . . , 2k}, {2k + 1, . . . ,mk}, {mk + 1, . . . , (m+ 1)k}.

Just as in the singular k = 1 case, the proof for the first and last groups are trivial.
The unary terms are again evident from the first term in Hm+1, while the
mk + 1 ≤ d ≤ (m+ 1)k terms in Im+1 fully encapsulates the fourth group. The steps in
the remaining two cases will follow that of the k = 1 case.

First, assume d ∈ {2, . . . , 2k}. The extension of the m+1 st branch uses exclusively
the selection rule Hm+1:

mk∑
i1=1

...

mk∑
id−1=id−2+1

mk∑
id=id−1+1

Z
(d)
li1 l

′
i1

...lid l
′
id︸ ︷︷ ︸∑m

p=1 Hm

+

(m+1)k∑
id=mk+1

id−1∑
id−1=1

...

i2−1∑
i1=1

Z
(d)
li1 l

′
i1

...lid l
′
id︸ ︷︷ ︸

Hm+1

=

(m+1)k∑
i1=1

...

(m+1)k∑
id−1=id−2+1

(m+1)k∑
id=id−1+1

Z
(d)
li1 l

′
i1

...lid l
′
id

. (12)

Next, assume d ∈ {2k + 1, . . . ,mk}. These terms are captured in Im+1 using each

definition of Ξ
(d)
m+1:

mk∑
i1=1

...

mk∑
id−1=id−2+1

mk∑
id=id−1+1

Z
(d)
li1 l

′
i1

...lid l
′
id

+

(m+1)k∑
id=mk+1

id−1∑
id−1=1

...

i2−1∑
i1=1

Z
(d)
li1 l

′
i1

...lid l
′
id︸ ︷︷ ︸

Im+1

=

(m+1)k∑
i1=1

...

(m+1)k∑
id−1=id−2+1

(m+1)k∑
id=id−1+1

Z
(d)
li1 l

′
i1

...lid l
′
id

. (13)

All four results together show that every degree hyperedge 1, . . . , (m+ 1)k is
accounted for in the m+1 st branch, thus proving the induction hypothesis:

m+1∑
p=1

Hp +

m+1∑
p=3

Ip = f(X|Z(1),Z(2), . . .Z((m+1)k)).
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The M th branch completes the degree n1 assignment problem of size n1. For any
k ∈ {1, 2, . . . n1}, the selection and aggregation rules yield the full degree n1 assignment
problem objective:

M∑
p=1

Hp +

M∑
p=3

Ip = f(X|Z(1),Z(2), . . .Z(n1)).

Convergence & Exactness of EHGM

Theorem 2. EHGM (algorithm 1) will converge to a globally optimal solution of the
following hypergraph matching optimization problem given input k ∈ {1, 2, . . . , n1}:

min
X∈X

n1∑
l1=1

n2∑
l′1=1

Z
(1)
l1l′1

xl1l′1 +

n1∑
l1=1

n2∑
l′1=1

n1∑
l2=l1+1

n2∑
l′2=1

Z
(2)
l1l′1l2l

′
2
xl1l′1xl2l′2

+

n1∑
l1=1

n2∑
l′1=1

n1∑
l2=l1+1

n2∑
l′2=1

n1∑
l3=l2+1

n2∑
l′3=1

Z
(3)
l1l′1l2l

′
2l3l

′
3
xl1l′1xl2l′2xl3l′3 + ...

+

n1∑
l1=1

n2∑
l′1=1

...

n1∑
ln1

=ln1−1+1

n2∑
l′n1

=1

Z
(n1)
l1l′1...ln1

l′n1

xl1l′1 . . . xln1
l′n1

(14)

where X is defined:

X = {X ∈ {0, 1}n1×n2 : ∀j,
n1∑
i=1

xlil′j = 1,∀i
n2∑
j=1

xlil′j ≤ 1}.

Proof. First, we will show EHGM converges, then it will be proven that the converged
solution is globally optimal.

The search begins with initializing queue Q1 = P. The algorithm terminates with
the exhaustion of Q1. Each set Qm ⊂ P contains feasible k -assignments conditioned on
the assignment constraints and costs C̃, C∗. Backtrack (Algorithm 4) removes xm from
Qm−1 upon enumeration of Qm. The recursion then falls back to selecting from branch
m− 1, eventually exhausting Qm−1 just as in the enumeration of Qm. This recursion
continues until the first branch k1 ∈ Q1 is removed, signaling the exploration of all
assignments originating with the k -tuple k1. The exploration is repeated for each
k1 ∈ Q1. Thus, all possible assignments X ∈ X are explored via the branching scheme.

Assignments accrue a monotonically increasing cost C̃ to be compared to C∗ with
accompanying assignment x∗ at each branch. A complete assignment then drops the
last k assignments from x̃, initializing the backwards recursion, emptying Qm until

k
(nk)
m−1 ∈ Qm−1 is exhausted. There are at most |Qm| ≤ nk viable permutations at

branch m. Each possible branch is evaluated from x̃ = [k1,k2, . . .km−1]. The (m− 1)st

branch km−1 ∈ Qm−1 is removed from Qm−1 upon exhaustion of Qm:

x̃
(m)
1 = [k

(1)
1 ,k

(1)
2 , . . .k

(1)
m−1,k

(1)
m ]

x̃
(m)
2 = [k

(1)
1 ,k

(1)
2 , . . .k

(1)
m−1,k

(2)
m ]

...

x̃(m)
nk

= [k
(1)
1 ,k

(1)
2 , . . .k

(1)
m−1,k

(nk)
m ].
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Each of the nk possible final branches from k
(1)
m−1 is explored, then k

(1)
m−1 is removed

from Qm−1.
The process follows for the M th branch, exhausting viable assignment sets until

kM−1 is removed. The recursion follows inductively back to the exhaustion of Q1,
signaling the end of the search. Thus, all possible assignments X ∈ X are explored via
the branching scheme.

The convergent and exhaustive algorithm will yield a globally optimal solution
C∗ = f(x∗) after exhausting Q1. As proven above the additive decomposition of the
cost structure (equation 1) is proven to be satisfied by summing all selection and
aggregation rule terms. Assume an uninformed initialization C∗ =∞. Then the first

pass will greedily take the best permutation from the first set Q1: k
(1)
1 , and the best

from the second set given it does not conflict with k
(1)
1 : k

(2|1)
2 . This process will

continue until the first complete assignment:

x̃ = [k
(1)
1 ,k

(2|1)
2 ,k

(3|2,1)
3 , . . . ,k

(M |(M−1),...,1)
M ] with C̃ = f(x̃). The first Backtrack

removes k
(M |(M−1),...,1)
M , and the M th Visit call will exhaust QM . Subsequent Enqueue

calls will limit only allow branches that satisfy both the assignment constraints and the
updated selection rule cost (Algorithm 3). This follows that any k -tuple of assignments

k
(j)
m such that for x̃ = [k

(j1)
1 ,k

(j2|j1)
2 , . . . ,k

(jd|j(m−1),...j1)
m ]:

C̃ +Hm(x̃m−1,k
(jd|j(m−1),...j1)
m ) < C∗.

The additive decomposition of the objective paired with the assumed non-negativity
of the dissimilarity tensors Z(j) results in each branch monotonically increasing C̃:

C̃ +Hm(x̃m−1,k
(jd|j(m−1),...j1)
m ) + Im(k

(j1)
1 ,k

(j2|j1)
2 , . . . ,k

(jd|j(m−1),...j1)
m ) ≥ C̃.

The convergent search will thus eliminate all paths that are not globally optimal.
Incrementally updating the reserved solution x∗ with cost C∗ expedites convergence as
each replacement is necessarily a better solution. The resulting x∗ and corresponding
cost C∗ are such that at no other full assignment x̃ can replace x∗, by definition a
globally optimal solution of f.

Model Fitting

Expert annotations are used to derive features such that the correct assignment
consistently achieves a minimal cost across the training set. Features can be engineered
and analyzed in context of point set matching just as in traditional supervised learning
tasks.

Features are expressed as attributes over hyperedge multiplicities d = 1, 2, . . . , n.

Hyperedge features g
(d)
s , s = 1, . . . , nd are given as input. Each feature g

(d)
s assumes a

Gaussian distribution, and if nd ≥ 2 the features are modeled as a multivariate
Gaussian distribution. Measurements from the data are used to derive estimates of the
parameters of the Gaussian distributions. The most common application in heuristic
approaches is to use the previous frame’s feature values as the centers of the
distributions. This standard approach is effective for simple lower variance features.
However, higher degree features may have more variation frame-to-frame. Mean
estimates across the training data can better account for macroscopic patterns in more
complex features. The variances are then estimated from the feature values across the
training set. The dissimilarity costs arise from functions attributed to hyperedges
quantified by parametric assumptions.
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The dissimilarity tensors Z(d) can now be expressed as a function of the nd features
of hyperedge d. A partial assignment up to degree d : [(l1, . . . , ld) 7→ (l′1, . . . , l

′
d)] invokes

a cost according to the nd features:
∑nd

s=1 g
(d)
s . The expected values:

∑nd

s=1 ḡ
(d)
s are

calculated in aggregate from training data for higher variance patterns:

ḡ(d)s =

∑N
L=1 g

(d)
s (XL,XL)

N
. (15)

where XL and XL are the correct permutation and observed point set, respectively,
for sample L. The variance-covariance matrix uses estimated means to estimate
variances and covariances among feature measurements in the annotated data:

σ̂
(d)
a,b =

N∑
L=1

(g(d)a (XL,XL)− ḡ(d)a )(g
(d)
b (XL,XL)− ḡ(d)b ), (16)

Σ̂(d)
g =

∣∣∣∣∣∣∣∣∣


σ̂
(d)
1,1 σ̂

(d)
1,2 ... σ̂

(d)
1,nd

σ̂
(d)
2,1 σ̂

(d)
2,2 ... σ̂

(d)
2,nd

... ... ... ...

σ̂
(d)
nd,1

σ̂
(d)
nd,2

... σ̂
(d)
nd,nd


∣∣∣∣∣∣∣∣∣ .

The selection rule tensor dissimilarity tensors Z(d) ∈ R
n× n, . . . ,×n︸ ︷︷ ︸

2d use both sets
of estimates to compute costs. The Mahalanobis distance is used to describe the scaled
distance between the observed attributed hyperedge to an estimated feature description.

Let g(d) = [g
(d)
1 , g

(d)
2 , . . . , g

(d)
nd ]

′ and ḡ(d) = [ḡ
(d)
1 , ḡ

(d)
2 , . . . , ḡ

(d)
nd ]

′. Then Z(d) evaluated at
the assignment [(l1, . . . , ld) 7→ (l′1, . . . , l

′
d)] can be expressed:

Z
(d)
l1l′1l2l

′
2...ldl

′
d
= (g(d) − ḡ(d))′(Σ̂(d)

g )−1(g(d) − ḡ(d)). (17)

Posture Modeling

This section aims to introduce feature visualizations and discuss the effectiveness of
various features for posture assignment.

Consider an image captured at time t with n = 20 located nuclei centroids. The
coordinates can be stored as X ∈ Rn,3 which Xi = [xi, yi, zi] representing the ith

centroid in R3. Then let 1, 3, 5, . . . 19 be in the indices of the left side, and 2, 4, 6, . . . 20
be the indices of the right side. Then the cell nuclei are paired (1, 2) for the tail pair,
then (2, 3), (4, 5), (6, 7), . . . (19, 20) for the body pairs. Let L = (l1, l2, . . . lm) denote the
left side locations, and similarly R the right.

The sampled worm embryos tend to develop at similar rates. However, the
occurrence of the first twitch, a point in development that triggers rapid physical
changes, varies embryo to embryo. Thus a time normalization is applied in effort to
compare data from the different samples. Each worm’s time to first twitch is measured
sw, as well as hatch time hw for worm w = 1, 2, . . . 10. The time points for each sample
are indexed k = 1, 2, . . . nw. Now, each volume’s imaging time twk is normalized to the
[0, 1] scale via the following formula:

zwk =
twk − sw
hw − sw

.

Each time point zwk ∈ [0, 1] is scaled such that zwk = 0 represents first twitch, and
zwk = 1 hatching. All plots will feature the normalized time of observation zwk on the
horizontal axis. The y axis unit will vary plot to plot. Distances will be measured in
microns, µm, angles measured in degrees, θ ∈ [0, 360]. Plots with multiple subplots will
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measure pairwise features, features defined by linking a length two sequence of pairs, or
features defined by a length three sequence of pairs. The leftmost plot will depict
features for the tail or sequence starting from the tail, while the rightmost will depict
the feature ending with the head pair, at the anterior of the worm. Features are
calculated conditioned on stage of development in binned intervals of length .05 as well
as the region in the worm measured by pair index.

Sides

The quadratic model uses scaled distances between pairs of nuclei. The first feature to
analyze is the distance between paired cell nuclei (S1 Fig 1-A):

PDi = ∥Li −Ri∥2. (18)

This can be biologically interpreted as the width of the worm measured at the
sampled nuclei locations. As mentioned above, the first subplot illustrates distances in
microns between nuclei centroids of the tail pair for each observation. The distance
between nuclei in the tail pair (left-most panel) is used for the initial pair selection rule
H1 across all models. The second set of distances form along the left and right sides of
the worm (S1 Fig 1-B). The lengths of chords between successive nuclei on each side are
calculated: ∥Li+1 − Li∥2 and ∥Ri+1 −Ri∥2. Similar to the pair distances, side length
observations are highly variant.

Pairs

The Pairs model uses hyperedges connecting two or three pairs of nuclei (four or six
nuclei). The first four features measure pair-to-pair variation, while the latter two
features use triplets of pairs to measure angles formed by the midpoints of the three
pairs. The first pair-to-pair feature extends upon the use of pair distances to better
describe the coiled worm. The ratio of sequential pair distances models the variation in
width throughout the assigned nuclei (S1 Fig 2-A):

PDRi =
PDi

PDi+1
. (19)

Each feature’s estimated mean is slightly greater than 1, indicating that, on average,
the worm is widening from tail to head. Another easily interpreted distance is the length
of the chords connecting sequential pair midpoints. This is a more robust measure of
worm length as side lengths vary more based upon the worm’s folding (S1 Fig 2-B):

MDi = ∥Mi+1 −Mi∥2. (20)

The length of the chords connecting sequential pair midpoints is a more robust
measure of worm length as side lengths vary more based upon the worm’s folding. The
cosine similarity is used to assess the degree to which sequential sides are pointing in
the same direction (Fig 2-C):

ϕi =
(Ri+1 −Ri) · (Li+1 − Li)

∥Ri+1 −Ri∥2∥Li+1 − Li∥2
∈ [−1, 1]. (21)

The final two pair-to-pair Pairs features attempt to model two different types of
twist in the posture. The lateral and axial twists measures angles of rotation from lateral
and posterior views, respectively (S1 Fig 2-D). Lateral twists can be expressed via ψ:
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b1 =
Li+1 − Li

∥Li+1 − Li∥2
(22)

b2 =
Li −Ri

∥Li −Ri∥2
(23)

b3 =
Ri −Ri+1

∥Ri −Ri+1∥2
(24)

b4 =
Ri+1 − Li+1

∥Ri+1 − Li+1∥2
(25)

n1 = b1 × b2 (26)

n2 = b2 × b3 (27)

n3 = b3 × b4 (28)

c1 =< n1 × n2,b2 > (29)

c2 =< n1,n2 > (30)

ψi =
1

π
atan2(< n1 × n2,b2 >,< n1,n2 >)). (31)

(32)

Axial twists present between a sequence of two pairs calculates the angle obtained by
projecting the chord linking pairs onto each other (S1 Fig 2-E):

b1 =
Li − Li+1

∥Li − Li+1∥2
(33)

b2 =
Ri − Li

∥Ri − Li∥2
(34)

b3 =
Ri+1 −Ri

∥Ri+1 −Ri∥2
(35)

b4 =
Li+1 −Ri+1

∥Li+1 −Ri+1∥2
(36)

n1 = b1 × b2 (37)

n2 = b2 × b3 (38)

n3 = b3 × b4 (39)

c1 =< n2 × n3,b3 > (40)

c2 =< n2,n3 > (41)

τi =
1

π
atan2(< n2 × n3,b3 >,< n2,n3 >)). (42)

(43)

Angles along sides of the worm formed by triples of sequential nuclei approximate
bend in the worm along each side. These angles are highly variant, in the same manner
as side lengths in Sides (S1 Fig 1-B). Angles formed by pair midpoints exacerbate the
computational burden as six nuclei are required, compare to three in a typical angle
calculation, but the midpoint based angles are less variant than angles of each side (S1
Fig 2-F):

Θi =
180

π
arccos

<Mi+1 −Mi,Mi+2 −Mi+1 >

∥Mi+1 −Mi∥2∥Mi+2 −Mi+1∥2
. (44)
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Each angle Θ ∈ [0, 180] where 0 would denote the worm perfectly folded upon itself,
and 180 would define a flat worm. A second set of angles aims to approximate the
posterior to anterior bend in the worm. The angles ζi are defines as the angles formed
by fitted planes intersecting between pair midpoints (S1 Fig 2-G):

ζi =
180

π

< (Ri+1 − Li+1)× (Mi+1 −Mi), ((Ri+1 − Li+1)× (Mi+1 −Mi+1)) >

∥(Ri+1 − Li+1)× (Mi+1 −Mi)∥2∥(Ri+1 − Li+1)× (Mi+1 −Mi+1)∥2
.

(45)

Posture

The Posture model is comprised of all Pairs features as well as the features defined by
the summations of each local feature measurement throughout the hypothesized posture.
Full posture features give insight into the changes in the embryo’s shape throughout
late-stage embryogenesis (S1 Fig 3). Worm length follows an approximately logarithmic
pattern.Total curvature follows a negative exponential pattern. Earlier on the worm is
fatter and cannot bend as much. The worm elongates during development, allowing for
sharper bends.
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