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Abstract 17 

Biological invasions impact both agricultural and natural systems. The damage can be 18 

quantified in terms of both economic loss and reduction of biodiversity. Although the literature 19 

is quite rich about the impact of invasive species on plant and animal communities, their impact 20 

on environmental microbiomes is underexplored. Here, we re-analyze publicly available data 21 

using a common framework to create a global synthesis of the effects of biological invasions on 22 

environmental microbial communities. Our findings suggest that non-native species are 23 

responsible for the loss of microbial diversity and shifts in the structure of microbial populations. 24 

Therefore, the impact of biological invasions on native ecosystems might be more pervasive than 25 

previously thought, influencing both macro- and micro-biomes. We also identified gaps in the 26 

literature which encourage research on a wider variety of environments and invaders, and the 27 

influence of invaders across seasons and geographical ranges. 28 

 29 

Introduction 30 

Biological invasions have severe impacts on biodiversity, community composition and 31 

ecosystem functions [1–5]. Invasive plants can alter many important ecosystem functions 32 

including the nitrogen cycle [6], carbon cycle, and decomposition. For example, invasion by the 33 

plant Amur Honeysuckle altered the decomposition rate in the invaded environment likely 34 

through changes in litter quality [7]. Exotic snails have been found to alter carbon and nitrogen 35 

fluxes in freshwater systems through their consumption/excretion activity [8]. These functions 36 

are provided by environmental microbiomes. Yet, despite the implications for ecosystem 37 
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functioning, we are still learning the consequences of biological invasions on environmental 38 

microbiomes. 39 

Previous studies have shown biological invasions can impact the diversity and 40 

taxonomical structure of environmental microbiomes. For example, we often see a shift in soil 41 

microbiota following invasion by non-native plant species [9–19]. Removal of feral pigs increased 42 

the diversity of soil bacterial communities and shifted their structure [20], and invasive 43 

crustaceans [21], mussels [22] and jellyfish [23] produce changes in the structure of water 44 

microbiomes. However, shifts in environmental microbiome as consequence of biological 45 

invasions do not always occur. For example, invasion by the plants Robinia pseudoacacia [24], 46 

Eucalyptus sp. [25], Vincetoxicum rossicum [26] did not alter the structure of soil microbial 47 

communities. Also, microcosms exposed to the simultaneous invasion of multiple plant species 48 

[27–29] did not alter soil microbiomes. Similarly, soil microbiome structure in microcosms did not 49 

change with the addition of the invasive earthworm Aporrectodea trapezoides [30]. Several of 50 

these studies used techniques (e.g. DGGE, PLFA, t-RFLP) that limit fine scale investigations of 51 

biological invasions on environmental microbiome diversity and taxonomical composition. 52 

Among the studies using high-throughput amplicon-sequencing techniques, most did not find 53 

changes in microbiome diversity [13,15,18,19,21,25,27,28,30], few reported a decrease of 54 

microbial diversity in response to invasion [16,20,29], and fewer still reported an increase [11,14]. 55 

Thus, there is still little consensus on the effects of biological invasions on the diversity and 56 

taxonomical structure of the environmental microbiomes, both tied to the stability and function 57 

of microbial communities [31,32]. 58 

some
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Our ability to draw broad conclusions from published studies is limited, because individual 59 

studies have occurred within a limited geographical range or with a limited group of species. 60 

Meta-analyses of published biological means have long enabled more robust conclusions than 61 

individual studies [33–36]. However, the meta-analytic approach has less frequently been applied 62 

to amplicon-sequencing data that represent environmental microbiome community 63 

composition. The majority of meta-analytic metabarcoding studies have occurred in the medical 64 

sciences [37–45]. This approach can be successfully used to address ecological questions. For 65 

example, meta-analytic metabarcoding studies have found common patterns in the structure of 66 

indoor microbiomes [46] and freshwater eukaryotes [47]. Shade et al. [48] also used a meta-67 

analysis of metabarcoding datasets from different environments highlighting a time-dependent 68 

structure of microbiomes. A meta-analytic approach has also been used to test the effects of 69 

stressors (e.g. water availability, temperature, heavy metals) on environmental microbiomes 70 

[49]. Thus meta-analyses on microbiome data have a striking potential to address global-scale 71 

questions, generate new hypotheses and model common patterns [50], because they provide 72 

across study comparisons [39,51,52]. 73 

Here, we aim to test whether the effect of biological invasion on environmental 74 

microbiomes can be generalized or is idiosyncratic. To do so, we collected publicly available data 75 

and re-analyzed this data under a common framework. We tested the effect of invasive species 76 

on the diversity and structure of environmental microbiomes with the hypothesis that the 77 

presence of invasive species will decrease microbial diversity, and alter the composition of the 78 

environmental microbiome. We then investigated whether certain taxonomical groups are more 79 

responsive to biological invasions. 80 
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Methods 81 

Data collection 82 

We searched for metabarcoding studies that evaluated the effect of biological invasions 83 

on environmental microbiomes, and compared invaded and non-invaded habitats. Our literature 84 

search for this study was conducted using Web of Science Core Collection (accessed on March 85 

6th, 2020) using the keywords “Invasive speci*” and “microbio*” published between 2010-2020, 86 

and found 1,471 studies. Two additional studies were added by searching the same keywords on 87 

Google Scholar (Fig S1). Records were manually filtered based on the study design appropriate 88 

for our research question. This step yielded 22 studies, and we further filtered these studies 89 

based on data availability in public repositories. When data was not available, we attempted to 90 

contact the corresponding author. Finally we selected only studies that used the 16S rRNA marker 91 

gene, primer pair 515F/806R [53] or 341F/785R [54], and Illumina MiSeq sequencing platform. 92 

After discarding studies that failed quality checks (see below), we were able to include a total of 93 

five studies (Tab. 1), summing up to a total of 356 samples. Three studies focused on invasive 94 

plants, and the remaining studies focused on a mammal and a mussel (Tab. 1). The invasive 95 

mussel study [22] was the only study performed in an aquatic environment, while the remaining 96 

studies examined soil environments. 97 

 98 

 99 

 100 

 101 

were?

well that process really pared it down! Is 5 really adequate?
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Table 1. Summary of studies included in the meta-analysis 102 

Study ID 
Invasive 

organism 
Species 

Invaded 

environment 
Reference 

MPG13011 Plant 

Agropyron cristatum, Bromus 

tectorum, Sisymbrium 

altissimum, Erodium cicutarium 

and Poa bulbosa 

Soil 
Gibbons et 

al. [28] 

MPG87547 Mammal Sus scrofa Soil 
Wehr et al. 

[20] 

PRJNA296487 Plant 

Microstegium vimineum, 

Rhamnus davurica and 

Ailanthus altissima 

Soil 
Rodrigues 

et al. [19] 

PRJNA320310 Plant Artemisia rothrockii Soil 
Collins et al. 

[11] 

PRJNA385848 Mussel Dreissena bugensis Water 
Denef et al. 

[22] 

 103 

We took the following steps to alleviate some of the potential sources of bias due to 104 

studies performed in different labs, using different protocols and sequenced on different 105 

instruments. First, all studies included were performed using the Illumina MiSeq platform, in 106 

order to reduce the potential bias that might be generated by directly comparing data obtained 107 

from different platforms. Second, all studies targeted the same region of the 16S rRNA, as several 108 
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primer pairs targeting different regions are currently published and widely used. Three out of five 109 

papers we considered in our analysis used the 515F/806R primer pair [53], while two used the 110 

341F/785R [54]. Although there might be small differences between them, they overlap in the 111 

V4 region of 16S gene (Fig. S2), so we feel confident that the chance of including spurious OTUs 112 

in our analysis is quite negligible. To account for study-specific variances due to small differences 113 

in sampling procedures and lab protocols, we also included the study itself, the environment 114 

where the study was performed (i.e., soil or water) and the identity of the invasive species as 115 

stratification variables in the PERMANOVA and as random factors in our linear model. This 116 

allowed us to ensure that our results are not biased by study-specific features. 117 

Once the papers were selected, we assigned each a “Study ID” and collected meta-data 118 

from each sample in each study (invasive species, type of organism, invaded environment). We 119 

then downloaded data from repositories using SRA Toolkit 2.10.4 for data on the SRA databases, 120 

or by directly downloading files from the MG-RAST database. 121 

 122 

Data processing and analysis 123 

Paired-end reads were merged using FLASH 1.2.11 [55] and data were processed using 124 

QIIME 1.9.1 [56]. Quality-filtering of reads was performed using default parameters, binning 125 

OTUs and discarding chimeric sequences identified with VSEARCH 2.14.2 [57]. Taxonomy for 126 

representative sequences was determined by querying against the SILVA database v132 [58] 127 

using the BLAST method. A phylogeny was obtained by aligning representative sequences using 128 

MAFFT v7.464 [59] and reconstructing a phylogenetic tree using FastTree [60]. 129 
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Data analysis was performed using R statistical software 3.5 [61] with the packages 130 

phyloseq [62] and vegan [63]. Read counts were normalized using DESeq2 v1.22.2 [64] prior to 131 

data analysis. Singletons and sequences classified as chloroplast were excluded, as well as 132 

samples which had less than 5000 sequence counts. Shannon diversity was fit to a linear mixed-133 

effects model specifying sample type (invaded or control), organism (plant, mammal, mussel), 134 

and their interactions as fixed factors with studyID and environment (soil or water) included as 135 

random factors. Models were fit using the lmer() function under the lme4 package [65] and the 136 

package emmeans was used to infer pairwise contrasts (corrected using False Discovery Rate, 137 

FDR). Furthermore, we explored the effects of sample type and organism on the structure of the 138 

microbial communities using a multivariate approach. Distances between pairs of samples, in 139 

terms of community composition, were calculated using a Unifrac matrix, and then visualized 140 

using an RDA procedure. Differences between sample groups were inferred through 141 

PERMANOVA multivariate analysis (999 permutations stratified at level of studyID, environment 142 

and identity of invasive species). Pairwise contrasts from PERMANOVA were subjected to FDR 143 

correction. Finally, the relative abundance of each bacterial family was fit using the lmer() 144 

function to test the effects of sample type (invaded or control) on single taxa, with studyID, 145 

organism (plant, mammal, mussel) and environment included as random factors. 146 

Results 147 

Our search yielded 5 studies with an appropriate experimental design and available data, 148 

for a total of 356 samples. A few samples failed quality checks and we further considered 335 149 

samples for downstream analyses. Sequences clustered into 22831 OTUs, after quality checks, 150 
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removal of singletons and “chloroplast” reads, with an average of 61776.92 reads per sample. 151 

Although the number of OTUs might seem high, it is important to consider that we are analyzing 152 

samples across multiple environments (soil and water) and from different geographical regions 153 

which we would expect to increase richness. 154 

Biological invasions led to a reduction in Shannon diversity (χ2= 3.85, df=1, P=0.04, Fig 1A). 155 

We also found biological invasions altered microbiome community composition in the invaded 156 

environment compared to the control (Tab. 2, Fig 1B). The type of invasive organism (plant, 157 

mammal, or mussel) produced a different community structure (pairwise P<0.01, FDR corrected). 158 

A deeper analysis of bacterial families (Fig. 1C, Table S2) revealed that some taxonomic groups 159 

are significantly more abundant in invaded environments (Blastocatellaceae, Chitinophagaceae, 160 

Nitrosomonadaceae, Pirellulaceae, Sphingomonadaceae), while others are more abundant in 161 

non-invaded samples (Acetobacteraceae, Beijerinckiaceae, Gemmataceae, 162 

Micromonosporaceae, Pedosphaeraceae, Solibacteraceae, Solirubrobacteraceae). 163 

 164 

  165 

No figure legends? That figure is also not very intuitively interpretable. Some explanation needed in a  legend.
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Table 2. Results from PERMANOVA analysis testing the effects of sample type 166 

(invaded/control), organism group (plant, mammal, mussel) and their interaction on microbial 167 

community composition. The factors studyID (unique for each study) and environment (soil or 168 

water) were used as strata to constrain permutations. 169 

Factor df R2 F P 

Sample type (Invaded/Control) 1 0.011 6.68 <0.001 

Organism group (plant, mammal, mussel) 3 0.411 118.86 <0.001 

Sample type * Organism group  3 0.007 2.1 0.02 

 170 

 171 

Fig 1. (A) Comparison of Shannon index between control and invaded environments. (B) 172 

RDA ordination using a Bray-Curtis distance matrix of samples. (C) Comparison of the relative 173 

abundance of microbial classes between control and invaded environments. * P<0.05, ** 174 

P<0.01, *** P<0.001 175 

Discussion 176 

We show biological invasions decrease the diversity of environmental microbiomes. Thus, 177 

understanding the impact of biological invasions on environmental microbiomes is of high 178 

priority if we want to preserve ecosystem functions [66]. While several studies have investigated 179 

the effects of species invasions on environmental microbiomes, we still lack a generalized 180 

consensus across different environmental microbiomes and systems. Previous studies have 181 

found that invasive species increased environmental microbial diversity [11,14], while others 182 

Oh. here it is. this would be better placed near the figure! Fig 1a really needs more explanation. Not everyone is familiar with violin plots.
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reported a decrease [16,20,29]. But the majority of studies did not analyze the microbial 183 

diversity, because they used techniques that did not allow such analysis, or reported no changes 184 

[9,10,12,13,15,17–19,21–28,30]. Within the studies included in our analysis, invasion by feral pigs 185 

decreased soil microbial diversity, while invasion by Artemisia rothrockii increased soil microbial 186 

diversity. The remaining three studies in our analysis reported no effects of biological invasions 187 

on environmental microbiome diversity. Microbial diversity is tied to the function of 188 

microbiomes, and changes in diversity can reflect changes in function [67–69]. Changes in 189 

microbial diversity and function do not always have the same direction [70] and this might explain 190 

the discrepancy between our results and other studies. 191 

In contrast to diversity, our report of changes in community composition was relatively 192 

consistent with the published literature and the individual results of the studies we analyzed. 193 

Most studies of the influence of biological invasions on environmental microbiomes found that 194 

biological invasions alter environmental microbial community composition. However, some 195 

previous reports did not report changes [24–30], including the study by Gibbons et al. [28] 196 

considered in our analysis. This variation may be due to individual effects of organisms on the 197 

environment. For example, invasive plants may alter soil microbiome composition through root 198 

exudates [5], and invasive mussels may alter water microbiome composition via bacterial 199 

removal through their feeding activity [22]. Thus, reported influences on community composition 200 

are more consistent. Alternatively changes in community composition might due to the response 201 

of some bacterial groups to environmental disturbance. The bacterial families that we found to 202 

be differentially abundant between the invaded and control environments have diverse 203 

ecological functions ranging from nitrogen fixation and carbohydrate metabolism to 204 

be
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antimicrobial properties. Many of the families that showed a significant difference between 205 

invaded and control environments have species members that play important roles at various 206 

points during nitrogen and carbon cycling (i.e. Nitrosomonadaceae, Acetobacteraceae, 207 

Chitinophagaceae, Micromonosporaceae, Gemmataceae, Beijerinckiaceae, Pirellulaceae) [71–208 

81]. However, nitrogen fixing and carbohydrate degrading bacteria did not have a unified 209 

response to invaded environments as some increased and others decreased in abundance in 210 

invaded environments. Many nitrogen fixing bacteria have been shown to respond to 211 

environmental disturbance, such as Acidobacteria abundances during forest to pasture 212 

conversions or Pirellulaceae’s response to the presence of microplastics [82,83]. Thus, changes 213 

in environmental microbiome community composition appear to be linked to changes in 214 

ecosystem functions, although this pattern is not yet predictable for all functions and taxa. 215 

Few previous studies on biological invasions have reported details on the differential 216 

abundance of taxa, and among these we found limited general consensus. For example, some 217 

studies report a decrease in abundance of bacteria associated with nitrogen cycling (e.g. 218 

Nitrosphaeria, Nitrospira, Nitrosomonadales) [13,14,19], while others report an increase of 219 

Nitrosomonadaceae following invasion [30]. In our study some groups associated with the 220 

nitrogen cycle were positively associated with biological invasions (i.e. Nitrosomonadaceae, 221 

Pirellulaceae, Chitinophagaceae) while others were negatively associated (Beijerinckiaceae, 222 

Micromonosporaceae). Unfortunately, amplicon-based sequencing has a limited power to infer 223 

changes in the functions of microbiomes. Future metagenomic and metatranscriptomic studies 224 

are needed to investigate whether biological invasions alter gene content or gene expression of 225 

environmental microbiomes, and whether this reflects changes in biogeochemical cycling. 226 
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Meta-analyses are also useful to highlight gaps in the literature, and here we highlight 227 

some aspects that warrant further investigation. We identified a large gap in the availability of 228 

sequencing data from multiple types of environments and types of invasive species. For our 229 

analysis almost all available data came from two environments: four sets of data came from soil 230 

and one came from freshwater. Greater effort is needed for sample collection from invasions in 231 

both freshwater and marine environments. Without sufficient diversity of sample environments, 232 

it is impossible to tell whether microbial shifts following an invasion are unique to an invaded 233 

environment. Second, in our analysis the majority of data came from one type of invasive species: 234 

plants. Noticeably absent from our dataset were invasions by insects, fish, and amphibians. 235 

Sequencing data is needed from a larger number of invasive species to allow us to broadly assess 236 

shifts in microbial community structure. A third gap we identified was the lack of spatial and 237 

temporal resolution. Almost all of the initially identified 22 studies we assessed were also 238 

restricted to one season of sampling and were conducted in the Northern Hemisphere. Thus, it 239 

is impossible to validate the influence of latitude with existing datasets or explore how 240 

seasonality and biological invasions interact to modulate microbial communities. Thus, there are 241 

a number of opportunities for future research on how biological invasions alter environmental 242 

microbial communities. 243 

Here we analyzed 16S amplicon sequencing data from five studies and show that 244 

biological invasions influence both the diversity and the structure of environmental microbiomes. 245 

We identified a number of gaps in our knowledge, including the need to assess a wider range of 246 

environments, invasive species, temporal variation, and latitudinal variation. We also 247 
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demonstrate the power of re-analysis of publicly available datasets using a common pipeline 248 

which benefited from open-data initiatives. 249 
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