Skip to main content
Log in

High Frequency and Poor Prognosis of Late Childhood BCR-ABL-Positive and MLL-AF4-Positive ALL Define the Need for Advanced Molecular Diagnostics and Improved Therapeutic Strategies in Pediatric B-ALL in Pakistan

  • Original Research Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Background

Fusion oncogenes (FOs) resulting from chromosomal abnormalities have an important role in leukemogenesis in pediatric B cell acute lymphoblastic leukemia (ALL). The most common FOs are BCR-ABL, MLL-AF4, ETV6-RUNX1, and TCF3-PBX1, all of which have important prognostic and drug selection implications. Moreover, frequencies of FOs have ethnic variations. We studied Pakistani frequencies of FOs, clinical pattern, and outcome in pediatric B-ALL.

Methods

FOs were studied in 188 patients at diagnosis using reverse transcriptase-polymerase chain reaction (RT-PCR) and interphase fluorescent in situ hybridization (FISH). Data were analyzed using SPSS version 17 (SPSS Inc., Chicago, IL, USA).

Results

FOs were detected in 87.2 % of patients. Mean overall survival was 70.9 weeks, 3-year survival was 31.9 %, and 3-year relapse-free survival was 18.1 %. Four patients died of drug toxicities. ETV6-RUNX1 (19.14 %) had better survival (110.9 weeks; p = 0.03); TCF3-PBX1 (2.1 %) was associated with inferior outcome and higher central nervous system (CNS) relapse risk; MLL-AF4 (18.1 %) was more common in the 8- to 15-year age group (24/34; p = 0.001) and was associated with organomegaly, low platelet count, and poor survival; and BCR-ABL (47.9 %) was associated with older age (7–15 years, 52/90), lower remission rates, shorter survival (43.73 ± 4.24 weeks) and higher white blood cell count. Overall, MLL-AF4 and BCR-ABL were detected in 66 % of B-ALL, presented in later childhood, and were associated with poor prognosis and inferior survival.

Conclusions

This study reports the highest ethnic frequency of BCR-ABL FO in pediatric ALL, and is consistent with previous reports from our region. Poor prognosis BCR-ABL and MLL-AF4 was detected in two-thirds of pediatric B-ALL and is likely to be the reason for the already reported poor survival of childhood ALL in South-East Asia. Furthermore, MLL-AF4, usually most common in infants, presented in later childhood in most of the ALL patients, which was one of the unique findings in our study. The results presented here highlight the need for mandatory inclusion of molecular testing for pediatric ALL patients in clinical decision making, together with the incorporation of tyrosine kinase inhibitors, as well as hematopoietic stem cell transplantation facilities, to improve treatment outcome for patients in developing countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Annesley CE, Brown P. Novel agents for the treatment of childhood acute leukemia. Ther Adv Hematol. 2015;6(2):61–79.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. McNally RJ, Alston RD, Cairns DP, Eden OB, Birch JM. Geographical and ecological analyses of childhood acute leukaemias and lymphomas in north-west England. Br J Haematol. 2003;123:60–5.

    Article  PubMed  Google Scholar 

  3. Iacobucci I, Papayannidis C, Lonetti A, Ferrari A, Baccarani M, et al. Cytogenetic and molecular predictors of outcome in acute lymphocytic leukemia: recent developments. Curr Hematol Malig Rep. 2012;7:133–43.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Xu H, Cheng C, Devidas M, Pei D, Fan Y, et al. ARID5B genetic polymorphisms contribute to racial disparities in the incidence and treatment outcome of childhood acute lymphoblastic leukemia. J Clin Oncol. 2012;30:751–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Mullighan CG. Genomic characterization of childhood acute lymphoblastic leukemia. Semin Hematol. 2013;50(4):314–24.

    Article  CAS  PubMed  Google Scholar 

  6. Diakos C, Xiao Y, Zheng S, Kager L, Dworzak M, et al. Direct and indirect targets of the E2A-PBX1 leukemia-specific fusion protein. PLoS One. 2014;9(2):e87602.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Schultz KR, Pullen DJ, Sather HN, Shuster JJ, Devidas M, et al. Risk-and response-based classification of childhood B precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children’s Cancer Group (CCG). Blood. 2007;109:926–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Casagrande G, te Kronnie G, Basso G. The effects of siRNA-mediated inhibition of E2A-PBX1 on EB-1 and Wnt16b expression in the 697 pre-B leukemia cell line. Haematologica. 2006;9:765–71.

    Google Scholar 

  9. Andersen MK, Autio K, Barbany G, Borgström G, Cavelier L, et al. Paediatric B-cell precursor acute lymphoblastic leukaemia with t(1;19)(q23;p13): clinical and cytogenetic characteristics of 47 cases from the Nordic countries treated according to NOPHO protocols. Br J Haematol. 2011;155:235–43.

    Article  PubMed  Google Scholar 

  10. Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia. Lancet. 2013;381(9881):1943–55.

    Article  PubMed  Google Scholar 

  11. Raimondi SC, Behm FG, Roberson PK, Williams DL, Pui CH, et al. Cytogenetics of pre-B-cell acute lymphoblastic leukemia with emphasis on prognostic implications of the t(1;19). J Clin Oncol. 1990;8:1380–8.

    CAS  PubMed  Google Scholar 

  12. Schlieben S, Borkhardt A, Reinisch I, Ritterbach J, Janssen JW, et al. Incidence and clinical outcome of children with BCR/ABL positive acute lymphoblastic leukemia (ALL). A prospective RT-PCR study based on 673 patients enrolled in the German pediatric multicenter therapy trials ALLBFM-90 and CoALL-05-92. Leukemia. 1996;10:957–63.

    CAS  PubMed  Google Scholar 

  13. Pui CH, Sandlund JT, Pei D, Campana D, Rivera GK, et al. Improved outcome for children with acute lymphoblastic leukemia: results of Total Therapy Study XIIIB at St Jude Children’s Research Hospital. Blood. 2004;104:2690–6.

    Article  CAS  PubMed  Google Scholar 

  14. Frost BM, Forestier E, Gustafsson G, Nygren P, Hellebostad M, et al. Translocation t(1;19) is related to low cellular drug resistance in childhood acute lymphoblastic leukaemia. Leukemia. 2005;19:165–9.

    CAS  PubMed  Google Scholar 

  15. Pui CH, Gaynon PS, Boyett JM, Chessells JM, Baruchel A, et al. Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet. 2002;359:1909–15.

    Article  PubMed  Google Scholar 

  16. Mann G, Cazzaniga G, van der Velden VH, Flohr T, Csinady E, et al. Acute lymphoblastic leukemia with t(4;11) in children 1 year and older: the ‘big sister’ of the infant disease? Leukemia. 2007;21:642–6.

    CAS  PubMed  Google Scholar 

  17. Rubnitz JE, Behm FG, Wichlan D, Ryan C, Sandlund JT, et al. Low frequency of TEL-AML1 in relapsed acute lymphoblastic leukemia supports a favorable prognosis for this genetic subgroup. Leukemia. 1999;13:19–21.

    Article  CAS  PubMed  Google Scholar 

  18. Shurtleff SA, Bujis A, Behm FG, Rubnitz JE, Raimondi SC, et al. Tel/AML1 fusion resulting from a cryptic t(12;21) in the most common genetic lesion in pediatric ALL and defines a subgroup of patients with an excellent prognosis. Leukemia. 1995;9:1985–9.

    CAS  PubMed  Google Scholar 

  19. García-Sanz R, Alaejos I, Orfão A, Chillón MC, Tabernero MD, et al. Low frequency of the TEL/AML1 fusion gene in acute lymphoblastic leukaemia in Spain. Br J Haematol. 1999;107:667–9.

    Article  PubMed  Google Scholar 

  20. Carranza C, Granados L, Morales O, Jo W, Villagran S, et al. Frequency of the ETV6-RUNX1, BCR-ABL1, TCF3-PBX1, and MLL-AFF1 fusion genes in Guatemalan pediatric acute lymphoblastic leukemia patients and their ethnic associations. Cancer Genet. 2013;206:227–32.

    Article  CAS  PubMed  Google Scholar 

  21. Ariffin H, Chen SP, Kwok CS, Quah TC, Lin HP, et al. Ethnic differences in the frequency of subtypes of childhood acute lymphoblastic leukemia: results of the Malaysia-Singapore Leukemia Study Group. Pediatr Hematol Oncol. 2007;29:27–31.

    Article  Google Scholar 

  22. Aldrich MC, Zhang L, Wiemels JL, Ma X, Loh ML, et al. Cytogenetics of Hispanic and White children with acute lymphoblastic leukemia in California. Cancer Epidemiol Biomark Prev. 2006;15:578–81.

    Article  Google Scholar 

  23. Iqbal Z, Iqbal M, Akhter T. Frequency of BCR-ABL fusion oncogene in Pakistani childhood acute lymphoid leukemia (ALL) patients reflects ethnic differences in molecular genetics of ALL. J Pediatr Hematol Oncol. 2007;29:585.

    Article  PubMed  Google Scholar 

  24. Siddiqui R, Nancy N, Naing WP, Ali S, Dar L, et al. Distribution of common genetic subgroups in childhood acute lymphoblastic leukemia in four developing countries. Cancer Genet Cytogenet. 2010;200:149–53.

    Article  CAS  PubMed  Google Scholar 

  25. Awan TK, Iqbal Z, Aleem A, Sabir N, Absar M, et al. Five most common prognostically important fusion oncogenes are detected in the majority of Pakistani pediatric acute lymphoblastic leukemia patients and are strongly associated with disease biology pattern and treatment outcome. Asian Pacific J Cancer Prev. 2012;13:5469–75.

    Article  Google Scholar 

  26. Mushtaq N, Fadoo Z, Naqvi A. Childhood acute lymphoblastic leukaemia: experience from a single tertiary care facility of Pakistan. J Pak Med Assoc. 2013;63(11):1399–404.

    PubMed  Google Scholar 

  27. Gupta M, Kumar A, Dabadghao S. In vitro resistance of leukaemic blasts to prednisolone in bcr-abl positive childhood acute lymphoblastic leukaemia. Indian J Med Res. 2002;116:268–72.

    CAS  PubMed  Google Scholar 

  28. Faiz M, Iqbal QJ, Qureshi A. High prevalence of BCR-ABL fusion transcripts with poor prognostic impact among adult ALL patients: report from Pakistan. Asia Pac J Clin Oncol. 2011;7(1):47–55.

    Article  PubMed  Google Scholar 

  29. Lazic J, Tosic N, Dokmanovic L, Krstovski N, Rodic P, Pavlovic S, et al. Clinical features of the most common fusion genes in childhood acute lymphoblastic leukemia. Med Oncol. 2010;27(2):449–53.

    Article  CAS  PubMed  Google Scholar 

  30. Martinez-Mancilla M, Rodriguez-Aguirre I, Tejocote-Romero I, Medina-Sanson A, Ocadiz-Delgado R, Gariglio P. Clinical relevance of the fusion transcripts distribution pattern in mexican children with acute lymphoblasticleukemia. J Pediatr Hematol Oncol. 2013;35(3):170–3.

    Article  PubMed  Google Scholar 

  31. Gao C, Zhao XX, Li WJ, Cui L, Zhao W, Liu SG, et al. Clinical features, early treatment responses, and outcomes of pediatric acute lymphoblastic leukemia in China with or without specific fusion transcripts: a single institutional study of 1004 patients. Am J Hematol. 2012;87(11):1022–7.

    Article  PubMed  Google Scholar 

  32. Aricò M, Valsecchi MG, Rizzari C, Barisone E, Biondi A, Casale F, et al. Long-term results of the AIEOP-ALL-95 Trial for Childhood Acute Lymphoblastic Leukemia: insight on the prognostic value of DNA index in the framework of Berlin-Frankfurt-Muenster based chemotherapy. J Clin Oncol. 2008;26(2):283–9.

    Article  PubMed  Google Scholar 

  33. Pajor L, Lacza A, Jáksó P, Kajtár B. Characteristics of TEL/AML-1 positive acute lymphoblastic leukemia in Hungarian children. Med Pediatr Oncol. 2001;37(4):409–11.

    Article  CAS  PubMed  Google Scholar 

  34. Stary J, Zimmermann M, Campbell M, Castillo L, Dibar E, Donska S, et al. Intensive chemotherapy for childhood acute lymphoblastic leukemia: results of the randomized intercontinental trial ALL IC-BFM 2002. J Clin Oncol. 2014;32(3):174–84.

    Article  CAS  PubMed  Google Scholar 

  35. Woo HY, Kim DW, Park H, Seong KW, Koo HH, Kim SH. Molecular cytogenetic analysis of gene rearrangements in childhood acute lymphoblastic leukemia. J Korean Med Sci. 2005;20(1):36–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Mori T, Manabe A, Tsuchida M, Hanada R, Yabe H, Ohara A, et al. Allogeneic bone marrow transplantation in first remission rescues children with Philadelphia chromosome-positive acute lymphoblastic leukemia: Tokyo Children’s Cancer Study Group (TCCSG) studies L89-12 and L92-13. Med Pediatr Oncol. 2001;37(5):426–31.

    Article  CAS  PubMed  Google Scholar 

  37. Al-Sudairy R, Al-Nasser A, Alsultan A, Al Ahmari A, Abosoudah I, Al-Hayek R, et al. Clinical characteristics and treatment outcome of childhood acute lymphoblastic leukemia in Saudi Arabia: a multi-institutional retrospective national collaborative study. Pediatr Blood Cancer. 2014;61(1):74–80.

    Article  PubMed  Google Scholar 

  38. Asim M, Zaidi A, Ghafoor T, Qureshi Y. Death analysis of childhood acute lymphoblastic leukaemia; experience at Shaukat Khanum Memorial Cancer Hospital and Research Centre, Pakistan. J Pak Med Assoc. 2011;61(7):666–70.

    PubMed  Google Scholar 

  39. Schultz KR, Carroll A, Heerema NA, Bowman WP, Aledo A, Slayton WB, Children’s Oncology Group, et al. Long-term follow-up of imatinib in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: Children’s Oncology Group study AALL0031. Leukemia. 2014;28(7):1467–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Giebel S, Labopin M, Gorin NC, Caillot D, Leguay T, Schaap N, et al. Improving results of autologous stem cell transplantation for Philadelphia-positive acute lymphoblastic leukaemia in the era of tyrosine kinase inhibitors: a report from the Acute Leukaemia Working Party of the European Group for Blood and Marrow Transplantation. Eur J Cancer. 2014;50(2):411–7.

    Article  PubMed  Google Scholar 

  41. Peters C, Schrappe M, von Stackelberg A, Schrauder A, Bader P, Ebell W, et al. Stem-cell transplantation in children with acute lymphoblastic leukemia: a prospective international multicenter trial comparing sibling donors with matched unrelated donors-The ALL-SCT-BFM-2003 trial. J Clin Oncol. 2015;33(11):1265–74.

    Article  CAS  PubMed  Google Scholar 

  42. Chiaretti S, Vitale A, Cazzaniga G, Orlando SM, Silvestri D, et al. Clinico-biological features of 5202 patients with acute lymphoblastic leukemia enrolled in the Italian AIEOP and GIMEMA protocols and stratified in age cohorts. Haematologica. 2013;98(11):1702–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. ElGendi HM, Abdelmaksoud AA, Eissa DG, Abusikkien SA. Impact of TCF3 rearrangement on CNS relapse in egyptian pediatric acute lymphoblastic leukemia. Pediatr Hematol Oncol. 2014;31(7):638–46.

    Article  CAS  PubMed  Google Scholar 

  44. Zeng HM, Guo Y, Yi XL, Zhou JF, An WB, et al. Large sample clinical analysis of patients with children acute leukemia in single center. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2011;19(3):692–5.

    PubMed  Google Scholar 

  45. Seibel NL, Steinherz PG, Sather HN, Nachman JB, Delaat C, et al. Early post induction intensification therapy improves survival for children and adolescents with high-risk acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Blood. 2008;111:2548–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Romana SP, Poirel H, Leconiat M, Flexor MA, Mauchauffé M, et al. High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia. Blood. 1995;86:4263–9.

    CAS  PubMed  Google Scholar 

  47. Iqbal Z, Tanveer A. Incidence of different fusion oncogenes in acute lymphoblastic leukemia (ALL) patients from Pakistan: possible implications in differential diagnosis, prognosis, treatment and management of ALL. Haematologica. 2006;91:64.

    Google Scholar 

  48. Biondi A, Schrappe M, De Lorenzo P, Castor A, Lucchini G, et al. Imatinib after induction for treatment of children and adolescents with Philadelphia-chromosome-positive acute lymphoblastic leukaemia (EsPhALL): a randomised, open-label, intergroup study. Lancet Oncol. 2012;13:936–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. van Dongen JJ, Macintyre EA, Gabert JA, Delabesse E, Rossi V, et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia. 1999;13:1901–28.

    Article  PubMed  Google Scholar 

  50. Yadav SP, Ramzan M, Lall M, Sachdeva A. Childhood acute lymphoblastic leukemia outcome in India: progress on all fronts. J Pediatr Hematol Oncol. 2012;34(4):324.

    Article  PubMed  Google Scholar 

  51. Kulkarni KP, Arora RS, Marwaha RK. Survival outcome of childhood acute lymphoblastic leukemia in India: a resource-limited perspective of more than 40 years. J Pediatr Hematol Oncol. 2011;33(6):475–9.

    Article  PubMed  Google Scholar 

  52. Kennedy AE, Kamdar KY, Lupo PJ, Okcu MF, Scheurer ME, et al. Genetic markers in a multi-ethnic sample for childhood acute lymphoblastic leukemia risk. Leuk Lymphoma. 2015;56(1):169–74.

    Article  CAS  PubMed  Google Scholar 

  53. Lim JY, Bhatia S, Robison LL, Yang JJ. Genomics of racial and ethnic disparities in childhood acute lymphoblastic leukemia. Cancer. 2014;120(7):955–62.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Hicks C, Miele L, Koganti T, Young-Gaylor L, Rogers D, et al. Analysis of patterns of gene expression variation within and between ethnic populations in pediatric B-ALL. Cancer Inform. 2013;12:155–73.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Shu XO, Ross JA, Pendergrass TW, Reaman GH, Lampkin B, et al. Parental alcohol consumption, cigarette smoking, and risk of infant leukemia: a Childrens Cancer Group study. J Natl Cancer Inst. 1996;88(1):24–31.

    Article  CAS  PubMed  Google Scholar 

  56. Bailey HD, Fritschi L, Infante-Rivard C, Glass DC, Miligi L, et al. Parental occupational pesticide exposure and the risk of childhood leukemia in the offspring: findings from the childhood leukemia international consortium. Int J Cancer. 2014;135(9):2157–72.

    Article  CAS  PubMed  Google Scholar 

  57. Schüz J, Kaletsch U, Meinert R, Kaatsch P, Michaelis J. Risk of childhood leukemia and parental self-reported occupational exposure to chemicals, dusts, and fumes: results from pooled analyses of German population-based case-control studies. Cancer Epidemiol Biomark Prev. 2000;9(8):835–8.

    Google Scholar 

  58. Castro-Jiménez MÁ, Orozco-Vargas LC. Parental exposure to carcinogens and risk for childhood acute lymphoblastic leukemia, Colombia, 2000–2005. Prev Chronic Dis. 2011;8(5):A106.

    PubMed Central  PubMed  Google Scholar 

  59. Stenehjem JS, Kjærheim K, Bråtveit M, Samuelsen SO, Barone-Adesi F, Rothman N, et al. Benzene exposure and risk of lymphohaematopoietic cancers in 25,000 offshore oil industry workers. Br J Cancer. 2015;112(9):1603–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Author contributions

Zafar Iqbal, Ammara T. Gill and Mudassar Iqbal performed experiments, analyzed the data, and wrote the manuscript. Tanveer Akhtar, Mahmood Rasool, Aamir Mahmood and Muhammad Imran Irfan analyzed the data and critically reviewed the manuscript. Tashfin Awan, Noreen Sabir and Muhammad Farooq Sabar performed experiments and analyzed the data. Aamer Aleem and Muhammad Absar analyzed the data and wrote the manuscript. Afia M. Akram and Muhammad Hassan Siddiqi performed experiments. Masood A. Shammas, Abdullah Alanazi, Ahmad M. Khalid, Mehmood Hussain Qazi and Sajjad Karim critically reviewed the manuscript. Ijaz H. Shah, Muhammad Khalid, Abid S. Taj, Abid Jameel, Jamil Amjad Hashmi, Akhtar Hussain and Anjum Saeed analyzed the clinical data. Zafar Iqbal is guarantor of the overall content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zafar Iqbal.

Ethics declarations

Conflicts of interest

Zafar Iqbal, Tanveer Akhtar, Tashfin Awan, Aamer Aleem, Noreen Sabir, Mahmood Rasool, Muhammad Absar, Afia M. Akram, Masood A. Shammas, Ijaz H. Shah, Muhammad Khalid, Abid S. Taj, Abid Jameel, Abdullah Alanazi, Ammara T. Gill, Jamil Amjad Hashmi, Akhtar Hussain, Muhammad Farooq Sabar, Ahmad M. Khalid, Mehmood Hussain Qazi, Sajjad Karim, Muhammad Hassan Siddiqi, Aamir Mahmood, Mudassar Iqbal, Anjum Saeed, and Muhammad Imran Irfan have no conflicts of interest to disclose.

Funding

This study was partially supported by the College of Medicine Research Center, Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, Z., Akhtar, T., Awan, T. et al. High Frequency and Poor Prognosis of Late Childhood BCR-ABL-Positive and MLL-AF4-Positive ALL Define the Need for Advanced Molecular Diagnostics and Improved Therapeutic Strategies in Pediatric B-ALL in Pakistan. Mol Diagn Ther 19, 277–287 (2015). https://doi.org/10.1007/s40291-015-0149-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-015-0149-0

Keywords

Navigation