Skip to main content

Advertisement

Log in

Gold nanoparticles decorated on reduced graphene oxide as a supporting material for enzymatic bioanode

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

In this work, Au nanoparticles were synthesized using eco-friendly protocol and then supported on reduced graphene oxide (rGO) nanosheets through in-situ polymerization of indole (In), focusing on their electrochemical efficiency against glucose oxidation in glucose-based biofuel cells (glucose/O2). The bioanode was fabricated by applying ferritin (Frt) and glucose oxidase (GOx) on the glassy carbon electrode (GCE) followed by deposition of Au@rGO/PIn nanocomposite. The physical characterizations such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), and scanning electron microscopy (SEM), have revealed the successful synthesis of Au@rGO/PIn nanocomposite. In addition, the electrochemical behavior of different modified bioanodes were analyzed using linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). The modified bioanode Au@rGO/PIn/Frt/GOx attained a maximum current output of 7.2 mA cm−2 at the optimum glucose concentration of 50 mM in phosphate buffer solution (PBS) as an electrolyte. However, the obtained result is not the highest current density as reported in the literature but the materials are cost effective and method is easier and ecofriendly. This suggests that 3D fabricated bioanode could be used in enzymatic biofuel cell (EBFC) applications and allied fields, such as biosensors and bioreactors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zebda, A., Alcaraz, J.-P., Vadgama, P., Shleev, S., Minteer, S.D., Boucher, F., Cinquin, P., Martin, D.K.: Challenges for successful implantation of biofuel cells. Bioelectrochemistry 124, 57–72 (2018)

    Article  CAS  PubMed  Google Scholar 

  2. Nasar, A., Perveen, R.: Applications of enzymatic biofuel cells in bioelectronic devices—a review. Int. J. Hydrogen Energy. 44, 15287–15312 (2019)

    Article  CAS  Google Scholar 

  3. J, U.S., Goel, S.: Surface modified 3D printed carbon bioelectrodes for glucose/O2 enzymatic biofuel cell: comparison and optimization. Sustain. Energy Technol. Assess. 42, 100811 (2020)

    Google Scholar 

  4. Li, X., Li, D., Zhang, Y., Lv, P., Feng, Q., Wei, Q.: Encapsulation of enzyme by metal-organic framework for single-enzymatic biofuel cell-based self-powered biosensor. Nano Energy 68, 104308 (2020)

    Article  CAS  Google Scholar 

  5. Yang, X.-Y., Tian, G., Jiang, N., Su, B.-L.: Immobilization technology: a sustainable solution for biofuel cell design. Energy Environ. Sci. 5, 5540–5563 (2012)

    Article  CAS  Google Scholar 

  6. Akintelu, S.A., Folorunso, A.S.: A review on green synthesis of zinc oxide nanoparticles using plant extracts and its biomedical applications. Bionanoscience. 10, 848–863 (2020)

    Article  Google Scholar 

  7. Ballesteros, C.A.S., Mercante, L.A., Alvarenga, A.D., Facure, M.H.M., Schneider, R., Correa, D.S.: Recent trends in nanozymes design: from materials and structures to environmental applications. Mater. Chem. Front. 5, 7419–7451 (2021)

    Article  CAS  Google Scholar 

  8. Santo, C.E., Quaranta, D., Grass, G.: Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage. Microbiologyopen. 1, 46–52 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shakeel, N., Ahamed, M.I., Ahmed, A., Inamuddin, Rahman, M.M., Asiri, A.M.: Functionalized magnetic nanoparticle-reduced graphene oxide nanocomposite for enzymatic biofuel cell applications. Int. J. Hydrogen Energy. 44, 28294–28304 (2019)

    Article  CAS  Google Scholar 

  10. Lawrence, A., Hariharan, C., Nagamani Prabu, A., Janarthanan, B.: Influence of Nickel oxide nanoparticles on the absorption enhancement of solar radiation for effective distillation by single slope wick-type solar still. Mater. Today Proc. 45, 2357–2363 (2021)

    Article  CAS  Google Scholar 

  11. Perveen, R., Nasar, A., Inamuddin, Kanchi, S., Kashmery, H.A.: Development of a ternerry condunting composite (PPy/Au/CNT@Fe3O4) immobilized FRT/GOD bioanode for glucose/oxygen biofuel cell applications. Int. J. Hydrogen Energy. 46, 3259–3269 (2021)

    Article  CAS  Google Scholar 

  12. Wang, Y., Yeow, J.T.W.: A review of carbon nanotubes-based gas sensors. J. Sensors. 2009, 1–24 (2009)

    Article  Google Scholar 

  13. Thakur, K., Kandasubramanian, B.: Graphene and graphene oxide-based composites for removal of organic pollutants: a review. J. Chem. Eng. Data. 64, 833–867 (2019)

    Article  CAS  Google Scholar 

  14. Alim, S., Vejayan, J., Yusoff, M.M., Kafi, A.K.M.: Recent uses of carbon nanotubes & gold nanoparticles in electrochemistry with application in biosensing: a review. Biosens. Bioelectron. 121, 125–136 (2018)

    Article  CAS  PubMed  Google Scholar 

  15. Singh, R., Kumar, S., Liu, F.-Z., Shuang, C., Zhang, B., Jha, R., Kaushik, B.K.: Etched multicore fiber sensor using copper oxide and gold nanoparticles decorated graphene oxide structure for cancer cells detection. Biosens. Bioelectron. 168, 112557 (2020)

    Article  CAS  PubMed  Google Scholar 

  16. Khan, S., Akrema, Arif, R., Yasmeen, S., Rahisuddin: Recent advancement in nanostructured-based electrochemical genosensors for pathogen detection. In: Emerging trends in nanotechnology, pp. 339–358. Springer Singapore, Singapore (2021)

    Chapter  Google Scholar 

  17. Pan, Y.: The structural stability and optical properties of NiPt nanomaterial from first-principles investigations. Mater. Sci. Semicond. Process. 120, 105306 (2020)

    Article  CAS  Google Scholar 

  18. Perveen, R., Nasar, A., Inamuddin, Asiri, A.M., Mishra, A.K.: Optimization of MnO2-graphene/polythioaniline (MnO2-G/PTA) hybrid nanocomposite for the application of biofuel cell bioanode. Int. J. Hydrogen Energy. 43, 15144–15154 (2018)

    Article  CAS  Google Scholar 

  19. Shakeel, N., Ahamed, M.I., Inamuddin, Ahmed, A., Kanchi, S., Kashmery, H.A.: Hydrothermally synthesized defective NiMoSe2 nanoplates decorated on the surface of functionalized SWCNTs doped polypyrrole scaffold for enzymatic biofuel cell applications. Int. J. Hydrogen Energy. 46, 3240–3250 (2021)

    Article  CAS  Google Scholar 

  20. Inamuddin, Beenish, Naushad, M.: Fabrication of bioanode by using electrically conducting polythiophene via entrapment technique. Korean J. Chem. Eng. 33, 120–125 (2016)

    Article  CAS  Google Scholar 

  21. Inamuddin, Shakeel, N., Imran Ahamed, M., Kanchi, S., Abbas Kashmery, H.: Green synthesis of ZnO nanoparticles decorated on polyindole functionalized-MCNTs and used as anode material for enzymatic biofuel cell applications. Sci. Rep. 10, 5052 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Joice, E.K., Rison, S., Akshaya, K.B., Varghese, A.: Platinum decorated polythiophene modified stainless steel for electrocatalytic oxidation of benzyl alcohol. J. Appl. Electrochem. 49, 937–947 (2019)

    Article  CAS  Google Scholar 

  23. Tebyetekerwa, M., Wang, X., Marriam, I., Dan, P., Yang, S., Zhu, M.: Green approach to fabricate Polyindole composite nanofibers for energy and sensor applications. Mater. Lett. 209, 400–403 (2017)

    Article  CAS  Google Scholar 

  24. Yang, Q., Zhang, X., Kumar, S., Singh, R., Zhang, B., Bai, C., Pu, X.: Development of glucose sensor using gold nanoparticles and glucose-oxidase functionalized tapered fiber structure. Plasmonics 15, 841–848 (2020)

    Article  CAS  Google Scholar 

  25. Chulliyote, R., Hareendrakrishnakumar, H., Raja, M., Gladis, J.M., Stephan, A.M.: Enhanced cyclability using a polyindole modified cathode material for lithium sulphur batteries. Sustain. Energy Fuels. 1, 1774–1781 (2017)

    Article  CAS  Google Scholar 

  26. Cai, Z.-J., Zhang, Q., Song, X.-Y.: Improved electrochemical performance of polyindole/carbon nanotubes composite as electrode material for supercapacitors. Electron. Mater. Lett. 12, 830–840 (2016)

    Article  CAS  Google Scholar 

  27. Agrawal, N., Zhang, B., Saha, C., Kumar, C., Xipeng, Pu., K, S.: Ultra-sensitive cholesterol sensor using gold and zinc-oxide nanoparticles immobilized core mismatch MPM/SPS probe. J. Light. Technol. 38, 2523–2529 (2020)

    Article  CAS  Google Scholar 

  28. Ivnitski, D., Branch, B., Atanassov, P., Apblett, C.: Glucose oxidase anode for biofuel cell based on direct electron transfer. Electrochem. commun. 8, 1204–1210 (2006)

    Article  CAS  Google Scholar 

  29. Gallaway, J.W., Calabrese Barton, S.A.: Kinetics of redox polymer-mediated enzyme electrodes. J. Am. Chem. Soc. 130, 8527–8536 (2008)

    Article  CAS  PubMed  Google Scholar 

  30. Beenish, Inamuddin, Ahamed, M.I., Asiri, A.M., AlAmry, K.A.: Biocompatible mediated bioanode prepared by using poly(3,4-ethylene dioxythiophene) poly(styrene sulfonate) (PEDOT:PSS) and sulfonated graphene oxide integrated enzyme for biofuel cells applications. Mater. Sci. Energy Technol. 1, 63–69 (2018)

    Google Scholar 

  31. Adachi, T., Kitazumi, Y., Shirai, O., Kano, K.: Direct electron transfer-type bioelectrocatalysis by membrane-bound aldehyde dehydrogenase from Gluconobacter oxydans and cyanide effects on its bioelectrocatalytic properties. Electrochem. commun. 123, 106911 (2021)

    Article  CAS  Google Scholar 

  32. Dumur, F.: Recent advances on ferrocene-based photoinitiating systems. Eur. Polym. J. 147, 110328 (2021)

    Article  CAS  Google Scholar 

  33. Wang, S.-Y., Shi, X.-C., Chen, X., Laborda, P., Zhao, Y.-Y., Liu, F.-Q., Laborda, P.: Biocontrol ability of phenazine-producing strains for the management of fungal plant pathogens: a review. Biol. Control. 155, 104548 (2021)

    Article  CAS  Google Scholar 

  34. Rajan, D., Ilanchelian, M.: Exploring the interaction of Azure dyes with t-RNA by hybrid spectroscopic and computational approaches and its applications toward human lung cancer cell line. Int. J. Biol. Macromol. 113, 1052–1061 (2018)

    Article  CAS  PubMed  Google Scholar 

  35. Badu-Boateng, C., Naftalin, R.J.: Ascorbate and ferritin interactions: Consequences for iron release in vitro and in vivo and implications for inflammation. Free Radic. Biol. Med. 133, 75–87 (2019)

    Article  CAS  PubMed  Google Scholar 

  36. Shakeel, N., Ahmad, A., Ahamed, M.I., Inamuddin, Asiri, A.M.: Kraton based polymeric nanocomposite bioanode for the application in a biofuel cell. Enzyme Microb. Technol. 127, 43–49 (2019)

    Article  CAS  PubMed  Google Scholar 

  37. Haque, S.U., Nasar, A., Inamuddin, Asiri, A.M.: Preparation and characterization of a bioanode (GC/MnO2/PSS/Gph/Frt/GOx) for biofuel cell application. Int J Hydrogen Energy. 44, 7308–7319 (2019)

    Article  CAS  Google Scholar 

  38. ul Haque, S., Inamuddin, Nasar, A., Asiri, A.M.: Fabrication and characterization of electrochemically prepared bioanode (polyaniline/ferritin/glucose oxidase) for biofuel cell application. Chem. Phys. Lett. 692, 277–284 (2018)

    Article  CAS  Google Scholar 

  39. Perveen, R., Inamuddin, Nasar, A., Beenish, Asiri, A.M.: Synthesis and characterization of a novel electron conducting biocomposite as biofuel cell anode. Int. J. Biol. Macromol. 106, 755–762 (2018)

    Article  CAS  PubMed  Google Scholar 

  40. Hoda, N., Budama, A.L., Mert, S.F., Kurtulus, D.: Biosynthesis of bimetallic Ag-Au (core-shell) nanoparticles using aqueous extract of bay leaves (Laurus nobilis L.). J. Turkish Chem. Soc. Sect. A Chem. 8, 1035–1044 (2021)

    Article  CAS  Google Scholar 

  41. Haque, M.J., Bellah, M.M., Hassan, M.R., Rahman, S.: Synthesis of ZnO nanoparticles by two different methods; comparison of their structural, antibacterial, photocatalytic and optical properties. Nano Express. 1, 010007 (2020)

    Article  Google Scholar 

  42. Geetha, R., Ashokkumar, T., Tamilselvan, S., Govindaraju, K., Sadiq, M., Singaravelu, G.: Green synthesis of gold nanoparticles and their anticancer activity. Cancer Nanotechnol. 4, 91–98 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tarannum, N., Divya, D., Gautam, Y.K.: Facile green synthesis and applications of silver nanoparticles: a state-of-the-art review. RSC Adv. 9, 34926–34948 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hou, Y., Lv, S., Liu, L., Liu, X.: High-quality preparation of graphene oxide via the Hummers’ method: understanding the roles of the intercalator, oxidant, and graphite particle size. Ceram. Int. 46, 2392–2402 (2020)

    Article  CAS  Google Scholar 

  45. Zhou, Q., Zhu, D., Ma, X., Xu, J., Zhou, W., Zhao, F.: High-performance capacitive behavior of layered reduced graphene oxide and polyindole nanocomposite materials. RSC Adv. 6, 29840–29847 (2016)

    Article  CAS  Google Scholar 

  46. Rajeshkumar, S.: Anticancer activity of eco-friendly gold nanoparticles against lung and liver cancer cells. J. Genet. Eng. Biotechnol. 14, 195–202 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Das, R., Hamid, S., Ali, M., Ramakrishna, S., Yongzhi, W.: Carbon nanotubes characterization by x-ray powder diffraction – A review. Curr. Nanosci. 11, 23–35 (2014)

    Article  Google Scholar 

  48. Rutherford, G., Xiao, B., Carvajal, C., Farrell, M., Santiago, K., Cashwell, I., Pradhan, A.: Photochemical growth of highly densely packed gold nanoparticle films for biomedical diagnostics. ECS J. Solid State Sci. Technol. 4, S3071–S3076 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to their respective administration for their overall supports.

Author information

Authors and Affiliations

Authors

Contributions

All the authors included in this work effectively contributed their ideas, participated in the experiments, analyzed and interpreted the data, and drafted and reviewed the manuscript.

Corresponding author

Correspondence to Inamuddin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alharthi, M.A., Luqman, M., Shakeel, N. et al. Gold nanoparticles decorated on reduced graphene oxide as a supporting material for enzymatic bioanode. J Nanostruct Chem 13, 349–359 (2023). https://doi.org/10.1007/s40097-021-00461-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-021-00461-2

Keywords

Navigation