Skip to main content
Log in

A methodological improvement for assessing petrochemical projects through life cycle assessment and eco-costs

  • LCA AND CHEMISTRY
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

As the debate on how to effectively link life cycle analysis (LCA) and negative externalities of the products or processes is still unsolved, an improved methodology that involves the private and social (environment) profitability to petrochemical projects in Mexico is presented. We incorporate both environmental impacts, identified through the LCA, using the eco-costs model, within a project appraisal analysis. The eco-costs are a single LCA-based indicator of environmental burden, based on the concept of marginal prevention costs, i.e. costs required to bring back the environmental degradation to a sustainable level.

Methods

The methodology was carried out in four steps. First, the potential environmental impacts (in physical units) were assessed through life-cycle assessment. Second, the marginal prevention costs of pollution (eco-costs) of impact categories were estimated. Third, since these monetary values are given for a European income level, eco-costs were adjusted to Mexican income levels (i.e., benefit transfer). Fourth, these adjusted values were used for assessing the financial viability of two petrochemical projects at two stages of installed capacity.

Results and discussion

The costs of marginal prevention (eco-costs) changed from 1.62 USD/kg of acrylonitrile in the old design to 0.926 USD/kg in the redesign. In case of vinyl chloride monomer (VCM), the eco-costs were from 16.08 USD/kg of VCM for the stage design to 1.62 USD/kg for the operational stage (ex post). The sensitivity analysis identified that only 15 % of these eco-costs, in the case of acrylonitrile, and 1.5 % for the VCM, could be incorporated to the costs of the project without affecting the profit on the investment.

Conclusions

The developed methodology was helpful to express potential environmental impacts in monetary units as financial indicators in a project appraisal. Thus, the methodology can be used to internalize the eco-costs into product prices, shifting the financial burden to firms and consumers, in order to offset the high costs of the green net national product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Jabri M, Baawain M (2011) Petrochemicals. Water Environ Res 82(10):1534–1552

    Article  Google Scholar 

  • Al-Salem SM, Mechleri E, Papageorgiouc LG, Lettieri P (2012) Life cycle assessment and optimization on the production of petrochemicals and energy from polymers for the Greater London Area. Ian David Lockhart Bogle and Michael Fairweather (Editors), Proceedings of the 22nd European Symposium on Computer Aided Process Engineering, 17–20 June 2012, London

  • Axelsson G, Barregard L, Holmberg E, Sallsten G (2010) Cancer incidence in a petrochemical industry area in Sweden. Sci Total Environ 408:4482–4487

    Article  CAS  Google Scholar 

  • Banxico (2011) Política Monetaria e Inflación. http://www.banxico.org.mx/politica-monetaria-e-inflacion/index.html. Banco-de-Mexico, Mexico City

  • Bateman IJ, Carson RT, Day B, Hanemann M, Hanley N, Hett T, Jones-Lee M, Loomes G, Mourato S, Ozdemiroglu E (2002) Economic valuation with stated preference techniques: a manual. Edward Elgar, Cheltenham

    Book  Google Scholar 

  • Blank LT, Tarquin AJ, Iverson S (2005) Engineering economy. McGraw-Hill, New York

  • Brookshire DA, Neill HR (1992) Benefit transfers: conceptual and empirical issues. Water Resour Res 28(3):651–655

    Article  Google Scholar 

  • Brouwer R, Spaninks FA (1999) The validity of environmental benefits transfer: further empirical testing. Environ Resour Econ 14(1):95–117

    Article  Google Scholar 

  • Ciroth A (2009) Cost data quality considerations for eco-efficiency measures. Ecol Econ 68(6):1583–1590

    Article  Google Scholar 

  • Desvousges WH, Johnson FR, Spencer Banzhaf HS (1998) Environmental policy analysis with limited information: principles and application of the transfer method. Edward Elgar, Cheltenham

    Google Scholar 

  • Di Valdalbero DR, Valette P (2010) Environmental and health costs in the European Union: policy-making. P.I.E. PETER LANG S.A., Brussels, Belgium, ISBN 978-90-5201-586-6

  • Dreyer LC, Niemann AL, Hauschild MZ (2003) Comparison of three different LCIA methods: EDIP97, CML2001 and Eco-indicator 99. Int J Life Cycle Assess 8(4):191–200

    Article  CAS  Google Scholar 

  • Espinosa-Reyes G, Ilizaliturri CA, Gonzalez-Mille DJ, Costilla R, Diaz-Barriga F, Cuevas MDC, Martinez MA, Mejia-Saavedra J (2009) DNA damage in earthworms (Eisenia spp.) as an indicator of environmental stress in the industrial zone of Coatzacoalcos, Veracruz, Mexico. J Environ Sci Heal A 45(1):49–55

    Article  Google Scholar 

  • Frischknecht R, Jungbluth N, Althaus HJ, Doka G, Heck T, Hellweg S, Hischier R, Nemecek T, Rebitzer G, Spielmann M (2007) Overview and methodology. Ecoinvent Database v.1.1. Ecoinvent report, vol 1, Duebendorf

  • Gennaro V, Ceppi M, Crosignani P, Montarano F (2008) Reanalysis of updated mortality among vinyl and polyvinyl chloride workers: confirmation of historical evidence and new findings. BMC Public Health 8:21. http://www.biomedcentral.com/1471-2458/8/21

  • Goedkoop M, Heijungs R, Huijbregts M, De Schryver A, Struijs J, Van Zelm R (2009) ReCiPe 2008: A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. VROM Ruimte en Milieu, Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer, http://www.lcia-recipe.net

  • Gonzalez-Martinez AC (2001) Costos y beneficios ambientales del reciclaje en México. Gaceta Ecológica 58:17–26

    Google Scholar 

  • Gonzalez-Mille DJ, Ilizaliturri-Hernandez CA, Espinosa-Reyes G, Costilla-Salazar R, Diaz-Barriga F, Ize-Lema I, Mejia-Saavedra J (2010) Exposure to persistent organic pollutants (POPs) and DNA damage as an indicator of environmental stress in fish of different feeding habits of Coatzacoalcos, Veracruz, Mexico. Ecotoxicology 19(7):1238–1248

    Article  CAS  Google Scholar 

  • Guinée JB (2002) Handbook on life cycle assessment operational guide to the ISO standards. Int J Life Cycle Assess 7(5):311–313

    Article  Google Scholar 

  • Guinée JB, Heijungs R, Huppes G (2004) Economic allocation: examples and derived decision tree. Int J Life Cycle Assess 9(1):23–33

    Article  Google Scholar 

  • Guse RG, Dascalu C, Caraiani C, Lungu CI, Colceag F (2011) Exploring eco-costs and externalities absorption policies and procedures in the context of global warming. The Romanian Economic Journal 14(40):57–79

    Google Scholar 

  • Heck T, Hirschberg S (2011) China: Economic impacts of air pollution in the country. In: Nriagu JO (ed) Encyclopedia of environmental health, vol 1. Elsevier, Burlington, pp 625–640

    Chapter  Google Scholar 

  • Hong J, Hong J, Otaki M, Jolliet O (2009) Environmental and economic life cycle assessment for sewage sludge treatment processes in Japan. Waste Manage 29(2):696–703

    Article  CAS  Google Scholar 

  • Huijbregts MAJ, Thissen U, Guinee JB, Jager T, Kalf D, Van de Meent D, Ragas AMJ, Wegener Sleeswijk A, Reijnders L (2000) Priority assessment of toxic substances in life cycle assessment. Part I: calculation of toxicity potentials for 181 substances with the nested multi-media fate, exposure and effects model USES-LCA. Chemosphere 41(4):541–573

    Article  CAS  Google Scholar 

  • INE (2007) Monitoreo ambiental, determinantes de la exposición y efectos de contaminantes críticos en humanos y biota en Coatzacoalcos. Veracruz, Mexico City

    Google Scholar 

  • INE (2010) Atlas regional de impactos derivados de las actividades petroleras en Coatzacoalcos. Veracruz, INE-SEMARNAT-UNAM, Mexico City

    Google Scholar 

  • INEGI (2011) Sistema de Cuentas Nacionales de México: Cuentas económicas y ecológicas de México 2005–2009. Aguascalientes, México

    Google Scholar 

  • ISO (2006) ISO 14040: Environmental management, life cycle assessment, principles and framework. International Standard Organization, Geneva

    Google Scholar 

  • Jantzen J, Pesic R (2004) Assessment of the economic value of environmental degradation in Serbia. Final Report. Environmental Capacity Building Programme 2003. EAR and DHV

  • JRC (2010) ILCD handbook: general guide for life cycle assessment—detailed guidance. European Commission, Joint Research Centre, Brussels

    Google Scholar 

  • Kawauchi Y, Rausand M (1999) Life cycle cost (LCC) analysis in oil and chemical process industries. Norwegian University of Science and Technology (NTNU), Norway

  • King DM, Mazzotta M, Markowitz JK (2004) Ecosystem valuation—methods, section 5: damage cost avoided, replacement cost, and substitute cost methods. http://www.ecosystemvaluation.org/cost_avoided.htm

  • Korpi E, Ala-Risku T (2008) Life cycle costing: a review of published case studies. Manag Audit J 23(3):240–261

    Article  Google Scholar 

  • Kuczenski B, Geyer R, Boughton B (2011) Tracking toxicants: toward a life cycle aware risk assessment. Environ Sci Technol 45(1):45–50

    Article  CAS  Google Scholar 

  • LaRosa AD, Cozzo G, Latteri A, Recca A, Bjorklund A, Parrinello E, Cicala G (2013) Life cycle assessment of a novel hybrid glass-hemp/thermoset composite. J Clean Prod 44:69–76

    Article  CAS  Google Scholar 

  • Lee J-Y, Yoo M, Cha K, Lim TW, Hur T (2009) Life cycle cost analysis to examine the economical feasibility of hydrogen as an alternative fuel. Int J Hydrogen Energ 34(10):4243–4255

    Article  CAS  Google Scholar 

  • Liu S, Portela R, Rao N, Ghermandi A, Wang X (2011) Environmental benefit transfers of ecosystem service valuation. In: Reference module in Earth systems and environmental sciences, vol 12. Ecological economics of estuaries and coasts, pp 55–77. http://dx.doi.org/10.1016/B978-0-12-374711-2.01204-3

  • Manmek S (2007) Economic evaluation of environmental impacts of industrial products. PhD thesis. The University of New South Wales, Australia

  • Manuilova A, Suebsiri J, Wilson M (2009) Should life cycle assessment be part of the environmental impact assessment? Case study: EIA of CO2 capture and storage in Canada. Energy Procedia 1(1):4511–4518

    Article  CAS  Google Scholar 

  • Mestre A, Vogtlander J (2013) Eco-efficient value creation of cork products: an LCA-based method for design intervention. J Clean Prod 57:101–114

    Article  Google Scholar 

  • Morales-Mora MA, Rosa-Dominguez E, Suppen-Reynaga N, Martinez-Delgadillo SA (2012a) Environmental and eco-costs life cycle assessment of an acrylonitrile process by capacity enlargement in Mexico. Process Saf Environ 90:27–37

    Article  CAS  Google Scholar 

  • Morales-Mora MA, Martínez-Delgadillo SA, Rosa-Dominguez E, Suppen-Reynaga N (2012b) Estudio de biodegradabilidad y optimización del proceso para tratar un afluente con cianuros de una planta petroquímica que produce acrilonitrilo en México. AFINIDAD LXIX 560:283–288

    Google Scholar 

  • PE-EuropeGmbH (2004) Life cycle assessment of PVC and of principal competing materials. European Commission, Brussels

    Google Scholar 

  • PEMEX (2009) Memoria de labores. Petróleos Mexicanos, Mexico City

    Google Scholar 

  • Perez-Zapata A, Deleón Rodríguez I, Valenzuela Vargas T (1982) La contaminación por plomo en habitantes de Coatzacoalcos, Veracruz. Anales de la Escuela de Ciencias Biológicas del IPN 26:147–151

  • Portha JF, Jaubert JN, Louret S, Pons MN (2010a) Life cycle assessment applied to naphtha catalytic reforming. Oil Gas Sci Technol 65(5):793–805

    Article  CAS  Google Scholar 

  • Portha JF, Louret S, Pons MN, Jaubert JN (2010b) Estimation of the environmental impact of a petrochemical process using coupled LCA and exergy analysis. Resour Conserv Recycl 54:291–298

    Article  Google Scholar 

  • Potting J, Hauschild MZ (2005) Background for spatial differentiation in LCA impact assessment—the EDIP2003 methodology, Environmental project no. 996. Copenhague, Dinamarca

    Google Scholar 

  • Ready R, Navrud S, Day B, Dubourg R, Machado F, Mourato S, Spanninks F, Rodriquez MXV (1999) Benefit transfer in Europe: are values consistent across countries. Paper presented at seminar January 20th 2000, University College London

  • Rongzhu L, Ziqiang C, Fusheng J, Collins JJ (2005) Neurobehavioral effects of occupational exposure to acrylonitrile in Chinese workers. Environ Toxicol Pharmacol 19:695–700

    Article  Google Scholar 

  • Rosemberg R, Loomis J (2003) Benefit transfer. In: Champ PA, Boyle KJ (eds) A primer on nonmarket valuation. Thomas C. Brown Business and Economics, New York

    Google Scholar 

  • Rosenbaum RK, Bachmann TM, Gold LS et al (2008) USEtox—the UNEPSETAC toxicity model: recommended characterization factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13(7):532–546

    Article  CAS  Google Scholar 

  • Rosenberger RS, Johnston RJ (2013) Benefit transfer. Encyclopedia of energy, natural resource and environmental economics. doi:10.1016/B978-0-12-375067-9.00009-7

  • Ruelas-Inzunza J, Garate-Viera Y, Paez-Osuna F (2007) Lead in clams and fish of dietary importance from Coatzacoalcos estuary (Gulf of Mexico), an industrialized tropical region. Bull. Environ. Contam Toxicol 79:508–513

    Article  CAS  Google Scholar 

  • Ruelas-Inzunza J, Páez-Osuna F, Zamora-Arellano N, Amezcua-Martínez F, Bojórquez-Leyva H (2009) Mercury in biota and surficial sediments from Coatzacoalcos Estuary, Gulf of Mexico: distribution and seasonal variation. Water Air Soil Pollut 197:165–174

    Article  CAS  Google Scholar 

  • Saling P, Grosse-Sommer A, Alba-Perez A, Kalsch D (2007) Using the eco-efficiency analysis and SEEBALANCE in the sustainability assessment of products and processes. In: Sustainable neighbourhood, from Lisbon to Leipzig through research, 4th BMBF-Forum for Sustainability, Leipzig, Germany, May, 2007, pp 8–10

  • Scléo G, Constantinescu V, Csiki I, Zaridze D, Szeszenia-Dabrowska N, Rudnai P (2004) Occupational exposure to vinyl chloride, acrylonitrile and styrene and lung cancer risk (Europe). Cancer Causes Control 15:445–452

    Article  Google Scholar 

  • SENER (2013) Estrategia Nacional de Energía 2013–2027. http://www.sener.gob.mx/

  • Settanni E (2008) The need for a computational structure of LCC. Int J Life Cycle Assess 13(7):526–531

    Article  Google Scholar 

  • UNEP (2005) Standardized toolkit for identification and quantification of dioxin and furan releases. Edition 2.1, Geneva, 253 p

  • Vogtländer JG, Bijma A (2000) The “virtual” pollution prevention '99¨, a single LCA-based indicator for emissions. Int J Life Cycle Assess 2:113–124

    Article  Google Scholar 

  • Vogtländer J, Hendriks P, Brezet P (2001) The EVR model for sustainability: a tool to optimise product design and resolve strategic dilemmas. J Sustain Prod Des 1(2):103–116

    Article  Google Scholar 

  • Vogtländer JG, Bijma A, Brezet HC (2002) Communicating the eco-efficiency of produts and services by means of the eco-costs/value model. J Clean Prod 10:57–57

    Article  Google Scholar 

  • Vogtländer JG, Baetens B, Bijma A, Brandjes E, Lindeijer E, Segers M, Witte F, Brezet JC, Hendriks CF (2010) LCA-based assessment of sustainability: the Ecocosts/Value Ratio: EVR. VSSD, Delft

    Google Scholar 

  • Weidema BP (1999) System expansions to handle co-products of renewable materials. In: Presentation summaries of the 7th LCA case studies symposium SETAC-Europe, 1999, pp 45–48

  • Wilson MA, Hoehn JP (2006) Valuing environmental goods and services using benefit transfer: the state-of-the art and science. Ecol Econ 60(2):335–342

    Article  Google Scholar 

  • World Bank (2009) Assessment of environmental governance and management systems in petroleum producing countries. World Bank, Washington

    Google Scholar 

  • Yu CL, Wang SF, Pan PC, Wu MT, Ho CK, Smith TJ, Li Y, Pothier L, Christiani DC (2006) Residential exposure to petrochemicals and the risk of leukemia: using geographic information system tools to estimate individual-level residential exposure. Am J Epidemiol 164:200–207

    Article  Google Scholar 

  • Zhang Y, Baral A, Bakshi BR (2010) Accounting for ecosystem services in life cycle assessment, Part II: toward an ecologically based LCA. Environ Sci Technol 44(7):2624–2631

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the comments from three anonymous reviewers who helped to significantly improve the clarity of this article, and also to Antonio Pastrana M., director of Consejo Nacional de la Fauna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Angel Morales Mora.

Additional information

Responsible editor: Thomas Swarr

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mora, M.A.M., Dominguez, E.R., Ibarra, A.A. et al. A methodological improvement for assessing petrochemical projects through life cycle assessment and eco-costs. Int J Life Cycle Assess 19, 517–531 (2014). https://doi.org/10.1007/s11367-013-0660-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-013-0660-7

Keywords

Navigation