Skip to main content

Advertisement

Log in

Thermo-acidic pretreatment of marine brown algae Fucus vesiculosus to increase methane production—a disposal principle for macroalgae waste from beaches

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Marine biomass is washed ashore on beaches used for recreational purposes causing problems for local and spa authorities. The present management of marine waste biomass does not include a sustainable disposing policy and biomass is dumped inadequately. Since macroalgae are receiving increasing attention in the field of biofuel production, this “spare” biomass may present a potential feedstock in biogas plants. The present study shows an increase in methane production from macroalgae Fucus vesiculosus collected from the beach by applying thermo-acidic pretreatment to enhance hydrolysis of polymeric molecules in biomass. Flue gas condensate (FGC), an industrial acidic waste product accumulating in power plants, was used for acid hydrolysis as well as technical HCl and water. Biomethane potential tests were carried out on pretreated samples. Pretreatment conditions of 80 °C using 0.2 M HCl and a reaction time of 24 h resulted in a +140 % increase of methane yield in biogas production. FGC and hot-water pretreatment at 80 °C for 24 h yielded +38 and +51 % more methane than untreated biomass, respectively. Lower temperature pretreatment (20 and 50 °C) did not show considerable improvement of methane yield neither in water nor in acidic media except when using 0.2 M HCl at 50 °C (+83 %). An extended pretreatment reaction time of 24 h did not reveal any additional recovery of methane compared to a reaction time of 2 h. The full pretreatment effect is already deployed below 2 h. To attain maximum efficiency in the pretreatment process, the amendatory combination of both heat and acidity is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams JMM, Toop TA, Donnison IS, Gallagher JA (2011) Seasonal variation in Laminaria digitata and its impact on biochemical conversion routes to biofuels. Bioresour Technol 102:9976–9984

    Article  CAS  PubMed  Google Scholar 

  • Allen E, Browne J, Hynes S, Murphy JD (2013) The potential of algae blooms to produce renewable gaseous fuel. Waste Manag 33:2425–2433

    Article  CAS  PubMed  Google Scholar 

  • Barsanti L, Gualtieri P (2006) Algae—anatomy, biochemistry and biotechnology. CRC Press, Boca Raton, pp 278–280

    Google Scholar 

  • Bioprocess Control Sweden AB (2013) AMPTS II—automatic methane potential test system, operation and maintenance manual. http://www.bioprocesscontrol.com/media/45898/Manual-AMPTS-II-version-1.6.pdf. Accessed 7 Apr 2014

  • Bird KT, Chynoweth DP, Jerger DE (1990) Effects of marine algal proximate composition on methane yields. J Appl Phycol 2:207–213

    Article  Google Scholar 

  • Börjesson P, Mattiasson B (2008) Biogas as a resource-efficient vehicle fuel. Trends Biotechnol 26:7–13

    Article  PubMed  Google Scholar 

  • Buswell AM, Boruff BS (1932) The relation between the chemical composition of organic matter and the quality and quantity of gas produced during sludge digestion. Sewage Works J 4:454–460

    CAS  Google Scholar 

  • Carlsson AS, van Beilen J, Möller R, Clayton D (2007) Micro- and macro-algae: utility for industrial applications. EPOBIO. CPL Press, New York, 82 pp

    Google Scholar 

  • Charlier RH, Morand P, Finkl CW, Thys A (2007) Green tides on the Brittany Coasts. Environ Res 3:52–59

    Google Scholar 

  • Demirbas A, Demirbas MF (2010) Algae energy: algae as a new source of biodiesel. Springer, London, 280 pp

    Book  Google Scholar 

  • Demirel B, Scherer P (2011) Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass Bioenergy 35:992–998

    Article  CAS  Google Scholar 

  • Deublein D, Steinhauser A (2008) Biogas from waste and renewable resources - an introduction. Weinheim, Wiley-VCH, 450 pp

    Book  Google Scholar 

  • Draget KI, Smidsrød O, Skjåk-Bræk G (2005) Alginates from algae. In: Steinbüchel A, Rhee SK (eds) Polysaccharides and polyamides in the food industry. Properties, Production and Patents. Wiley-VCH, Weinheim

    Google Scholar 

  • Falk H (2011) Monitoring the anaerobic digestion process. PhD Thesis, Jacobs University Bremen, Germany, pp 52-63

  • FAO (2010) The state of world fisheries and aquaculture. Food and Agriculture Organization of the United Nations, Rome, pp 3–4

    Google Scholar 

  • Feijiu W (1988) Seminar report on the status of seaweed culture in China, India, Indonesia. Food and Agriculture Organization of the United Nations, Rome. NACA-SF/WP/88/5

  • Frigon J, Guiot SR (2010) Biomethane production from starch and lignocellulosic crops: a comparative review. Biofuel Bioprod Bioref 4:447–458

    Article  CAS  Google Scholar 

  • Gao K, McKinley K (1994) Use of macroalgae for marine biomass production and CO2 remediation: a review. J Appl Phycol 6:45–60

    Article  Google Scholar 

  • González-Fernández C, Sialve B, Bernet N, Steyer JP (2012) Thermal pretreatment to improve methane production of Scenedesmus biomass. Biomass Bioenergy 40:105–111

    Article  Google Scholar 

  • Habig C, Ryther JH (1983) Methane production from the anaerobic digestion of some marine macrophytes. Resour Conserv 8:271–279

    Article  CAS  Google Scholar 

  • Horn SJ (2000) Bioenergy from brown seaweeds. PhD Thesis, Norwegian University of Science and Technology (NTNU), Norway, 83 pp

  • Horn SJ (2009) Seaweed biofuels: production of biogas and bioethanol from brown macroalgae. VDM Verlag, Saarbrücken, 104 pp

    Google Scholar 

  • Hughes AD, Maeve SK, Black KD, Stanley MS (2012) Biogas from macroalgae: is it time to revisit the idea? Biotechnol Biofuels 5:86

    Article  PubMed Central  PubMed  Google Scholar 

  • Jang S, Shirai Y, Uchida M, Wakisaka M (2012) Production of mono sugar from acid hydrolysis of seaweed. Afr J Biotechnol 11:1953–1963

    CAS  Google Scholar 

  • Jung K, Kim D, Kim H, Shin H (2011a) Optimization of combined (acid + thermal) pretreatment for fermentative hydrogen production from Laminaria japonica using response surface methodology (RSM). Int J Hydrog Energy 36:9626–9631

    Article  CAS  Google Scholar 

  • Jung K, Kim D, Shin H (2011b) Fermentative hydrogen production from Laminaria japonica and optimization of thermal pretreatment conditions. Bioresour Technol 102:2745–2750

    Article  CAS  PubMed  Google Scholar 

  • Jung KA, Lim S, Kim Y, Park JM (2013) Potentials of macroalgae as feedstocks for biorefinery. Bioresour Technol 135:182–190

    Article  CAS  PubMed  Google Scholar 

  • Kaiser F, Metzner T, Effenberger M, Gronauer A (2008) Sicherung der Prozessstabilität in landwirtschaftlichen Biogasanlagen. Bayrische Landesanstalt für Landwirtschaft (LfL), Freising-Weihenstephan, pp 14

  • Kelly MS, Dworjanyn S (2008) The potential of marine biomass for anaerobic biogas production—a feasibility study with recommendations for further research. The Crown Estate—Marine Estate Research Report 2008, Oban, Scotland, pp 1–100

  • Kraan S (2013) Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig Adapt Strateg Glob Chang 18:27–46

    Article  Google Scholar 

  • Lee JY, Kim YS, Um BH, Oh K (2013) Pretreatment of Laminaria japonica for bioethanol production with extremely low acid concentration. Renew Energy 54:196–200

    Article  CAS  Google Scholar 

  • Liu J, Olsson G, Mattiasson B (2004) Control of an anaerobic reactor towards maximum biogas production. Water Sci Technol 50:189–198

    CAS  PubMed  Google Scholar 

  • Lohmann C, Schilling P (2001) 1. Taxonomischer Makrophyten—Workshop “Taxonomie mariner Makrophyten und ihre Bedeutung für das Monitoring im Rahmen der internationalen Meeresschutzabkommen”. Umweltbundesamt, Berlin, p 136

    Google Scholar 

  • Long T, Meng G, Wu L, Zhang X, Guo W (2011) Numerical simulation for effects of hydrodynamic condition on algae growth in Chongqing reaches of Jialing River. Ecol Model 222:112–119

    Article  CAS  Google Scholar 

  • Matsui T, Koike Y (2010) Methane fermentation of a mixture of seaweed and milk at a pilot-scale plant. J Biosci Bioeng 110:558–563

    Article  CAS  PubMed  Google Scholar 

  • McHugh DJ (2003) A guide to the seaweed industry. FAO Fisheries, Rome. Technical paper 441 pp 1–105

  • Mossbauer M, Haller I, Dahlke S, Schernewski G (2012) Management of stranded eelgrass and macroalgae along the German Baltic coastline. Ocean Coast Manag 57:1–9

    Article  Google Scholar 

  • Murphy JD, Thamsiriroj T (2012) Fundamental science and engineering of the anaerobic digestion process. In: Wellinger A, Murphy J, Baxter D (eds) The biogas handbook: science, production and applications. Woodhead Publishing, Cambridge, p 512

    Google Scholar 

  • Nelson TA, Lee DJ, Smith BC (2003) Are “Green Tides” Harmful Algal Blooms? Toxic properties of macroalgae, Ulva fenestrata and Ulvaria obscura (Ulvophyceae). J Phycol 39:874–879

    Article  CAS  Google Scholar 

  • Pereira L (2011) A review of the nutrient composition of selected edible seaweeds. In: Pomin VH (ed) Seaweed: ecology, nutrient composition and medicinal uses. Nova Science Publishers Inc, Hauppauge, pp 15–47

    Google Scholar 

  • Rigoni-Stern S, Rismondo R, Szpyrkowicz L, Zilio-Grandi F, Vigato PA (1990) Anaerobic digestion of nitrophilic algal biomass from the Venice lagoon. Biomass 23:179–199

    Article  CAS  Google Scholar 

  • Rupérez P, Ahrazem O, Leal JA (2002) Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J Agric Food Chem 50:840–845

    Article  PubMed  Google Scholar 

  • Samson R, Leduy A (1982) Biogas production from anaerobic digestion of Spirulina maxima algal biomass. Biotechnol Bioeng 24:1919–1924

    Article  CAS  PubMed  Google Scholar 

  • Schattauer A, Abdoun E, Weiland P, Plöchl M, Heiermann M (2011) Abundance of trace elements in demonstration biogas plants. Biosyst Eng 108:57–65

    Article  Google Scholar 

  • Schmitz PM, Kavallari A (2009) Crop plants versus energy plants—on the international food crisis. Bioorg Med Chem 17:4020–4021

    Article  CAS  PubMed  Google Scholar 

  • Smyth BM, Gallachóir BPÓ, Korres NE, Murphy JD (2010) Can we meet targets for biofuels and renewable energy in transport given the constraints imposed by policy in agriculture and energy? J Clean Prod 18:1671–1685

    Article  Google Scholar 

  • Sprenger F (2011) Kondenswasser aus Heizkesseln und dessen Neutralisation. Buderus Heiztechnik GmbH, Wetzlar, Germany. http://www.sbz-monteur.de/wp-content/uploads/2011/07/kondenswasser.pdf. Accessed 23 Apr 2014

  • Thomsen L (2010) How ‘green’ are algae farms for biofuel production? Biofuels 1:515–517

    Article  CAS  Google Scholar 

  • Thomsen C, Rill S, Thomsen L (2012) Case study with temperature controlled outdoor PBR system in Bremen. In: Posten C, Walter C (eds) Microalgal biotechnology: integration and economy. Walter de Gruyter, Berlin, pp 74–77

    Google Scholar 

  • Valiela I, McClelland J, Hauxwell J, Behr PJ, Hersh D, Foreman K (1997) Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnol Oceanogr 42:1105–1118

    Article  Google Scholar 

  • VDI 4630 (2006) Fermentation of organic materials—characterisation of the substrate, sampling, collection of material data, fermentation tests. Beuth Verlag GmbH, Berlin, p 92

    Google Scholar 

  • Vivekanand V, Eijsink VH, Horn SJ (2012) Biogas production from the brown seaweed Saccharina latissima: thermal pretreatment and codigestion with wheat straw. J Appl Phycol 24:1295–1301

    Article  CAS  Google Scholar 

  • Vodegel S, Kristin A, Thomsen C (2011) Strandalgen als Energierohstoff—Eine Verwertungsmöglichkeit? Müll und Abfall 7:319–321

    Google Scholar 

  • Walker M, Zhang Y, Heaven S, Banks C (2009) Potential errors in the quantitative evaluation of biogas production in anaerobic digestion processes. Bioresour Technol 100:6339–6346

    Article  CAS  PubMed  Google Scholar 

  • Wei N, Quarterman J, Jin Y (2013) Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends Biotechnol 31:70–77

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Huo Y, Yu K, Chen Q, He Q, Han W, Chen L, Cao J, Shi D, He P (2013) Growth characteristics and reproductive capability of green tide algae in Rudong coast, China. J Appl Phycol 25:795–803

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Union and funded by the Europäischer Fond für regionale Entwicklung (EFRE, Projektnummer FV211A).

Cordial thanks to our partner OceanLab of Jacobs University Bremen and Phytolutions GmbH for helpful discussions and information, the provision of flue gas condensate and the algae biomass.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Nicolas Barbot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbot, Y.N., Falk, H.M. & Benz, R. Thermo-acidic pretreatment of marine brown algae Fucus vesiculosus to increase methane production—a disposal principle for macroalgae waste from beaches. J Appl Phycol 27, 601–609 (2015). https://doi.org/10.1007/s10811-014-0339-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0339-x

Keywords

Navigation