Skip to main content
Log in

Isolation and characterization of a long-chain acyl-coenzyme A synthetase encoding gene from the marine microalga Nannochloropsis oculata

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Acyl-coenzyme A synthetases (ACSs) are associated with the anabolism and catabolism of fatty acids and play fundamental roles in various metabolic pathways. The cDNA of long-chain acyl-coenzyme A synthetase (LACS), one of the ACSs, was isolated from Nannochloropsis oculata and named as NOLACS. The predicted amino acid sequence was highly similar to LACSs of other species. NOLACS encodes a long-chain acyl-coenzyme A synthetase; it recovered the function of LACS in Saccharomyces cerevisiae YB525 (a LACS-deficient yeast strain). The substrate specificity of the enzyme was also assayed in yeast. It was found that NOLACS can activate saturated fatty acids (C12:0, C14:0, C16:0, and C18:0) and some unsaturated fatty acids (C18:2Δ9, 12 and C20:2Δ11, 14) with a preference for long-chain fatty acids. Our findings will provide a deep understanding of CoA-dependent fatty acid activation and also make some contribution to understanding the metabolic pathways of lipids in Nannochloropsis. These findings will also facilitate studies on the regulation of gene expression and genetic modification of fatty acid synthesis and storage of N. oculata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5–6
Fig. 7

Similar content being viewed by others

References

  • Babbitt PC, Kenyon GL, Martin BM, Charest H, Slyvestre M, Scholten JD, Chang KH, Liang PH, Dunaway-Mariano D (1992) Ancestry of the 4-chlorobenzoate dehalogenase: analysis of amino acid sequence identities among families of acyl:adenyl ligases, enoyl-CoA hydratases/isomerases, and acyl-CoA thioesterases. Biochemistry 31:5594–5604

    Article  PubMed  CAS  Google Scholar 

  • Bibb MJ, Sherman DH, Omura S, Hopwood DA (1994) Cloning, sequencing and deduced functions of a cluster of Streptomyces genes probably encoding biosynthesis of the polyketide antibiotic frenolicin. Gene 142:31–39

    Article  PubMed  CAS  Google Scholar 

  • Black PN, DiRusso CC (2007) Yeast acyl-CoA synthetases at the crossroads of fatty acid metabolism and regulation. Biochim Biophys Acta (BBA)—Mol Cell Biol Lipids 1771:286–298

    CAS  Google Scholar 

  • Black PN, DiRusso CC, Metzger AK, Heimert TL (1992) Cloning, sequencing, and expression of the fadD gene of Escherichia coli encoding acyl coenzyme A synthetase. J Biol Chem 267:25513–25520

    PubMed  CAS  Google Scholar 

  • Black PN, Zhang Q, Weimar JD, DiRusso CC (1997) Mutational analysis of a fatty acyl-coenzyme A synthetase signature motif identifies seven amino acid residues that modulate fatty acid substrate specificity. J Biol Chem 272:4896–4903

    Article  PubMed  CAS  Google Scholar 

  • Blobel F, Erdmann R (1996) Identification of a yeast peroxisomal member of the family of AMP-binding proteins. Eur J Biochem 240:468–476

    Article  PubMed  CAS  Google Scholar 

  • Cahoon EB, Lindqvist Y, Schneider G, Shanklin J (1997) Redesign of soluble fatty acid desaturases from plants for altered substrate specificity and double bond position. Proc Natl Acad Sci USA 94:4872–4877

    Article  PubMed  CAS  Google Scholar 

  • Coe NR, Smith AJ, Frohnert BI, Watkins PA, Bernlohr DA (1999) The fatty acid transport protein (FATP1) is a very long chain acyl-CoA synthetase. J Biol Chem 274:36300–36304

    Article  PubMed  CAS  Google Scholar 

  • Connerton IF, Fincham JR, Sandeman RA, Hynes MJ (1990) Comparison and cross-species expression of the acetyl-CoA synthetase genes of the Ascomycete fungi, Neurospora crassa and Aspergillus nidulans. Mol Microbiol 4:451–460

    Article  PubMed  CAS  Google Scholar 

  • Conti E, Stachelhaus T, Marahiel MA, Peter B (1997) Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J 16:4174–4183

    Article  PubMed  CAS  Google Scholar 

  • de Wet JR, Wood KV, Helinski DR, DeLuca M (1985) Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc Natl Acad Sci USA 82:7870–7873

    Article  PubMed  Google Scholar 

  • Fargeman NJ, Black PN, Zhao XD, Knudsen J, DiRusso CC (2001) The acyl-CoA synthetases encoded within FAA1 and FAA4 in Saccharomyces cerevisiae function as components of the fatty acid transport system linking import, activation and intracellular utilization. J Biol Chem 276:37051–37059

    Article  Google Scholar 

  • Ferreira M, Coutinho P, Seixas P, Fábregas J, Otero A (2009) Enriching rotifers with "premium" microalgae. Nannochloropsis gaditana. Mar Biotechnol 11:585–595

    Article  PubMed  CAS  Google Scholar 

  • Fujino T, Yamamoto T (1992) Cloning and functional expression of a novel long-chain acyl-CoA synthetase expressed in brain. J Biochem (Tokyo) 111:197–203

    CAS  Google Scholar 

  • Fulda M, Heiz ZE, Wolter FP (1997) Brassica napus cDNAs encoding fatty acyl-CoA synthetase. Plant Mol Biol 33:911–922

    Article  PubMed  CAS  Google Scholar 

  • Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Groot PH, Scholte HR, Hulsmann WC (1976) Fatty acid activation: specificity, localization and function. Adv Lipid Res 14:75–126

    PubMed  CAS  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms: Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can J Microbiol 8:229–239

    Article  PubMed  CAS  Google Scholar 

  • Hae JK, Koh JT, Yang SY, Lee ZH, Baik YH, Kim KK (2003) A novel murine long-chain acyl-CoA synthetase expressed in brain participates in neuronal cell proliferation. Biochem Biophys Res Commun 305:925–933

    Article  Google Scholar 

  • Hibberd DJ (1981) Notes on the taxonomy and nomenclature of the algal classes Eustigmatophyceae and Tribophyceae (synonym Xanthophyceae). Bot J Linn Soc 82:92–99

    Article  Google Scholar 

  • Hu H, Gao K (2003) Optimization of growth and fatty acid composition of a unicellular marine picoplankton, Nannochloropsis sp., with enriched carbon sources. Biotechnol Lett 25:421–425

    Article  PubMed  CAS  Google Scholar 

  • Iijima H, Fujino T, Minekura H, Suzuki H, Kang MJ, Yamamoto T (1996) Biochemical studies of two rat acyl-CoA synthetases, ACSl and ACS2. Eur J Biochem 242:186–190

    Article  PubMed  CAS  Google Scholar 

  • Johnson DR, Knoll LJ, Levin DE, Gordon JI (1994) Saccharomyces cerevisiae contains four fatty acid activation (FAA) genes: an assessment of their role in regulating protein N-myristoylation and cellular lipid metabolism. J Cell Biol 127:751–762

    Article  PubMed  CAS  Google Scholar 

  • Karlson B, Potter D, Kuylenstierna M, Andersen RA (1996) Ultrastructure, pigment composition, and 18S rRNA gene sequence for Nannochloropsis granulata sp. Nov. (Monodopsidaceae, Eustigmatophyceae), a marine ultraplankter isolated from the Skagerrak, northeast Atlantic Ocean. Phycologia 35:253–260

    Article  Google Scholar 

  • Knoll LJ, Johnson DR, Gordon JI (1994) Biochemical studies of three Saccharomyces cerevisiae acyl-CoA synthetases, Faalp, Faa2p, and Faa3p. J Biol Chem 269:16348–16356

    PubMed  CAS  Google Scholar 

  • Knoll LJ, Johnson DR, Gordon JI (1995) Complementation of Saccharomyces cerevisiae strains containing fatty acid activation gene (FAA) deletions with a mammalian acyl-CoA synthetase. J Biol Chem 270:10861–10867

    Article  PubMed  CAS  Google Scholar 

  • Lee MY, Min BS, Chang CS, Jin E (2006) Isolation and characterization of a xanthophyll aberrant mutant of the green alga Nannochloropsis oculata. Mar Biotechnol 8:238–245

    Article  PubMed  CAS  Google Scholar 

  • Lozoya E, Hoffmann H, Douglas C, Schulz W, Scheel D, Hahlbrock K (1988) Primary structures and catalytic properties of isoenzymes encoded by the two 4-coumarate:CoA ligase genes in parsley. Eur J Biochem 176:661–667

    Article  PubMed  CAS  Google Scholar 

  • Lubián LM, Montero O, Moreno-Garrido I, Huertas E, Sobrino C, Valle MG, Parés G (2000) Nannochloropsis (Eustigmatophyceae) as a source of commercially valuable pigments. J Appl Phycol 12:249–255

    Article  Google Scholar 

  • Ma XL, Yu JZ, Zhu BH, Pan KH, Pan J, Yang GP (2011) Cloning and characterization of a delta-6 desaturase encoding gene of Nannochloropsis oculata. Chinese J Oceanol Limnol 29:290–296

    Article  CAS  Google Scholar 

  • Martinez-Blanco H, Orejas M, Reglero A, Luengo JM, Penalva MA (1993) Characterization of the gene encoding acetyl-CoA synthetase in Penicillium chrysogenum: conservation of intron position in plectomycetes. Gene (Amst) 130:265–270

    Article  CAS  Google Scholar 

  • Masuda T, Tatsumi H, Nakano E (1989) Cloning and sequence analysis of cDNA for luciferase of a Japanese firefly, Luciola cruciata. Gene 77:265–270

    Article  PubMed  CAS  Google Scholar 

  • Osinga R, Kleijn R, Groenendijk E, Niesink P, Tramper J, Wijffels RH (2001) Development of in vivo sponge cultures: particle feeding by the tropical sponge Pseudosuberites aff. andrewsi. Mar Biotechnol 3:544–554

    Article  PubMed  CAS  Google Scholar 

  • Pan KH, Ma XL, Yu JZ, Zhu BH, Yang GP (2009) Cloning and phylogenetic analysis of a fatty acid elongase gene from Nannochloropsis oculata CS179. J Ocean Univ China 8(4):392–398

    Article  CAS  Google Scholar 

  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2008) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  Google Scholar 

  • Shockey JM, Fulda MS, Browse JA (2002) Arabidopsis contains nine long-chain acyl-coenzyme a synthetase genes that participate in fatty acid and glycerolipid metabolism. Plant Physiol 129:1710–1722

    Article  PubMed  CAS  Google Scholar 

  • Steinberg SJ, Morgenthaler J, Heinzer AK, Smith KD, Watkins PA (2000) Very long-chain Acyl-CoA synthetases. Human “bubblegum” represents a new family of proteins capable of activating very long-chain fatty acids. J Biol Chem 275:35162–35169

    Article  PubMed  CAS  Google Scholar 

  • Stuhlsatz-Krouper SM, Bennett NE, Schaffer JE (1998) Substitution of alanine for serine 250 in the murine fatty acid transport protein inhibits long chain fatty acid transport. J Biol Chem 273:28642–28650

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Kawarabayasi Y, Kondo J, Ahe T, Nishikawa K, Kimara S, Hashimoto T, Yamamoto T (1990) Structure and regulation of rat long-chain acyl-CoA synthetase. J Biol Chem 266:8681–8685

    Google Scholar 

  • Tonon T, Qing RW, Harvey D, Li Y, Larson TR, Graham IA (2005) Identification of a long-chain polyunsaturated fatty acid acyl-coenzyme A synthetase from the diatom Thalassiosira pseudonana. Plant Physiol 138:402–408

    Article  PubMed  CAS  Google Scholar 

  • Uchiyama A, Aoyama T, Kamijo K, Uchida Y, Kondo N, Orii T, Hashimoto T (1996) Molecular cloning of cDNA encoding rat very long-chain acyl-CoA synthetase. J Biol Chem 271:30360–30365

    Article  PubMed  CAS  Google Scholar 

  • Volkman JK, Brown MR, Dunstan GA, Jeffrey SW (1993) The biochemical composition of marine microalgae from the class Eustigmatophyceae. J Phycol 29:69–78

    Article  CAS  Google Scholar 

  • Watkins PA (1997) Fatty acid activation. Prog Lipid Res 36:55–83

    Article  PubMed  CAS  Google Scholar 

  • Watkins PA, Lu JF, Steinberg SJ, Gould SJ, Smith KD, Braiterman LT (1998) Disruption of the Saccharomyces cerevisiae FAT1 gene decreases very long-chain fatty acyl-CoA synthetase activity and elevates intracellular very long-chain fatty acid concentrations. J Biol Chem 273:18210–18219

    Article  PubMed  CAS  Google Scholar 

  • Xu F, Cong W, Cai ZL, Ouyang F (2004) Effects of organic carbon sources on cell growth and eicosapentaenoic acid content of Nannochloropsis sp. J Appl Phycol 16:499–503

    Article  Google Scholar 

  • Yu JZ, Ma XL, Pan KH, Yang GP, Yu WG (2010) Construction and characterization of a normalized cDNA library of Nannochloropsis oculata (Eustigmatophyceae). Chin J Oceanol Limnol 28:802–807

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Jeffrey I. Gordon of Washington University of Medicine, St. Louis, MO, USA, for kindly providing the yeast mutant strain S. cerevisiae YB525. This work was supported by the Major State Basic Research Development Program of China (973 Program, 2011CB200901) and the National High Technology Research and Development Program of China (2007AA09Z427) and Basic Research Program of Municipal Burea of Science and Technology of Qingdao (09-1-3-22-jch).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kehou Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Ma, X., Yang, G. et al. Isolation and characterization of a long-chain acyl-coenzyme A synthetase encoding gene from the marine microalga Nannochloropsis oculata . J Appl Phycol 24, 873–880 (2012). https://doi.org/10.1007/s10811-011-9707-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-011-9707-y

Keywords

Navigation