Skip to main content
Log in

Efficient separation of phycocyanin of Nostoc commune by multistep diafiltration using ultra-filtration membrane modules

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Diafiltration (DF) is a separation method used to separate and concentrate macromolecules, such as polysaccharides and proteins. To obtain high-purity target molecules by DF, appropriate conditions should be used. In this study, a mathematical model was developed to suggest appropriate ultra-filtration (UF) membrane modules for the separation of phycocyanin (PC) by multistep DF. PC is a protein produced by microalgae. The contribution of each UF membrane module to PC productivity and purity at each stage of the multistep DF process was quantified by the proposed model. The parameters required as model inputs (k, Fα1, and Fα2) were experimentally determined by permeating PC-containing solution through UF membrane modules (150, 30, and 10 kDa cutoffs). The resulting analytical solutions and those predicted by the model were in close agreement. The PC purity increased from 0.20 to 0.30 when a 10 kDa UF membrane module was used in two-step DF. An orthogonal table was used to determine the combination of UF membrane modules needed to achieve higher purity of PC. The model predicted that the 30 kDa UF membrane module would have the highest contribution to PC productivity and purity at any position in a three-step DF. The developed model can help identify appropriate conditions for separating macromolecules by DF.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that have been used are confidential.

Abbreviations

A :

Membrane module surface area, m2

ABS 280 :

Absorbance at 280 nm

ABS 618 :

Absorbance at 618 nm

C 0 :

Concentration of feed, g/m3

C A :

Concentration of protein in tank, g/m3

C PC :

Concentration of PC, g/m3

C Total :

Concentration of total protein, g/m3

C X :

Concentration of biomolecule X, g/m3

C α1 :

Concentration of filtrate from UF membrane module, g/m3

C α2 :

Concentration of concentrate from UF membrane module, g/m3

F 0 :

Flow rate of feed, m3/s

F A :

Flow rate of product, m3/s

F α1 :

Flow rate of filtrate from UF membrane module, m3/s

F α2 :

Flow rate of concentrate from UF membrane module, m3/s

J (t) :

Flux of permeate from UF membrane module, m/s

k :

Protein permeation coefficient

l :

Optical path length, cm

t :

Permeation time, s

V A :

Solution volume in tank, m3

V :

Volume of permeate, m3

ε 280 :

Extinction coefficient of PC at 280 nm, cm2/mg

ε 618 :

Extinction coefficient of protein at 618 nm, cm2/mg

References

  1. Paulen R, Fikar M, Foley G, Kovacs Z, Czermak P (2012) Optimal feeding strategy of diafiltration buffer in batch membrane processes. J Membr Sci 411–412:160–172

    Article  Google Scholar 

  2. Wang L, Yang G, Xing W, Xu N (2008) Mathematic model of the yield for diafiltration processes. Sep Purif Technol 59:206–213

    Article  CAS  Google Scholar 

  3. Barba D, Beolchini CD, Veglió F (2001) Whey protein concentrate production in a pilot scale two-stage diafiltration process. Sep Sci Technol 36:587–603

    Article  CAS  Google Scholar 

  4. Cheang B, Zydney AL (2004) A two-stage ultrafiltration process for fractionation of whey protein isolate. J Membr Sci 231:159–167

    Article  CAS  Google Scholar 

  5. Pires IS, Palmer AF (2021) Selective protein purification via tangential flow filtration – Exploiting protein-protein complexes to enable size-based separations. J Membr Sci 618:118712

    Article  CAS  Google Scholar 

  6. Morison KR, She X (2003) Optimization and graphical representation of multi-stage membrane plants. J Membr Sci 211:59–70

    Article  CAS  Google Scholar 

  7. Kovacs Z, Discacciati M, Samhaber W (2008) Numerical simulation and optimization of multi-step batch membrane processes. J Membr Sci 324:50–58

    Article  CAS  Google Scholar 

  8. Sieq WE, Livingston AG, Ates C, Merschaert A (2013) Continuous solute fractionation with membrane cascades a high productivity alternative to diafiltration. Sep Purif Technol 102:1–14

    Article  Google Scholar 

  9. Patel A, Mishra S, Pawar R, Ghosh PK (2005) Purification and characterization of C-Phycocyanin from cyanobacterial species of marine and freshwater habitat. Protein Expr Purif 40:248–255

    Article  CAS  PubMed  Google Scholar 

  10. Niu JF, Wang GC, Lin XZ, Zhou BC (2007) Large-scale recovery of C-phycocyanin from Spirulina platensis using expanded bed adsorption chromatography. J Chromatogr B 850:267–276

    Article  CAS  Google Scholar 

  11. Pagels F, Guedes AC, Amaro HM, Kijjoa A, Vasconcelos V (2019) Phycobiliproteins from cyanobacteria: chemistry and biotechnological applications. Biotechnol Adv 37:422–443

    Article  CAS  PubMed  Google Scholar 

  12. Prabakaran G, Sampathkumar P, Kavisri M, Moovendhan M (2020) Extraction and characterization of phycocyanin from Spirulina platensis and evaluation of its anticancer, antidiabetic and antiinflammatory effect. Int J Biol Macromol 153:256–263

    Article  CAS  PubMed  Google Scholar 

  13. Pan-utai W, Iamtham S (2019) Extraction, purification and antioxidant activity of phycobiliprotein from Arthrospira platensis. Process Biochem 82:189–198

    Article  CAS  Google Scholar 

  14. Bermejo R, Talavera EM, Alvarez-Pez JM, Orte JC (1997) Chromatographic purification of biliproteins from Spirulina platensis High-performance liquid chromatographic separation of their α and β subunits. J Chromatogr A 778:441–450

    Article  CAS  Google Scholar 

  15. Moraes CC, Kalil SJ (2009) Strategy for a protein purification design using C-phycocyanin extract. Biores Technol 100:5312–5317

    Article  CAS  Google Scholar 

  16. Lauceri R, Zittelli GC, Torzillo G (2019) A simple method for rapid purification of phycobiliproteins from Arthrospira platensis and Porphyridium cruentum biomass. Algal Res 44:101685

    Article  Google Scholar 

  17. Chaiklahan R, Chirasuwan N, Loha V, Tia S, Bunnag B (2011) Separation and purification of phycocyanin from Spirulina sp. using a membrane process. Biores Technol 102:7159–7164

    Article  CAS  Google Scholar 

  18. Jaffrin MY, Ph CJ (1994) Optimization of ultrafiltration and diafiltration processes for albumin production. J Membr Sci 97:71–81

    Article  CAS  Google Scholar 

  19. van Reis R, Saksena S (1997) Optimization diagram for membrane separations. J Membr Sci 129:19–29

    Article  Google Scholar 

  20. Yazdanshenas M, Tabatabaeenezhad AR, Roostaazad R, Khoshfetrat AB (2005) Full scale analysis of apple juice ultrafiltration and optimization of diafiltration. Sep Purif Technol 47:52–57

    Article  CAS  Google Scholar 

  21. Kovacs Z, Discacciati M, Samhaber W (2009) Modeling of batch and semi-batch membrane filtration processes. J Membr Sci 327:164–173

    Article  CAS  Google Scholar 

  22. Braga LG, Silva TE, Cintra FO, Takagi M (2015) Mathematical model for simultaneous microfiltration and ultrafiltration of Haemophilus influenzae type b to cell separation and polysaccharide recovery. J Membr Sci 481:188–194

    Article  CAS  Google Scholar 

  23. Ahrer K, Buchacher A, Iberer G, Jungbauer A (2006) Effects of ultra-/diafiltration conditions on present aggregates in human immunoglobulin G preparations. J Membr Sci 274:108–115

    Article  CAS  Google Scholar 

  24. Abalde J, Betancourt L, Torres E, Cid A, Barwell C (1998) Purification and characterization of phycocyanin from marine cyanobacterium Synechococcus sp. IO9201. Plant Sci 136:109–120

    Article  CAS  Google Scholar 

  25. Liu LN, Chen XL, Zhang XY, Zhang YZ, Zhou BC (2005) One-step chromatography method for efficient separation and purification of R-phycoerythrin from Polysiphonia urceolata. J Biotechnol 116:91–100

    Article  CAS  PubMed  Google Scholar 

  26. Chaiklahan R, Chirasuwan N, Loha V, Tia S, Bunnag B (2018) Stepwise extraction of high-value chemicals from Arthrospira (Spirulina) and an economic feasibility study. Biotechnol Rep 20:e00280

    Article  Google Scholar 

  27. Hidane T, Demura M, Morisada S, Ohto K, Kawakita H (2022) Mathematical analysis of cake layer formation in an ultrafiltration membrane of a phycobiliprotein-containing solution extracted from Nostoc commune. Biochem Eng J 179:108333

    Article  CAS  Google Scholar 

  28. Qi T, Da X, Zhang Y, Chen X, Cui Z, Qiu M, Fan Y (2020) Modeling and optimal operation of intermittent feed diafiltration for refining oligodextran using nanoporous ceramic membranes. Sep Purif Technol 253:117491

    Article  CAS  Google Scholar 

  29. Denis C, Masse A, Fleurence J, Jaouen P (2009) Concentration and pre-purification with ultrafiltration of a R-phycoerythrin solution extracted from macro-algae Grateloupia turuturu: Process definition and up-scaling. Sep Purif Technol 69:37–42

    Article  CAS  Google Scholar 

  30. Sharma A, Bracewell DG (2019) Characterisation of porous anodic alumina membranes for ultrafiltration of protein nanoparticles as a size mimic of virus particles. J Membr Sci 580:77–91

    Article  CAS  Google Scholar 

  31. Gonzalez-Munoz MJ, Parajo JC (2010) Diafiltration of Eucalyptus wood autohydrolysis liquors: Mathematical modeling. J Membr Sci 346:98–104

    Article  CAS  Google Scholar 

  32. Yamazaki K, Matsuda M, Yamamoto K, Yakushiji T, Sakai K (2011) Internal and surface structure characterization of cellulose triacetate hollow-fiber dialysis membranes. J Membr Sci 368:34–40

    Article  CAS  Google Scholar 

  33. Lauceri R, Zittelli GC, Maserti B, Torzillo G (2018) Purification of phycocyanin from Arthrospira platensis by hydrophobic interaction membrane chromatography. Algal Res 35:333–340

    Article  Google Scholar 

  34. Minkova KM, Tchernov AA, Tchorbadjieva MI, Fournadjieva ST, Antova RE, Ch BM (2003) Purification of C-phycocyanin from Spirulina (Arthrospira) fusiformis. J Biotechnol 102:55–59

    Article  CAS  PubMed  Google Scholar 

  35. Jung S-B, Kang M-S, Jung J-Y, Kwon J-H (2022) A simple method for extracting phycocyanin from Arthrospira (Spirulina) platensis by autolysis. Bioproc Biosyst Eng 45:1731–1738

    Article  CAS  Google Scholar 

  36. Silveira SY, Quines LKM, Burkert CAV, Kalil SJ (2008) Separation of phycocyanin from Spirulina platensis using ion exchange chromatography. Bioproc Biosyst Eng 31:477–482

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The analysis of materials was supported by the Analytical Research Center for Experimental Sciences, Saga University. We thank Katherine Thieltges from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Funding

This study was partially supported by the Saga University Algae Research Project, Saga University, Japan.

Author information

Authors and Affiliations

Authors

Contributions

TH: Methodology, Formal analysis, and Writing – Original Draft. MD: Resources, Methodology, Conceptualization. SM: Methodology. KO: Methodology, Conceptualization. HK: Conceptualization, Resources, Writing – Review & Editing.

Corresponding author

Correspondence to Hidetaka Kawakita.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict of financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 76 KB)

Supplementary file2 (DOCX 71 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hidane, T., Demura, M., Morisada, S. et al. Efficient separation of phycocyanin of Nostoc commune by multistep diafiltration using ultra-filtration membrane modules. Bioprocess Biosyst Eng 46, 1447–1456 (2023). https://doi.org/10.1007/s00449-023-02911-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02911-3

Keywords

Navigation