Skip to main content
Log in

Cloning and characterization of a delta-6 desaturase encoding gene from Nannochloropsis oculata

  • Biology
  • Published:
Chinese Journal of Oceanology and Limnology Aims and scope Submit manuscript

Abstract

A gene (NANOC-D6D) encoding a desaturase that removes two hydrogen atoms from fatty acids at delta 6 position was isolated from a cDNA library of Nannochloropsis oculata (Droop) D. J. Hibberd (Eustigmatophyceae). The unicellular marine microalga N. oculata synthesizes rich long chain polyunsaturated fatty acids (LCPUFAs), including eicosapentaenoic acid (20:5n-3, EPA). The deduced protein contains 474 amino acids that fold into 4 trans-membrane domains. The neighbor-joining phylogenetic tree indicates that NANOC-D6D is phylogenetically close to the delta-6 fatty acid desaturase of marine microalgae such as Glossomastix chrysoplasta, Thalassiosira pseudonana, and Phaeodactylum tricornutum. The gene was expressed in Saccharomyces cerevisiae INVScl to verify the substrate specificity of NANOC-D6D. Our results suggest that the recombinant NANOC-D6D simultaneously desaturates linoleic acid (LA) and α-linolenic acid (ALA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cole G M, Lim G P, Yang F S, Teter B, Begum A, Ma Q L, Harris-White M E, Frautschy S A. 2005. Prevention of Alzheimer’s disease: omega-3 fatty acid and phenolic anti-oxidant interventions. Neurobiol. Aging, 26S: 133–136.

    Article  Google Scholar 

  • Chiu S Y, Kao C Y, Tsai M T, Ong S C, Chen C H, Lin C S. 2009. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technology, 100(2): 833–838.

    Article  Google Scholar 

  • Domergue F, Lerchl J, Zahringer U, Heinz E. 2002. Cloning and functional characterization of Phaeodactylum tricornutum front-end desaturases involved in eicosapentaenoic acid biosynthesis. Eur. J. Biochem., 269(16): 4 105–4 113.

    Article  Google Scholar 

  • Guillard R R, Ryther J H. 1962. Studies of marine planktonic diatom: Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can. J. Microbiol., 8: 229–239.

    Article  Google Scholar 

  • Guillard R R L. 1975. Culture of phytoplankton for feeding marine invertebrates. In: Smith W L, Chanley M H eds. Culture of Marine Invertebrate Animals. Plenum Press, New York, USA. p.26–60.

    Google Scholar 

  • Hardman W E. 2001. (n-3) fatty acids and cancer therapy. J. Nutr., 134: 3 427S–3 430S.

    Google Scholar 

  • Harwood J L, Guschina I A. 2009. The versatility of algae and their lipid metabolism. Biochimie, 91(6): 679–684.

    Article  Google Scholar 

  • Hsiao T Y, Holmes B, Blanch H W. 2007. Identification and functional analysis of a delta-6 desaturase from the marine microalga Glossomastix chrysoplasta. Marine Biotechnology, 9(2): 154–165.

    Article  Google Scholar 

  • Kaewsuwan S, Cahoon E B, Perroud P F, Wiwat C, Panvisavas N, Quatrano R S, Cove D J, Bunyapraphatsaran N. 2006. Identification and functional characterization of the moss Physcomitrella patens Δ5-desaturase gene involved in arachidonic and eicosapentaenoic acid biosynthesis. J. Biol. Chem., 281(31): 88–97.

    Article  Google Scholar 

  • Kurdrid P, Subudhi S, Hongsthong A, Ruengjitchatchawalya M, Tanticharoen M. 2005. Functional expression of Spirulina-Delta6 desaturase gene in yeast, Saccharomyces cerevisiae. Molecular Biology Reports, 32(4): 215–226.

    Article  Google Scholar 

  • Lauritzen L, Hansen H S, Jorgensen M H, Michaelsen K F. 2001. The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog. Lipid Res., 40(1–2): 1–94.

    Article  Google Scholar 

  • Leonard A E, Bobik E G, Dorado J, Kroeger P E, Chuang L T, Thurmond J M, Parker-Barnes J M, Das T, Huang Y S, Mukerji P. 2001. Cloning of a human cDNA encoding a novel enzyme involved in the elongation of long-chain polyunsaturated fatty acids. Biochem. J., 350: 765–770.

    Article  Google Scholar 

  • Lepage G, Toy C C. 1984. Improved recovery of fatty acid through direct transesterification without prior extraction purification. J. Lipid. Res., 25(12): 1 369–1 396.

    Google Scholar 

  • Niu Y, Kong J, Fu L, Yang J, Xu Y. 2008. Identification of a novel C20-elongase gene from the marine microalgae Pavlova viridis and its expression in Escherichia coli. Marine Biotechnology, 11(1): 17–23.

    Article  Google Scholar 

  • Nugent A P. 2004. The metabolic syndrome. Nutr. Bull, 29: 36–43.

    Article  Google Scholar 

  • Qi B X, Beaudoin F, Fraser T, Stobart A K, Napier J A, Lazarus C M. 2002. Identification of a cDNA encoding a novel C18-Δ9 polyunsaturated fatty acid-specific elongating activity from the docosahexaenoic acid (DHA)-producing microalgae, Isochrysis galbana. FEBS Lett., 510(3): 159–165.

    Article  Google Scholar 

  • Qi B X, Fraser T, Mugford S, Dobson G, Sayanova O, Butle J, Napier J A, Stobart A K, Lazarus C M. 2004. Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat. Biotechnol, 22: 739–745.

    Article  Google Scholar 

  • Shi J, Pan K H, Yu J Z, Zhu B H, Yang G P, Yu W G, Zhang X Y. 2008. Analysis of expressed sequence tags from the marine microalgae Nannochloropsis oculata (Eustigmatophyceae). J. Phycoi, 44: 99–102.

    Article  Google Scholar 

  • Simopoulos A P. 2002. Omega-3 fatty acids in inflammation and autoimmune disease. J. Am. Coll. Nutr., 21(6): 495–505.

    Google Scholar 

  • Sperling P, Heinz E. 2001. Desaturases fused to their electron donor. Eur. J. Lipid Sci Technol, 103(3): 158–180.

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol, 24(8): 1 596–1 599.

    Article  Google Scholar 

  • Tonon T, Harvey D, Larson T R, Graham I A. 2002a. Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemistry, 61(1): 15–24.

    Article  Google Scholar 

  • Tonon T, Sayanova O, Michaelson L V, Qing R, Harvey D, Larson T R, Li Y, Napier J A, Graham I A. 2002b. Fatty acid desaturase from microalgae Thalassiosira pseudonana. FEBS J., 272(13): 3 401–3 412.

    Google Scholar 

  • Volkman J K, Brown M R, Dunstan G A, Jeffrey S W. 1993. The biochemical composition of marine microalgae from the class Eustigmatophyceae. J. Phycoi, 29(1): 69–78.

    Article  Google Scholar 

  • Yu J Z, Ma X L, Pan K H, Yang G P, Yu W G 2010. Construction and characterization of a normalized cDNA library of Nannochloropsis oculata (Eustigmatophyceae). Chinese Journal of Oceanology and Limnology, 28(4): 802–807.

    Article  Google Scholar 

  • Zhou X R, Robert S S, Petrie J R, Frampton D M F, Mansour M P, Blackburn S I, Nichols P D, Green A G, Singh S P. 2007. Isolation and characterization of gene from the marine microalgae Pavlova salina encoding three front-end desaturase involved in docosahexaenoic acid biosynthesis. Phytochemistry, 68(6): 785–796.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kehou Pan  (潘克厚).

Additional information

Supported by the National Key Technology R&D Program in the 11th Five-Year Plan of China (No. 2006BAD09A03-2) and the National High-tech Research and Development Program of China (863 Program) (No. 2007AA09Z427)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, X., Yu, J., Zhu, B. et al. Cloning and characterization of a delta-6 desaturase encoding gene from Nannochloropsis oculata . Chin. J. Ocean. Limnol. 29, 290–296 (2011). https://doi.org/10.1007/s00343-011-0048-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00343-011-0048-0

Keyword

Navigation