Skip to main content
Log in

U-fiber diffusion kurtosis and susceptibility characteristics in relapsing–remitting multiple sclerosis may be related to cognitive deficits and neurodegeneration

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the diffusion kurtosis and susceptibility change in the U-fiber region of patients with relapsing–remitting multiple sclerosis (pwRRMS) and their correlations with cognitive status and degeneration.

Materials and methods

Mean kurtosis (MK), axial kurtosis (AK), radial kurtosis (RK), kurtosis fractional anisotropy (KFA), and the mean relative quantitative susceptibility mapping (mrQSM) values in the U-fiber region were compared between 49 pwRRMS and 48 healthy controls (HCs). The U-fiber were divided into upper and deeper groups based on the location. The whole brain volume, gray and white matter volume, and cortical thickness were obtained. The correlations between the mrQSM values, DKI-derived metrics in the U-fiber region and clinical scale scores, brain morphologic parameters were further investigated.

Results

The decreased MK, AK, RK, KFA, and increased mrQSM values in U-fiber lesions (p < 0.001, FDR corrected), decreased RK, KFA, and increased mrQSM values in U-fiber non-lesions (p = 0.034, p < 0.001, p < 0.001, FDR corrected) were found in pwRRMS. There were differences in DKI-derived metrics and susceptibility values between the upper U-fiber region and the deeper one for U-fiber non-lesion areas of pwRRMS and HCs (p < 0.05), but not for U-fiber lesions in DKI-derived metrics. The DKI-derived metrics and susceptibility values were widely related with cognitive tests and brain atrophy.

Conclusion

RRMS patients show abnormal diffusion kurtosis and susceptibility characteristics in the U-fiber region, and these underlying tissue abnormalities are correlated with cognitive deficits and degeneration.

Clinical relevance statement

The macroscopic and microscopic tissue damages of U-fiber help to identify cognitive impairment and brain atrophy in multiple sclerosis and provide underlying pathophysiological mechanism.

Key Points

• Diffusion kurtosis and susceptibility changes are present in the U-fiber region of multiple sclerosis.

• There are gradients in diffusion kurtosis and susceptibility characteristics in the U-fiber region.

• Tissue damages in the U-fiber region are correlated with cognitive impairment and brain atrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AK:

Axial kurtosis

DKI:

Diffusion kurtosis imaging

DST:

Digit Span Test

DTI:

Diffusion tensor imaging

DWM:

Deep white matter

EDSS:

Expanded Disability Status Scale

FLAIR:

Fluid-attenuated inversion recovery

FSS:

Fatigue Severity Scale

HAMD:

Hamilton Depression

HCs:

Healthy controls

KFA:

Kurtosis fractional anisotropy

MK:

Mean kurtosis

MoCA:

Montreal Cognitive Assessment

MPRAGE:

Magnetization prepared rapid gradient echo

MRI:

Magnetic resonance imaging

mrQSM:

Mean relative quantitative susceptibility mapping

MS:

Multiple sclerosis

NAWM:

Normal-appearing white matter

Non-UFLs:

U-fiber non-lesions

pwRRMS:

Patients with relapsing–remitting multiple sclerosis

QSM:

Quantitative susceptibility mapping

RK:

Radial kurtosis

RRMS:

Relapsing-remitting MS

SDMT:

Symbol Digit Modalities Test

SWM:

Superficial white matter

UFLs:

U-fiber lesions

References

  1. Alotaibi A, Podlasek A, AlTokhis A, Aldhebaib A, Dineen RA, Constantinescu CS (2021) Investigating microstructural changes in white matter in multiple sclerosis: a systematic review and meta-analysis of neurite orientation dispersion and density imaging. Brain Sci 11:1151

    PubMed  PubMed Central  Google Scholar 

  2. Phillips OR, Nuechterlein KH, Asarnow RF et al (2011) Mapping corticocortical structural integrity in schizophrenia and effects of genetic liability. Biol Psychiatry 70:680–689

    PubMed  Google Scholar 

  3. Nazeri A, Chakravarty MM, Felsky D et al (2013) Alterations of superficial white matter in schizophrenia and relationship to cognitive performance. Neuropsychopharmacology 38:1954–1962

    PubMed  PubMed Central  Google Scholar 

  4. Guevara M, Guevara P, Román C, Mangin JF (2020) Superficial white matter: a review on the dMRI analysis methods and applications. Neuroimage 212:116673

    PubMed  Google Scholar 

  5. Movahedian Attar F, Kirilina E, Haenelt D et al (2020) Mapping Short Association Fibers in the Early Cortical Visual Processing Stream Using In Vivo Diffusion Tractography. Cereb Cortex 30:4496–4514

    PubMed  PubMed Central  Google Scholar 

  6. Medrano Martorell S, Cuadrado Blázquez M, García Figueredo D, González Ortiz S, Capellades Font J (2012) Imágenes puntiformes hiperintensas en la sustancia blanca: una aproximación diagnóstica [Hyperintense punctiform images in the white matter: a diagnostic approach]. Radiologia 54:321–335

    CAS  PubMed  Google Scholar 

  7. Shukla DK, Keehn B, Smylie DM, Müller RA (2011) Microstructural abnormalities of short-distance white matter tracts in autism spectrum disorder. Neuropsychologia 49:1378–1382

    PubMed  PubMed Central  Google Scholar 

  8. Miki Y, Grossman RI, Jk U et al (1998) Isolated U-fiber involvement in MS: preliminary observations. Neurology 50:1301–1306

    CAS  PubMed  Google Scholar 

  9. Mesulam MM (1990) Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol 28:597–613

    CAS  PubMed  Google Scholar 

  10. Wu M, Kumar A, Yang S (2016) Development and aging of superficial white matter myelin from young adulthood to old age: mapping by vertex-based surface statistics (VBSS). Hum Brain Mapp 37:1759–1769

    PubMed  PubMed Central  Google Scholar 

  11. Liewald D, Miller R, Logothetis N, Wagner HJ, Schüz A (2014) Distribution of axon diameters in cortical white matter: an electron-microscopic study on three human brains and a macaque. Biol Cybern 108:541–557

    PubMed  PubMed Central  Google Scholar 

  12. Phillips OR, Clark KA, Luders E et al (2013) Superficial white matter: effects of age, sex, and hemisphere. Brain Connect 3:146–159

    PubMed  PubMed Central  Google Scholar 

  13. Butt AM, Berry M (2000) Oligodendrocytes and the control of myelination in vivo: new insights from the rat anterior medullary velum. J Neurosci Res 59:477–488

    CAS  PubMed  Google Scholar 

  14. Haroutunian V, Katsel P, Roussos P, Davis KL, Altshuler LL, Bartzokis G (2014) Myelination, oligodendrocytes, and serious mental illness. Glia 62:1856–1877

    CAS  PubMed  Google Scholar 

  15. Buyukturkoglu K, Vergara C, Fuentealba V et al (2022) Machine learning to investigate superficial white matter integrity in early multiple sclerosis. J Neuroimaging 32:36–47

    PubMed  Google Scholar 

  16. Oishi K, Zilles K, Amunts K et al (2008) Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter. Neuroimage 43:447–457

    PubMed  Google Scholar 

  17. Smith SM, Jenkinson M, Johansen-Berg H et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31:1487–1505

    PubMed  Google Scholar 

  18. Kirilina E, Helbling S, Morawski M et al (2020) Superficial white matter imaging: Contrast mechanisms and whole-brain in vivo mapping. Sci Adv 6:eaaz9281

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Stojanovski S, Nazeri A, Lepage C, Ameis S, Voineskos AN, Wheeler AL (2019) Microstructural abnormalities in deep and superficial white matter in youths with mild traumatic brain injury. Neuroimage Clin 24:102102

    PubMed  PubMed Central  Google Scholar 

  20. Bigham B, Zamanpour SA, Zemorshidi F, Boroumand F, Zare H (2020) Identification of superficial white matter abnormalities in Alzheimer’s disease and mild cognitive impairment using diffusion tensor imaging. J Alzheimers Dis Rep 4:49–59

    PubMed  PubMed Central  Google Scholar 

  21. Rocca MA, Amato MP, De Stefano N et al (2015) Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis. Lancet Neurol 14:302–317

    PubMed  Google Scholar 

  22. Benedict RHB, Amato MP, DeLuca J, Geurts JJG (2020) Cognitive impairment in multiple sclerosis: clinical management, MRI, and therapeutic avenues. Lancet Neurol 19:860–871

    PubMed  PubMed Central  Google Scholar 

  23. Jandric D, Lipp I, Paling D et al (2021) Mechanisms of network changes in cognitive impairment in multiple sclerosis. Neurology 97:e1886–e1897

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Li HQ, Yin B, Quan C et al (2018) Evaluation of patients with relapsing-remitting multiple sclerosis using tract-based spatial statistics analysis: diffusion kurtosis imaging. BMC Neurol 18:108

    PubMed  PubMed Central  Google Scholar 

  25. van der Weijden CW, van der Hoorn A, Potze JH et al (2022) Diffusion-derived parameters in lesions, peri-lesion, and normal-appearing white matter in multiple sclerosis using tensor, kurtosis, and fixel-based analysis. J Cereb Blood Flow Metab 42:2095–2106

    PubMed  PubMed Central  Google Scholar 

  26. Rahmanzadeh R, Galbusera R, Lu PJ et al (2022) A new advanced mri biomarker for remyelinated lesions in multiple sclerosis. Ann Neurol 92:486–502

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Schweser F, Hagemeier J, Dwyer MG et al (2021) Decreasing brain iron in multiple sclerosis: the difference between concentration and content in iron MRI. Hum Brain Mapp 42:1463–1474

    PubMed  Google Scholar 

  28. Thompson AJ, Banwell BL, Barkhof F et al (2018) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 17:162–173

    PubMed  Google Scholar 

  29. Chan KS, Marques JP (2021) SEPIA-Susceptibility mapping pipeline tool for phase images. Neuroimage 227:117611

    PubMed  Google Scholar 

  30. Haacke EM, Ayaz M, Khan A et al (2007) Establishing a baseline phase behavior in magnetic resonance imaging to determine normal vs. abnormal iron content in the brain. J Magn Reson Imaging 26:256–264

    PubMed  Google Scholar 

  31. Chen W, Zhang Y, Mu K et al (2017) Quantifying the susceptibility variation of normal-appearing white matter in multiple sclerosis by quantitative susceptibility mapping. AJR Am J Roentgenol 209:889–894

    PubMed  Google Scholar 

  32. Lu P, Yuan T, Liu X, Tian G, Zhang J, Sha Y (2020) Role of diffusional kurtosis imaging in differentiating neuromyelitis optica-related and multiple sclerosis-related acute optic neuritis: comparison with diffusion-weighted imaging. J Comput Assist Tomogr 44:47–52

    PubMed  Google Scholar 

  33. Coutu JP, Chen JJ, Rosas HD, Salat DH (2014) Non-Gaussian water diffusion in aging white matter. Neurobiol Aging 35:1412–1421

    PubMed  Google Scholar 

  34. Bian W, Tranvinh E, Tourdias T et al (2016) In vivo 7T MR quantitative susceptibility mapping reveals opposite susceptibility contrast between cortical and white matter lesions in multiple sclerosis. AJNR Am J Neuroradiol 37:1808–1815

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wisnieff C, Ramanan S, Olesik J, Gauthier S, Wang Y, Pitt D (2015) Quantitative susceptibility mapping (QSM) of white matter multiple sclerosis lesions: Interpreting positive susceptibility and the presence of iron. Magn Reson Med 74:564–570

    CAS  PubMed  Google Scholar 

  36. Sheng H, Zhao B, Ge Y (2019) Blood perfusion and cellular microstructural changes associated with iron deposition in multiple sclerosis lesions. Front Neurol 10:747

    PubMed  PubMed Central  Google Scholar 

  37. Zhang Y, Gauthier SA, Gupta A et al (2016) Quantitative susceptibility mapping and R2* measured changes during white matter lesion development in multiple sclerosis: myelin breakdown, myelin debris degradation and removal, and iron accumulation. AJNR Am J Neuroradiol 37:1629–1635

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Aljishi RH, Almatrafi RJ, Alzayer ZA, Alkhamis BA, Yaseen EE, Alkhotani AM (2021) Prevalence of anxiety and depression in patients with multiple sclerosis in Saudi Arabia: a cross-sectional study. Cureus 13:e20792

    PubMed  PubMed Central  Google Scholar 

  39. Broch L, Flemmen HØ, Simonsen CS et al (2022) Fatigue in multiple sclerosis is associated with socioeconomic factors. Mult Scler Relat Disord 64:103955

    PubMed  Google Scholar 

  40. Moore H, Nair KPS, Baster K, Middleton R, Paling D, Sharrack B (2022) Fatigue in multiple sclerosis: a UK MS-register based study. Mult Scler Relat Disord 64:103954

    PubMed  Google Scholar 

  41. Phillips OR, Joshi SH, Narr KL et al (2018) Superficial white matter damage in anti-NMDA receptor encephalitis. J Neurol Neurosurg Psychiatry 89:518–525

    PubMed  Google Scholar 

  42. Migliore S, Ghazaryan A, Simonelli I et al (2017) Cognitive impairment in relapsing-remitting multiple sclerosis patients with very mild clinical disability. Behav Neurol 2017:7404289

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Haider L, Prados F, Chung K et al (2021) Cortical involvement determines impairment 30 years after a clinically isolated syndrome. Brain 144:1384–1395

    PubMed  PubMed Central  Google Scholar 

  44. Fujimori J, Fujihara K, Wattjes M, Nakashima I (2021) Patterns of cortical grey matter thickness reduction in multiple sclerosis. Brain Behav 11:e02050

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Narayana PA, Govindarajan KA, Goel P et al (2012) Regional cortical thickness in relapsing remitting multiple sclerosis: a multi-center study. Neuroimage Clin 2:120–131

    PubMed  PubMed Central  Google Scholar 

  46. Tsagkas C, Chakravarty MM, Gaetano L et al (2020) Longitudinal patterns of cortical thinning in multiple sclerosis. Hum Brain Mapp 41:2198–2215

    PubMed  PubMed Central  Google Scholar 

  47. Wang C, Barnett MH, Yiannikas C et al (2019) Lesion activity and chronic demyelination are the major determinants of brain atrophy in MS. Neurol Neuroimmunol Neuroinflamm 6:e593

    PubMed  PubMed Central  Google Scholar 

  48. Hidalgo de la Cruz M, Valsasina P, Meani A et al (2021) Differential association of cortical, subcortical and spinal cord damage with multiple sclerosis disability milestones: A multiparametric MRI study. Mult Scler 28:406–417

    PubMed  Google Scholar 

  49. Bergsland N, Horakova D, Dwyer MG et al (2018) Gray matter atrophy patterns in multiple sclerosis: A 10-year source-based morphometry study. Neuroimage Clin 17:444–451

    PubMed  Google Scholar 

  50. Tarasiuk J, Kapica-Topczewska K, Czarnowska A, Chorąży M, Kochanowicz J, Kułakowska A (2021) Co-occurrence of fatigue and depression in people with multiple sclerosis: a mini-review. Front Neurol 12:817256

    PubMed  Google Scholar 

Download references

Funding

This study received grants from the Key Project of Technological Innovation and Application Development of Chongqing Science and Technology Bureau (CSTC2021 jscx-gksb-N0008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoya Chen or Yongmei Li.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Yongmei Li.

Conflict of interest

The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article.

Statistics and biometry

No complex statistical methods were necessary for this paper.

Informed consent

Written informed consent was obtained from all participants.

Ethical approval

This retrospective study was approved by the Institutional Review Board of the First Affiliated Hospital of Chongqing Medical University.

Study subjects or cohorts overlap

None.

Methodology

Retrospective

Cross-section study

Performed at one institution

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 504 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, D., Peng, Y., Zhu, Q. et al. U-fiber diffusion kurtosis and susceptibility characteristics in relapsing–remitting multiple sclerosis may be related to cognitive deficits and neurodegeneration. Eur Radiol 34, 1422–1433 (2024). https://doi.org/10.1007/s00330-023-10114-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-023-10114-3

Keywords

Navigation