Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Simulations of the effect of a warmer climate on atmospheric humidity

Abstract

THE increases in the concentration of water vapour constitute the single largest positive feedback in models of global climate warming caused by greenhouse gases1,2. It has been suggested3–5 that sinking air in the regions surrounding deep cumulus clouds will dry the upper troposphere and eliminate or reverse the direction of water vapour feedback. We have now tested this hypothesis by performing an idealized simulation of climate change with two different versions of a climate model. The versions differ in their parameterizations of moist convection and stratiform clouds, but both incorporate the drying due to subsidence of clear air. Despite increased drying of the upper troposphere by cumulus clouds, upper-level humidity increases in the warmer climate because of enhanced upward moisture transport by the general circulation and increased accumulation of water vapour and ice at cumulus cloud tops. The model behaviour is consistent with recent satellite estimates of the water vapour feedback6,7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Manabe, S. & Wetnerald, R. I. J. atmos. Sci. 24, 241–259 (1967).

    Article  ADS  CAS  Google Scholar 

  2. Hansen, J. et al. Climate Processes and Climate Sensitivity (eds Hansen, J. & Takahashi, T.) 130–163 (American Geophysical Union, Washington DC, 1984).

    Google Scholar 

  3. Ellsaesser, H. W. Atmos. Envir. 18, 431–434 (1984).

    Article  ADS  Google Scholar 

  4. Lindzen, R. S. Bull. Am. met. Soc. 71, 288–299 (1990).

    Article  Google Scholar 

  5. Lindzen, R. S. Bull. Am. met. Soc. 71, 1465–1467 (1990).

    Article  Google Scholar 

  6. Rind, D. et al. Nature 349, 500–503 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Raval, A. & Ramanathan, V. Nature 342, 758–761 (1989).

    Article  ADS  Google Scholar 

  8. Wallace, J. M. & Hobbs, P. V. Atmospheric Science—An Introductory Survey (Academic, New York, 1977).

    Google Scholar 

  9. Hansen, J. et al. Mon. Weath. Rev. 111, 609–662 (1983).

    Article  ADS  Google Scholar 

  10. Manabe, S. et al. Mon. Weath. Rev. 93, 769–798 (1965).

    Article  ADS  Google Scholar 

  11. Kuo, H. L. J. atmos. Sci. 31, 1232–1240 (1974).

    Article  ADS  Google Scholar 

  12. Del Genio, A. D. & Yao, M.-S. J. atmos. Sci. 45, 2641–2668 (1988).

    Article  ADS  Google Scholar 

  13. Yao, M.-S. & Del Genio, A. D. J. Clim. 2, 850–863 (1989).

    Article  ADS  Google Scholar 

  14. Del Genio, A. D. & Yao, M.-S. AMS Conf. Cloud Phys. Preprint No. 9A.4, 497–504 (American Meteorological Society, Boston, 1990).

  15. Arakawa, A. & Chen, J.-M. Short- and Medium-Range Numerical Weather Prediction, Suppl. to J. met. Soc. Japan, 107–131 (1987).

    Google Scholar 

  16. Cess, R. D. et al. J. geophys. Res. 95, 16601–16615 (1990).

    Article  ADS  Google Scholar 

  17. Oort, A. H. NOAA Prof. Paper No. 14 (US Dept. Commerce, Washington DC, 1983).

  18. Pan, Y.-H. & Oort, A. H. Mon. Weath. Rev. 111, 1244–1258 (1983).

    Article  ADS  Google Scholar 

  19. Hansen, J., Rossow, W. & Fung, I. Issues Sci. Tech. 7, 62–69 (1990).

    Google Scholar 

  20. Mitchell, J. F. B. et al. Nature 341, 132–134 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Genfo, A., Lacis, A. & Ruedy, R. Simulations of the effect of a warmer climate on atmospheric humidity. Nature 351, 382–385 (1991). https://doi.org/10.1038/351382a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/351382a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing