Skip to main content
Log in

Ion transport by mitochondria-rich cells in toad skin

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The optical sectioning video imaging technique was used for measurements of the volume of mitochondria-rich (m.r.) cells of the isolated epithelium of toad skin. Under short-circuit conditions, cell volume decreased by about 14% in response to bilateral exposure to Cl-free (gluconate substitution) solutions, apical exposure to ouabain resulted in a large increase in volume, which could be prevented either by the simultaneous application of amiloride in the apical solution or by the exposure of the epithelium to bilateral Cl-free solutions. Unilateral exposure to a Cl-free solution did not prevent ouabain-induced cell swelling. It is concluded that m.r. cells have an amiloride-blockable Na conductance in the apical membrane, a ouabain-sensitive Na pump in the basolateral membrane, and a passive Cl permeability in both membranes. From the initial rate of ouabain-induced cell volume increase the active Na current carried by a single m.r. cell was estimated to be 9.9±1.3 pA. Voltage clamping of the preparation in the physiological range of potentials (0 to −100 mV, serosa grounded) resulted in a cell volume increase with a time course similar to that of the stimulation of the voltage-dependent activation were prevented by exposure of the tissue to a Cl-free apical solution. The steady-state volume of the m.r. cells increased with the clamping voltage, and at −100 mV the volume was about 1.15 times that under short-circuit conditions. The rate of volume increase during current passage was significantly decreased by lowering the serosal K concentration (K i ) to 0.5mm, but was independent of whether K i was 2.4, 5, or 10mm. This indicates that the K conductance of the serosal membrane becomes rate limiting for the uptake of KCl when K i is significantly lower than its physiological value. It is concluded that the voltage-activated Cl currents flow through the m.r. cells and that swelling is caused by an uptake of Cl ions from the apical bath and K ions from the serosal bath. Bilateral exposure of the tissue to hypo- or hypertonic bathing solutions changed cell volume without detectable changes in the Cl conductance. The volume response to external osmotic perturbations followed that of an osmometer with an osmotically inactive volume of 21%. Using this value and the change in cell volume in response to bilateral Cl-free solutions, we calculated an intracellular steady-state Cl concentration of 19.8±1.7mm (n=6) of the short-circuited cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benos, D.J. 1982. Amiloride: a molecular probe of sodium transport in tissue and cells.Am. J. Physiol. 242:C131-C145.

    Google Scholar 

  • Biber, T.U.L., Drewnowska, K., Baumgarten, C.M., Fisher, R.S. 1985. Intracellular Cl activity changes of frog skin.Am. J. Physiol. 249:F432-F438

    Google Scholar 

  • Boulan, E.R., Ques-von Petery, M.V., Rotunno, C.A., Cereijido, M. 1978. Studies on chloride permeability of the skin ofLeptodactylus ocellatus: III. Na+ and Cl effect on electrical phenomena.J. Membrane Biol. 42:345–356

    Google Scholar 

  • Brown, D., Grosso, A., De Sousa, R.C. 1981. The amphibian epidermis: Distribution of mitochondria-rich cells and the effect of oxytocin.J. Cell. Sci. 52:197–213

    Google Scholar 

  • Bruus, K., Kristensen, P., Larsen, E.H. 1976. Pathways for chloride and sodium transport across toad skin.Acta Physiol, Scand. 97:31–47

    Google Scholar 

  • Candia, O.A. 1978. Reduction of chloride fluxes by amiloride across the short circuited frog skin.Am. J. Physiol. 234:F437-F445

    Google Scholar 

  • Dörge, A., Rick, R., Thurau, K. 1985. Cl transport across the basolateral membrane in frog skin epithelium.Pfluegers Arch. 405 (Suppl. 1):s8-s11

    Google Scholar 

  • Ferreira, K.T.G., Ferreira, H.G. 1981. The regulation of volume and ion composition of frog skin.Biochim. Biophys. Acta 646:193–202

    Google Scholar 

  • Foskett, J.K., Ussing, H.H. 1986. Localization of chloride conductance to mitochondria-rich cells in frog skin epithelium.J. Membrane Biol. 91:251–258

    Google Scholar 

  • Fuchs, W., Larsen, E.H., Lindemann, B. 1977. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin.J. Physiol. (London) 267:137–166

    Google Scholar 

  • Giraldez, F., Ferreira, K.T.G. 1984. Intracellular chloride activity and membrane potential in stripped frog skin (Rana temporaria).Biochim. Biophys. Acta,769:625–628

    Google Scholar 

  • Hanrahan, J.W., Alles, W.P., Lewis, S.A. 1985. Single anion selective channels in basolateral membrane of a mammalian tight epithelium.Proc. Natl. Acad. Sci. USA. 82:7791–7795

    Google Scholar 

  • Harck, A., Larsen, E.H. 1986. Concentration dependence of halide fluxes and halide selectivity of the anion pathway in toad skin.Acta Physiol. Scand. 128:289–304

    Google Scholar 

  • Harvey, B.J., Kernan, R.P. 1984. Intracellular ion activities in frog skin in relation to external sodium and effects of amiloride and/or ouabain.J. Physiol. (London) 349:501–517

    Google Scholar 

  • Katz, U., Larsen, E.H. 1984. Chloride transport in toad skin (Bufo viridis): The effect of salt adaptation.J. Exp. Biol. 109:353–372

    Google Scholar 

  • Katz, U., Scheffey, C. 1986. The voltage-dependent chloride conductance of toad skin is localized to mitochondria-rich cells.Biochim. Biophys. Acta 861:480–482

    Google Scholar 

  • Kirschner, L.B. 1970. The study of NaCl transport in aquatic animals.Am. Zool. 10:365–376

    Google Scholar 

  • Koefoed-Johnsen, V., Ussing, H.H. 1958. The nature of the frog skin potential.Acta Physiol. Scand. 25:150–163

    Google Scholar 

  • Koefoed-Johnsen, V., Ussing, H.H. 1974. Transport pathways in frog skin and their modification by copper ions.In: Secretory Mechanisms of Exocrine Glands. N.A. Thorn and O.H. Petersen, editors. VII Alfred Benzon Symposium. pp. 411–419. Munksgaard, Copenhagen

    Google Scholar 

  • Kristensen, P. 1978. Effect of amiloride on chloride transport across amphibian epithelia.J. Membrane Biol. Special Issue:167–185

    Google Scholar 

  • Kristensen, P. 1981. Is chloride transfer in frog skin localized to a special cell type?Acta Physiol. Scand. 113:123–124

    Google Scholar 

  • Kristensen, P. 1982. Chloride transport in frog skin.In: Chloride Transport in Biological Membranes. J.A. Zadunaisky, editor. pp. 310–322. Academic, New York

    Google Scholar 

  • Kristensen, P. 1983. Exchange diffusion, electrodiffusion and rectification in the chloride transport pathway of frog skin.J. Membrane Biol. 72:141–151

    Google Scholar 

  • Kristensen, P., Larsen, E.H. 1978. Relation between chloride exchange diffusion and a conductive chloride pathway across the isolated skin of the toadBufo bufo.Acta Physiol. Scand. 102:22–34

    Google Scholar 

  • Kristensen, P., Ussing, H.H. 1985. Epithelial organization.In: The Kidney: Physiology and Patophysiology. Vol. 2, pp 173–188. D.W. Seldin and G. Giebisch, editors. Raven, New York

    Google Scholar 

  • Larsen, E.H., Kristensen, P. 1978. Properties of a conductive cellular chloride pathway in the skin of the toad (Bufo bufo).Acta Physiol. Scand. 102:1–21

    Google Scholar 

  • Larsen, E.H., Rasmussen, B.E. 1982. Chloride channels in toad skin.Philos. Trans. R. Soc. London B 299:413–443

    Google Scholar 

  • Larsen, E.H., Rasmussen, B.E. 1985. A mathematical model of amphibian skin epithelium with two types of transporting cellular units.Pfluegers Arch. 405:S50-S58

    Google Scholar 

  • Larsen, E.H., Ussing, H.H., Spring, K.R. 1986. Volume response of mitochondria-rich cells of toad skin to amiloride and Na-free outside solution.Fed. Proc. 45:746

    Google Scholar 

  • Lucke, B., McCutcheon, M. 1932. The living cell as an osmotic system and its permeability to water.Physiol. Rev. 12:68–139

    Google Scholar 

  • Macey, R.I., Meyers, S. 1963. Dependence of chloride permeability on sodium in the isolated frog skin.Am. J. Physiol. 204:1095–1099

    Google Scholar 

  • MacRobbie, E.A.C., Ussing, H.H. 1961. Osmotic behaviour of the epithelial cells of frog skin.Acta Physiol. Scand. 53:348–365

    Google Scholar 

  • Mandel, L.H., Curran, P.F. 1972. Chloride flux via a shunt pathway in frog skin: Apparent exchange diffusion.Biochim. Biophys. Acta 282:258–264

    Google Scholar 

  • Marsh, D.J., Jensen, P.K., Spring, K.R. 1985. Computer-based determination of size and shape in living cells.J. Microsc. 137:281–292

    Google Scholar 

  • Nagel, W., Garcia-Diaz, J.F., Armstrong W.McD. 1981. Intracellular ionic activities in frog skin.J. Membrane Biol. 61:127–134

    Google Scholar 

  • Nagel, W., Garcia-Diaz, J.F., Essig, A. 1983. Contribution of junctional conductance to the cellular voltage-divider ratio in frog skins.Pfluegers Arch. 399:336–341

    Google Scholar 

  • Nelson, D.J., Tang, J.M., Palmer, L.G. 1984. Single-channel recordings of apical membrane chloride conductance in A6 epithelial cells.J. Membrane Biol. 80:81–89

    Google Scholar 

  • Ques-von Petery, M.V., Rotunno, C.A., Cereijido, M. 1978. Studies on chloride permeability of the skin ofLeptodactylus ocellatus: I. Na+ and Cl effect on passive movements of Cl.J. Membrane Biol. 42:317–330

    Google Scholar 

  • Rick, R., Dörge, A., Arnim, E. von Thurau, K. 1978. Electron microprobe analysis of frog skin epithelium: Evidence for a syncytial sodium transport compartment.J. Membrane Biol. 39:313–331

    Google Scholar 

  • Rick, R., Dörge, A., Katz, U., Bauer, R., Thurau, K. 1980. The osmotic behavior of toad skin epithelium (Bufo viridis).Pfluegers Arch. 385:1–10

    Google Scholar 

  • Rick, R., Roloff, C., Dörge, A., Beck, F.X., Thurau, K. 1984. Intracellular electrolyte concentrations in the frog skin epithelium: Effect of vasopressin and dependence on the Na concentration in the bathing media.J. Membrane Biol. 78:129–145

    Google Scholar 

  • Spring, K.R. 1985. The study of epithelial function by quantitative light microscopy.Pfluegers Arch. 405:s23-s27

    Google Scholar 

  • Spring, K.R., Hope, A. 1978. Size and shape of the lateral intercellular spaces in a living epithelium.Science 200:54–57

    Google Scholar 

  • Spring, K.R., Ussing, H.H. 1986. The volume of mitochondria-rich cells of frog skin epithelium.J. Membrane Biol. 92:21–26

    Google Scholar 

  • Ussing, H.H. 1982a. Volume regulation of frog skin epithelium.Acta Physiol. Scand. 114:363–369

    Google Scholar 

  • Ussing, H.H. 1982b. Pathways for transport in epithelia.In: Functional Regulation at the Cellular and Molecular Level R.A. Corradino, editor. pp. 285–297. Elsevier, Amsterdam

    Google Scholar 

  • Ussing, H.H. 1985. Volume regulation and basolateral co-transport of sodium, potassium, and chloride ions in frog skin epithelium.Pfleugers Arch. 405(Suppl. 1):S1-S7

    Google Scholar 

  • Voûte, C.L., Meier, W. 1978. The mitochondria rich cell of frog skin as hormone sensitive ‘shunt’ path.J. Membrane Biol. 40S:141–165

    Google Scholar 

  • Willumsen, N., Larsen, E.H. 1985. Passive chloride currents in toad skin: Potential dependence and relation to mitochondria-rich cell density.In: Transport Processes, Iono- and Osmoregulation. R. Gilles and M. Gilles-Baillien, editors. pp. 20–30. Springer Verlag, Berlin

    Google Scholar 

  • Willumsen, N.J., Larsen, E.H. 1986. Membrane potentials and intracellular Cl activity of toad skin epithelium in relation to activation and deactivation of the transepithelial Cl conductance.J. Membrane Biol. 94:173–190

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larsen, E.H., Ussing, H.H. & Spring, K.R. Ion transport by mitochondria-rich cells in toad skin. J. Membrain Biol. 99, 25–40 (1987). https://doi.org/10.1007/BF01870619

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870619

Key Words

Navigation