Skip to main content
Log in

Numerical simulation of tides in the World Ocean: 3. A solution to the spectral problem

Numerisches Modell der Gezeiten im Weltozean: 3. Lösung der Spektralaufgabe

Simulation numérique de marées dans l'Océan mondial: 3. Une solution au problème du spectre

  • Published:
Deutsche Hydrografische Zeitschrift Aims and scope Submit manuscript

Summary

The spectral problem is formulated as an initial boundary-value problem for free oscillations excited by an arbitrary initial disturbance. Numerical solution to this problem shows that the spectrum of eigenoscillations of the World Ocean in a range of periods from 8 hours and above contains more than 30 energetically significant modes. In particular, in semi-diurnal and diurnal spectral bands, there are modes with periods 11.96; 12.50; 12.68; 12.82 and 22.50; 23.87; 25.90 h quite close to the periods of main harmonics of the tide-generating potential. This fact, together with qualitative similarity of spatial pattern of these modes and observed tides, can be a direct proof of the resonance origin of semi-diurnal and diurnal tides in the World Ocean.

Zusammenfassung

Die Spektralaufgabe wird als Anfangs-Randwertaufgabe für Eigenschwingungen, die durch eine beliebige Anfangsstörung angeregt sind, betrachtet. In der numerischen Lösung sind über 30 energetisch signifikante Eigenschwingungen mit einer Periode von 8 Stunden und mehr enthalten. Insbesondere treten in den zwölfstündigen und vierundzwanzigstündigen Spektralbereichen Perioden von 11,96; 12,50; 12,68; 12,82 und 22,50; 23,87; 25,90 h auf, die in der Nähe der halb- und eintägigen Gezeitenkräfte liegen. Dieser Umstand und auch die qualitative Ähnlichkeit dieser Eigenschwingungen mit den beobachteten Gezeiten können als direkter Beweis dafür dienen, daß die zwölfstündigen und vierundzwanzigstündigen Gezeiten im Weltozean durch Resonanz entstehen.

Résumé

Le problème du spectre est formulé en tant que problème initial de valeur aux limites pour des oscillations libres excitées par une perturbation initiale arbitraire. La solution numérique à ce problème montre que le spectre d'oscillations propres de l'Océan mondial dans une gamme de périodes de 8 heures et au-dessus contient plus de 30 modes ayant une signification énergétique. En particulier, dans les bandes du spectre diurnes et semi-diurnes, il y a des modes avec des périodes de 11,96; 12,50; 12,68, 12,82 et 22,50; 23,87; 25,90 h tout à fait proches des périodes d'harmoniques majeures du potentiel générateur de marée. Ce fait, ainsi que la similitude qualitative du type spatial de ces modes et des marées observées, peut être une preuve directe du fait que les marées diurnes et semi-diurnes dans l'Océan mondial naissent par résonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

f :

Coriolis parameter

g :

gravity acceleration

H :

ocean depth

k :

unit vector directed vertically upwards

L1 :

tidal Laplace's operator

L2 :

operator characterizing effects of loading and self-attraction of ocean tides

ℒ:

L1+L2

n :

No. of spherical harmonic in expansion

n :

unit vector directed along outer normal to coastal line

t :

time

u :

depth-averaged vector of tidal current velocity

w :

vector with components (u, ζ)

w * :

vector, complex-conjugated withw

γn :

Love's reduction factor ofn-th order

σ:

frequency of eigenoscillation

ϱ0 :

mean water density

ϱ :

mean density of Earth's matter

ζ:

deviation of ocean free surface from its undisturbed state

ɛ:

parameter varying within (0,1)

γ=iσ:

eigennumber of Laplace's operator ℒ

References

  • Accad, Y. and C. L. Pekeris, 1978: Solution of the tidal equations for the M2 and S2 tides in the World Ocean from a knowledge of the tidal potential alone. Philos. Trans. r. Soc. (A)290, 235–266.

    Google Scholar 

  • Darwin, G. H., 1902: A new theory of the tides of terrestrial oceans. Nature, Lond.66, 444–445.

    Article  Google Scholar 

  • Dikiy, L. A., 1969: A theory of oscillations of the Earth's atmosphere. Lenigrad: Gidrometeoizdat Publ. House. 195 pp.

    Google Scholar 

  • Ferrel, W., 1874: Tidal researches. Rep. US Coast surv., App. P. 257.

  • Garrett, C. J. R., 1974: Normal modes of the Bay of Fundy and Gulf of Maine. Can. J. Earth Sci.11, 549–556.

    Article  Google Scholar 

  • Garrett, C. J. R. and D. Greenberg, 1977: Predicting changes in tidal regime: The open boundary problem. J. phys. Oceanogr.7, 171–181.

    Article  Google Scholar 

  • Gates, W. L. and A. B. Nelson, 1975: A new (revised) tabulation of the Scripps topography on a 1o global grid. Part 2: Ocean depths. Report prep. for Defence Adv. Res. Projects Agency, R.-1227-1-ARPA. Santa Monica, Calif: Rand Corporation, 137 S.

    Google Scholar 

  • Gotlib, V. Yu. and B. A. Kagan, 1980a: Simulation of tides in the World Ocean with allowance for the shelf effects. Dokl. Akad. Nauk SSSR,251, 710–713.

    Google Scholar 

  • Gotlib, V. Yu. and B. A. Kagan, 1980b: Resonance periods of the World Ocean. Dokl. Akad. Nauk SSSR,252, 725–728.

    Google Scholar 

  • Gotlib, V. Yu. and B. A. Kagan, 1982: Numerical simulation of tides in the World Ocean: 2. Experiments on the sensitivity of the solution to choice of shelf effect parameterization and to variations of shelf parameters. Dt. hydrogr. Z.35, 1–14.

    Article  Google Scholar 

  • Harris, R. A., 1904: Manual of tides, P. 4B: Cotidal lines of the World. Rep. US Coast Geod. Surv., Appl. No. 5, 315–400.

    Google Scholar 

  • Hendershott, M. C., 1973: Ocean tides. EOS, Trans. Amer. Geophys. Un.54, 76–86.

    Article  Google Scholar 

  • Lamb, H., 1932: Hydrodynamics. 6. ed. Cambridge Univ. Press. 738 pp.

  • Longuet-Higgins, M. S., 1968: The eigen function of Laplace's tidal equations over a sphere. Philos. Trans. r. Soc. (A)262, 511–607.

    Article  Google Scholar 

  • Longuet-Higgins, M. S. and G. P. Pond, 1970: The free oscillations of fluid on a hemisphere bounded by meridians of longitude. Philos. Trans. r. Soc. (A)266, 193–223.

    Google Scholar 

  • Papa, L., 1977: The free oscillations of the Ligurian Sea computed by the HN-method. Dt. hydrogr. Z.30, 81–90.

    Article  Google Scholar 

  • Pekeris, C. L. and Y. Accad, 1969: Solution of Laplace's equations for the M2-tide in the World Ocean. Philos. Trans. r. Soc. (A)265, 413–436.

    Google Scholar 

  • Platzman, G. W., 1972: Two-dimensional free oscillations in natural basins. J. phys. Oceanogr.2, 117–138.

    Article  Google Scholar 

  • Platzman, G. W., 1975: Normal modes of the Atlantic and Indian oceans. J. phys. Oceanogr.5, 201–221.

    Article  Google Scholar 

  • Pnueli, A. and C. L. Pekeris, 1968: Free tidal oscillations in rotating flat basins of the form of rectangles and sectors of circles. Philos. Trans. r. Soc. (A)263, 149–171.

    Google Scholar 

  • Protasov, A. V., 1979: A numerical method for solution of a problem of free oscillations of the World Ocean to a barotropic approximation. Meteorol. i gidrol. No. 6, 57–66.

    Google Scholar 

  • Proudman, J., 1916: On the dynamical theory of tides. Part 2. Flat seas. Proc. London Math. Soc. Ser. 2,18, 21–50.

    Google Scholar 

  • Proudman, J., 1944: The tides of the Atlantic Ocean. Month. Not. Roy. Astron. Soc.104, 244–256.

    Google Scholar 

  • Rao, D. B., 1966: Free gravitational oscillations in rotating rectangular basins. J. Fluid Mech.25, 523–555.

    Article  Google Scholar 

  • Rao, D. B. and D. J. Schwab, 1976a: Two-dimensional normal modes in arbitrary enclosed basins on a rotaring Earth: Application to Lakes Ontario and Superior. Philos. Trans. r. Soc. (A)287, 63–96.

    Google Scholar 

  • Rao, D. B., C. H. Mortimer and D. J. Schwab, 1976b: Surface normal modes of Lake Michigan: Claculations compared with spectra of observed water level fluctuations. J. phys. Oceanogr.6, 575–588.

    Article  Google Scholar 

  • Schwab, D. J., 1977: Internal free oscillations in Lake Ontario. Limnol. Oceanogr.22, 700–708.

    Article  Google Scholar 

  • Wübber, C. and W. Krauss, 1979: The two-dimensional seiches of the Baltic Sea. Oceanol. Acta,2, 435–446.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gotlib, V.Y., Kagan, B.A. Numerical simulation of tides in the World Ocean: 3. A solution to the spectral problem. Deutsche Hydrographische Zeitschrift 35, 45–58 (1982). https://doi.org/10.1007/BF02226268

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02226268

Keywords

Navigation