Skip to main content
Log in

Ultrastructure of hepatocytes in golden ide (Leuciscus idus melanotus L.; Cyprinidae: Teleostei) during thermal adaptation

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

The morphological alterations of hepatocytes of golden ide, Leuciscus idus melanotus, following adaptation to low and high temperatures (14 and 28°C) were investigated by means of light and electron microscopy. The temperature-dependent behaviour of peroxisomes was visualized cytochemically with the alkaline diaminobenzidine medium; the morphological studies were supplemented by the biochemical determination of catalase activity.

Cold adaptation of ide hepatocytes is manifested by proliferation and stacking of endoplasmic reticulum, an enhanced secretory activity of Golgi fields and a higher number of peroxisomes as compared with the warmadapted animals. The latter organelles are characterized by a marked heterogeneity in size, shape and catalase activity, and by a more intimate association with mitochondria and endoplasmic reticulum. The occurrence of small peroxisomal profiles is restricted to lower temperature. Catalase activity can be shown both cytochemically and biochemically to increase during cold adaptation.

Whereas the number of mitochondria seems to be unaffected by thermal adaptation, stacking of mitochondria as well as the formation of intramitochondrial membrane piles indicate cold-adaptive processes.

A feature typical of warm-adaptation is the formation of membrane-glycogen complexes, which may represent the morphological expression of enhanced carbohydrate metabolism documented in a decreased storage of glycogen at 28°C. At 28°C lipid is the predominant storage product.

These findings indicate that fish liver is well-suited to serve as a model for the analysis of the interaction of environmental temperature conditions and hepatic morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews JW, Stickney RR (1972) Interactions of feeding rates and environmental temperature on growth, food conversion and body composition of channel catfish. Am Fish Soc 101:94–99

    Google Scholar 

  • Atherton WD, Aitken A (1970) Growth, nitrogen and fat metabolism in Salmo gairdneri Rich. Comp Biochem Physiol 36:719–747

    Google Scholar 

  • Barni S, Bernocchi G, Gerzelli G (1985) Morphohistochemical changes in hepatocytes during the life cycle of the European eel. Tissue Cell 17:97–109

    Google Scholar 

  • Baudhuin P, Beaufay H, Rahman-Li Y, Sellinger OZ, Wattiaux R, Jacques P, De Duve C (1964) Intracellular distribution of monoamine oxidase, aspartate aminotransferase, alanine aminotransferase, D-amino acid oxidase and catalase in rat liver tissue. Biochem J 92:179–184

    Google Scholar 

  • Berlin JD, Dean JM (1967) Temperature-induced alterations in hepatocyte structure of rainbow trout. J Exp Zool 164:117–132

    Google Scholar 

  • Böck P (1984) Der Semidünnschnitt. Bergmann, München

    Google Scholar 

  • Böck P, Kramar R, Pavelka M (1980) Peroxisomes and related particles in animal tissues. Springer, Wien New York

    Google Scholar 

  • Bonates ABI, Ferri S (1980) Fine structure of a freshwater teleost (Pimelodus maculatus). Hepatocytes revealed by ultrathin sections. Anat Anz 148:132–144

    Google Scholar 

  • Brulez W (1979) Die Wirkungen von Umweltbelastungen bei dem Fisch Idus idus. III. Aktivität und Hitzeresistenz des Enzyms Katalase nach schnellen und langsamen Temperaturänderungen. Zool Anz 203:12–22

    Google Scholar 

  • Byczkowska-Smyk W (1968) Bile canaliculi of the crucian carp (Carassius carassius L) and tench (Tinca tinca). Acta Biol Crac Ser Zool 9:93–99

    Google Scholar 

  • Connock MJ, Silcox A, Nwosu V, Mann V, Burdett K (1986) Evidence for peroxisome-mitochondrion attachment in mouse liver. Eur J Cell Biol [Suppl] 14:10

    Google Scholar 

  • Corvaja N, Magherini PC, Pompeiano O (1971) Ultrastructure of glycogen-membrane complexes in sensory nerve fibers of cat muscle spindles. Zeitschr Zellforsch 121:199–217

    Google Scholar 

  • Das AB (1967) Biochemical changes in tissues of goldfish acclimated to high and low temperatures. II. Synthesis of protein and RNA of subcellular fractions and tissue composition. Comp Biochem Physiol 21:469–485

    Google Scholar 

  • Das AB, Prosser CL (1967) Biochemical changes in tissues of goldfish acclimated to high and low temperatures. I. Protein synthesis. Comp Biochem Physiol 21:449–467

    Google Scholar 

  • Davidowitz J, Philips GH, Pachter BR, Breinin GM (1975) Particle free and glycogen-bearing double membrane arrays in extraocular muscle of rabbit. Am J Pathol 78:191–195

    Google Scholar 

  • Dean JM (1969) The metabolism of tissues of thermally acclimated trout (Salmo gairdneri). Comp Biochem Physiol 29:185–196

    Google Scholar 

  • Dean JM, Berlin JD (1969) Alterations in hepatocyte function of thermally acclimated rainbow trout (Salmo gairdneri). Comp Biochem Physiol 29:307–312

    Google Scholar 

  • Donaldson RP (1986) The coupling of β-oxidation and the glyoxylate cycle to electron transport in glyoxysomes. Eur J Cell Biol [Suppl] 14:12

    Google Scholar 

  • Ebitani Y (1961a) On the relation between fish liver and temperature conditions. I. Electron microscopy of the liver cells of Oryzias latipes at the suitable temperature (15 and 30°C). Arch Histol Jap 21:491–509

    Google Scholar 

  • Ebitani Y (1961b) On the relation between fish liver and temperature conditions. II. Electron microscopy of the liver cells of Oryzias latipes at high temperature (34°C). Arch Histol Jap 21:521–533

    Google Scholar 

  • Ebitani Y (1961c) On the relation between fish liver and temperature conditions. III. Electron microscopy of the liver cells of Oryzias latipes at low temperature (10°C). Arch Histol Jap 22:101–115

    Google Scholar 

  • Flaks B (1968) Formation of membrane-glycogen arrays in rat hepatoma cells. J Cell Biol 36:410–414

    Google Scholar 

  • Fujita H, Tatsumi H, Ban T, Tamura S (1986) Fine structural characteristics of the liver of the cod (Gadus morhua macrocephalus) with special regard to the concept of a hepatoskeletal system formed by Ito cells. Cell Tissue Res 244:63–67

    Google Scholar 

  • Gas N, Serfaty A (1972) Cytophysiologie du foie du carpe (Cyprinus carpio L). Modifications ultrastructurales consécutives au maintien dans les conditions de jeûne hivernal. J Physiol (Paris) 64:57–67

    Google Scholar 

  • Goldenberg H (1977) Organization of purine degradation in the liver of a teleost (carp; Cyprinus carpio L). A study of its subcellular distribution. Mol Cell Biochem 16:17–21

    Google Scholar 

  • Goldenberg H, Hüttinger M, Kampfer P, Kramar R (1978) Preparation of peroxisomes from carp liver by zonal rotor density gradient centrifugation. Histochem J 10:103–113

    Google Scholar 

  • Haschemeyer AEV (1968) Compensation of liver protein synthesis in temperature acclimated toadfish, Opsanus tau. Biol Bull 135:130–140

    Google Scholar 

  • Hazel JR, Prosser CL (1974) Molecular mechanisms of temperature compensation in poikilotherms. Phys Rev 54:620–677

    Google Scholar 

  • Herdson BP, Garvin PJ, Jennings RB (1964) Reversible biological and fine structural changes produced in rat liver by a thiohydantoin compound. Lab Invest 13:1014–1031

    Google Scholar 

  • Heusequin E (1973) Sur les éléments mis en évidence par la 3,3′-diaminobenzidine dans le foie de Lebistes reticulatus. Arch Biol (Liège) 84:243–279

    Google Scholar 

  • Hinton DE, Pool CR (1976) Ultrastructure of the liver in channel catfish Ictalurus punctatus (Rafinesque). J Fish Biol 8:209–219

    Google Scholar 

  • Hinton De, Klaunig JE, Lipsky MM (1978) PCB-induced alterations in teleost liver: A model for environmental disease in fish. Mar Fish Rev 40:47–50

    Google Scholar 

  • Horwitz BA (1976) The effect of cold exposure on liver mitochondrial and peroxisomal distribution in the rat, hamster and bat. Comp Biochem Physiol 54A:45–48

    Google Scholar 

  • Hruban Z, Rechcigl M (1969) Microbodies and related particles. Int Rev Cytol [Suppl 1]

  • Jankowsky HD (1968) Versuche zur Adaption der Fische im normalen Temperaturbereich. Helgol Wiss Meeresunters 18:317–362

    Google Scholar 

  • Jankowsky HD, Hotopp W, Vsiansky P (1981) Effects of assay and acclimation temperatures on incorporation of amino acids into protein of isolated hepatocytes from the European eel, Anguilla anguilla L. J Therm Biol 6:201–208

    Google Scholar 

  • Karnovsky MJ (1971) Use of ferrocyanide-reduced osmium tetroxide in electron microscopy. J Cell Biol 51:Abstr 284

    Google Scholar 

  • Klaunig JE, Lipsky MM, Trump BF, Hinton DE (1979) Biochemical and ultrastructural changes in teleost liver following subacute exposure to PCB. J Environ Pathol Toxicol 2:953–963

    Google Scholar 

  • Kramar R, Goldenberg H, Böck P, Klobucar N (1974) Peroxisomes in the liver of the carp (Cyprinus carpio L). Electron microscopic, cytochemical and biochemical studies. Histochem 40:137–154

    Google Scholar 

  • Künnemann H, Behrens C (1978) Die Wirkungen von Umweltbelastungen bei dem Fisch Idus idus L (Cyprinidae). I. Der Einfluß von einem Wechsel der Temperatur und NH4Cl auf die Katalase-Aktivitäten der Leber. Zool Anz 201:380–386

    Google Scholar 

  • Künnemann H, Laudien H, Precht H (1970) Der Einfluß von Temperaturänderungen auf Enzyme der Fischmuskulatur. Versuche mit Goldorfen Idus idus. Mar Biol 7:71–81

    Google Scholar 

  • Langer M (1979) Histologische Untersuchungen an der Teleosteerleber. III. Das galleausführende System. Z mikrosk-anat Forsch 93:1105–1136

    Google Scholar 

  • LeHir M, Herzog V, Fahimi HD (1979) Cytochemical detection of catalase with 3,3′-diaminobenzidine. A quantitative reinvestigation of the optimal conditions. Histochem 64:51–66

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Nedergard J, Lindberg O (1982) The brown fat cell. Int Rev Cytol 74:187–296

    Google Scholar 

  • Nicholls DG, Locke RM (1984) Thermogenic mechanisms in brown fat. Phys Rev 64:1–64

    Google Scholar 

  • Nopanitaya W, Carson JL, Grishman JW, Aghajanian JG (1979) New observations on the fine structure of the liver of the goldfish (Carassisus auratus), Cell Tissue Res 196:249–261

    Google Scholar 

  • Peute J, Van der Gaag MA, Lambert JGD (1978) Ultrastructure and lipid content of the liver of the zebrafish, Brachydanio rerio, related to vitellogenin synthesis. Cell Tissue Res 186:297–308

    Google Scholar 

  • Peute J, Huiskamp R, Van Oordt PGWJ (1985) Quantitative analysis of estradiol-17β-induced changes in the ultrastructure of the liver of the male zebrafish, Brachydanio rerio. Cell Tissue Res 242:377–382

    Google Scholar 

  • Porta EA, Bergman BJ, Stein AA (1965) Acute alcoholic hepatitis. Am J Pathol 46:657–689

    Google Scholar 

  • Precht H, Christophersen J, Hensel H, Larcher W (1973) Temperature and Life. Springer, Heidelberg New York

    Google Scholar 

  • Quaglia A (1976a) Observations on the fine structure of the hepatic cells in the sprat (Sprattus sprattus). Boll Pesca Piscic Idrobiol 31:221–226

    Google Scholar 

  • Quaglia A (1976b) Seasonal variations in the ultrastructure of the liver of the pilchard Sardinia pilchardus Walb. Arch Oceanogr Limn 18 [Suppl] 3:525–530

    Google Scholar 

  • Renaud JM, Moon TW (1980) Starvation and the metabolism of hepatocytes isolated from the American eel, Anguilla rostrata LeSueur. J Comp Physiol 135B:127–137

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Google Scholar 

  • Richardson KC, Jarett L, Finke EH (1960) Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol 35:313–325

    Google Scholar 

  • Rojik I, Nemcsok J, Boross L (1983) Morphological and biochemical studies on liver, kidney and gills of fishes affected by pesticides. Acta Biol Hung 34:81–92

    Google Scholar 

  • Rutschke E, Brozio F (1974) Bemerkungen zur Substruktur der Leber des Karpfens (Cyprinus carpio L). Z mikrosk-anat Forsch 88:745–758

    Google Scholar 

  • Saez L, Zuvic T, Amthauer R, Rodriguez E, Krauskopf M (1984) Fish liver protein synthesis during cold acclimatization: Seasonal changes of the ultrastructure of the carp hepatocyte. J Exp Zool 230:175–186

    Google Scholar 

  • Saito A, Mrak RE, Evans OB, Fleischer S (1984) Glycogen-membrane complex in denervated human skeletal muscle. J Ultrastr Res 86:149–161

    Google Scholar 

  • Sakano E, Fujita H (1982) Comparative aspects on the fine structure of the teleost liver. Okajimas Fol Anat Jap 58:501–520

    Google Scholar 

  • Scheil HG (1970) Beiträge zur Temperaturadaption des Aales Anguilla anguilla. IV. Einfluß der Adaptationstemperatur auf den denervierten Seitenmuskel. Mar Biol 6:158–166

    Google Scholar 

  • Schünke M, Wodtke E (1983) Cold-induced increase of Δ9- and Δ6-desaturase activities in endoplasmic membranes of carp liver. Biochim Biophys Acta 734:70–75

    Google Scholar 

  • Segner H, Storch V (1985) Influence of water-borne iron on the liver of Poecilia reticulata (Peters 1859). Z Angew Ichthyol 1:39–47

    Google Scholar 

  • Sidell BD, Wilson FR, Hazel J, Prosser CL (1973) Time course of thermal acclimation in goldfish. J Comp Physiol 84:119–127

    Google Scholar 

  • Spurr AR (1969) A low viscosity embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Google Scholar 

  • Steiner JW, Miyai K, Philips MJ (1964) Electron microscopy of membrane-particle arrays in liver cells of ethionine-intoxicated rats. Am J Pathol 44:169–214

    Google Scholar 

  • Storch V (1985) Die Zelle als Spiegel der Umwelt. Umschau 85/1:21–23

    Google Scholar 

  • Storch V, Stählin W, Juario JV (1983) Effect of different diets on the ultrastructure of hepatocytes of Chanos chanos fry (Chanidae: Teleostei): an electron microscopic and morphometric analysis. Mar Biol 74:101–104

    Google Scholar 

  • Storch V, Welsch U, Schünke M, Wodtke E (1984a) Einfluß von Temperatur und Nahrungsentzug auf die Hepatocyten von Cyprinus carpio (Cyprinidae, Teleostei). Zool Beitr NF 28:253–269

    Google Scholar 

  • Storch V, Segner H, Juario JV, Duray MN (1984b) Influence of nutrition on the hepatocytes of Chanos chanos (Chanidae, Teleostei). Zool Anz 213:151–160

    Google Scholar 

  • Takahashi K, Sugawara Y, Sato R (1977) Fine structure of the liver cells in maturing and spawning female chum salmon, Oncorhynchus keta (Walbaum). Tohoku J Agric Res 28:103–110

    Google Scholar 

  • Tanuma Y (1980) Electron microscopic observations on the intrahepatic bile canalicules and sequent bile ductules in the crucian, Carassius carassius. Arch Histol Jap 43:1–21

    Google Scholar 

  • Van Bohemen CG, Lambert JGD, Peute J (1981) Annual changes in plasma and liver in relation to vitellogenesis in the female rainbow trout, Salmo gairdneri. Gen Comp Endocrinol 44:94–107

    Google Scholar 

  • Voss B, Jankowsky HD (1986) Temperature dependence of lipogenesis in isolated hepatocytes from rainbow trout (Salmo gairdneri). Comp Biochem Physiol 83B:13–22

    Google Scholar 

  • Wodtke E (1974) Eigenschaften von isolierten Mitochondrien des Aales und ihre Abhängigkeit von der Adaptionstemperatur unter besonderer Berücksichtigung der oxidativen Phosphorylierung. J Comp Physiol 91:277–307

    Google Scholar 

  • Wodtke E (1976) Discontinuities in the Arthenius plots of mitochondrial membrane-bound enzyme systems from a poikilotherm: Acclimation temperature of carp affects transition temperatures. J Comp Physiol 110:145–157

    Google Scholar 

  • Wodtke E (1981) Temperature adaptation of biological membranes. Compensation of the molar activity of cytochrome c oxidase in the mitochondrial energy-transducing membrane during thermal acclimation of the carp (Cyprinus carpio). Biochim Biophys Acta 640:710–720

    Google Scholar 

  • Yamamoto M, Egami N (1974) Sexual differences and age changes in the fine structure of hepatocytes in the medaka, Oryzias latipes. J Fac Sci Univ Tokio Sec IV 13:199–210

    Google Scholar 

  • Yamauchi T, Stegemann JJ, Goldberg E (1975) The effects of starvation and acclimation temperature on pentose phosphate pathway dehydrogenases in brook trout liver. Arch Biochem Biophys 167:13–20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braunbeck, T., Gorgas, K., Storch, V. et al. Ultrastructure of hepatocytes in golden ide (Leuciscus idus melanotus L.; Cyprinidae: Teleostei) during thermal adaptation. Anat Embryol 175, 303–313 (1987). https://doi.org/10.1007/BF00309844

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00309844

Key words

Navigation