Skip to main content
Log in

Effects of light and acetate on the liberation of zoospores by a mutant strain ofChlamydomonas reinhardtii

  • Published:
Planta Aims and scope Submit manuscript

Abstract

In light-dark-synchronized cultures of the unicellular green algaChlamydomonas reinhardtii, release of zoospores from the wall of the mother cell normally takes place during the second half of the dark period. The recently isolated mutant ‘ls’, however, needs light for the liberation of zoospores when grown photoautotrophically under a 12 h light-12 h dark regime. The light-induced release of zoospores was found to be prevented by addition of the photosystem-II inhibitor 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea. Furthermore, light dependence of this process was shown to be abolished when the mutant ‘ls’ was grown either photoautotrophically under a 14 h light-10 h dark regime or in the presence of acetate. Our findings indicate that the light-dependency of zoospore liberation observed in cultures of this particular mutant during photoautotrophic growth under a 12 h light-12 h dark regime might be attributed to an altered energy metabolism. The light-induced release of zoospores was found to be prevented by addition of cycloheximide or chloramphenicol, antibiotics which inhibit protein biosynthesis by cytoplasmic and organellar ribosomes, respectively. Actinomycin D, an inhibitor of RNA synthesis, however, did not affect the light-induced liberation of zoospores.

Sporangia accumulate in stationary cultures of the mutant ‘ls’. Release of zoospores was observed when these sporangia were collected by centrifugation and incubated in the light after resuspension in fresh culture medium. Since liberation of zoospores was not observed after dilution of the stationary cultures with fresh culture medium, we suppose that components which interfere with the action of the sporangial autolysin are accumulated in the culture medium of the mutant ‘ls’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DCMU:

3-(3′,4′-dichlorophenyl)-1,1-dimethylurea

References

  • Bernstein, E. (1964) Physiology of an obligate photoautotroph (Chlamydomonas moewusii). I. Characteristics of synchronously and randomly reproducing cells and an hypothesis to explain their population curves. J. Protozool.11, 56–74

    Google Scholar 

  • Bold, H.C. (1942) The cultivation of algae. Bot. Rev.8, 69–138

    Google Scholar 

  • Bruce, V. (1970) The biological clock inChlamydomonas reinhardtii. J. Protozool.17, 334–340

    Google Scholar 

  • Craigie, R.A., Cavalier-Smith, T. (1982) Cell volume and the control of theChlamydomonas cell cycle. J. Cell Sci.54, 173–191

    Google Scholar 

  • Donnan, L., John, P.C.L. (1983) Cell cycle control by timer and sizer inChlamydomonas. Nature304, 630–633

    Google Scholar 

  • Droop, M.R. (1974) Heterotrophy of carbon. In: Algal physiology and biochemistry, pp. 530–559, Stewart, W.D.P., ed. Blackwell, Oxford

    Google Scholar 

  • Grant, D., Swinton, D.C., Chiang, K.-S. (1978) Differential patterns of mitochondrial, chloroplastic and nuclear DNA synthesis in the synchronous cell cycle ofChlamydomonas reinhardtii. Planta141, 259–267

    Google Scholar 

  • Howell, S.H., Blascho, W.J., Drew, C.M. (1975) Inhibitor effects during the cell cycle inChlamydomonas reinhardtii: Determination of transition points in the asynchronous cultures. J. Cell Biol.67, 126–135

    Google Scholar 

  • Howell, S.H., Posakony, J.W., Hill, K.R. (1977) The cell cycle program of polypeptide labeling inChlamydomonas reinhardtii. J. Cell Biol.72, 223–241

    Google Scholar 

  • Jaenicke, L., Kuhne, W., Spessert, R., Wahle, U., Waffenschmidt, S. (1987) Cell-wall lytic enzymes (autolysins) ofChlamydomonas reinhardtii are (hydroxy)proline-specific proteases. Eur. J. Biochem.170, 485–491

    Google Scholar 

  • Jarrett, R.M., Edmunds, L.N. (1970) Persisting circadian rhythm of cell division in a photosynthetic mutant ofEuglena. Science167, 1730–1733

    Google Scholar 

  • John, P.C.L. (1984) Control of the cell division inChlamydomonas. Microbiol. Sci.1, 96–101

    Google Scholar 

  • Lien, T., Knutsen, G. (1979) Synchronous growth ofChlamydomonas reinhardtii (Chlorophyceae): a review of optimal growth conditions. J. Phycol.15, 191–200

    Google Scholar 

  • Lorenzen, H., Hesse, M. (1974) Synchronous cultures. In: Algal physiology and biochemistry, pp. 894–908, Stewart, W.D.P., ed. Blackwell, Oxford

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randle, R.J. (1951) Protein measurements with the folin phenol reagent. J. Biol. Chem.193, 257–265

    Google Scholar 

  • McMahon, D. (1975) Cycloheximide is not a specific inhibitor of protein synthesis in vivo. Plant Physiol.55, 815–821

    Google Scholar 

  • Mergenhagen, D. (1980) Die Kinetik der Zoosporenfreisetzung bei einem Mutantenstamm vonChlamydomonas reinhardtii. Mitt. Inst. Allg. Bot. Hamburg17, 18–26

    Google Scholar 

  • Mittelsten-Scheid, O. (1985) Untersuchungen zur Zoosporen-freisetzung beiChlamydomonas reinhardtii Dangeard. Dissertation. University of Hamburg, FRG

    Google Scholar 

  • Mihara, S., Hase, E. (1971) Studies on the vegetative life cycle ofChlamydomonas reinhardtii Dangeard in synchronous culture. I. Some characteristics of the cell cycle. Plant Cell Physiol.12, 225–236

    Google Scholar 

  • Mihara, S., Hase, E. (1975) Studies on the vegetative life cycle ofChlamydomonas reinhardtii Dangeard in synchronous culture. III. Some notes on the process of zoospore liberation. Plant Cell Physiol.16, 371–375

    Google Scholar 

  • Pirson, A., Lorenzen, H. (1966) Synchronized dividing algae. Annu. Rev. Plant Physiol.17, 439–458

    Google Scholar 

  • Sager, R., Granick, S. (1953) Nutritional studies withChlamydomonas reinhardtii. Ann New York Acad. Sci.56, 831–838

    Google Scholar 

  • Schlösser, U.G. (1966) Enzymatisch gesteuerte Freisetzung von Zoosporen beiChlamydomonas reinhardtii Dangeard in Synchronkultur. Arch. Mikrobiol.54, 129–159

    Google Scholar 

  • Schlösser, U.G. (1976) Entwicklungsstadien- und sippenspezifische Zellwand-Autolysine bei der Freisetzung von Fortpflanzungszellen in der GattungChlamydomonas. Ber. Dtsch. Bot. Ges.89, 1–56

    Google Scholar 

  • Spudich, J.L., Sager, R. (1980) Regulation of theChlamydomonas cell cycle by light and dark. J. Cell Biol.85, 136–145

    Google Scholar 

  • Sueoka, N. (1960) Mitotic replication of deoxyribonucleic acid inChlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA46, 83–91

    Google Scholar 

  • Surzycki, S. (1971) Synchronously grown cultures ofChlamydomonas reinhardtii. Methods Enzymol.23, 67–73

    Google Scholar 

  • Tamiya, H. (1966) Synchronous cultures of algae. Annu. Rev. Plant Physiol.17, 1–26

    Google Scholar 

  • Voigt, J., Münzner, P. (1987) TheChlamydomonas cell cycle is regulated by a light/dark-responsive cell-cycle switch. Planta172, 463–472

    Google Scholar 

  • Voigt, J., Wieland, T., Sekeris, C.E. (1978) Initial steps in the induction by glucocorticosteroids of rat liver tryptophan oxygenase and tyrosine aminotransferase. Arch. Biochem. Biophys.191, 101–109

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voigt, J., Mergenhagen, D., Münzner, P. et al. Effects of light and acetate on the liberation of zoospores by a mutant strain ofChlamydomonas reinhardtii . Planta 178, 456–462 (1989). https://doi.org/10.1007/BF00963815

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00963815

Key words

Navigation