Skip to main content
Log in

Thermochemistry of the new silica polymorph moganite

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Samples of microcrystalline silica varieties containing variable amounts of the new silica polymorph moganite (up to R~82 wt.%) have been studied by a combination of high temperature solution calorimetry using lead borate (2 PbO · B2O3) solvent and transposed temperature drop calorimetry near 977 K, in order to investigate the thermochemical stability of this new silica mineral. The enthalpy of solution at 977 K and the heat content (H977 — H298) of “pure” moganite phase were estimated to be -7.16 ± 0.35 kJ/mol and 43.62 ± 0.50 kJ/mol, respectively. The standard molar enthalpy of formation is-907.3 ± 1.2 kJ/mol. Thus, calorimetry strongly supports results of previous X-ray and Raman spectroscopic studies that moganite is a distinct silica polymorph. Its thermochemical instability relative to quartz at 298 K of 3.4 ± 0.7 kJ/mol is marginally higher than those of cristobalite and tridymite. Structurally, this instability may be related to the presence of distorted 4-membered rings of SiO4 tetrahedra, which are not found in the quartz structure. The metastability relative to quartz may also explain the apparent scarcity of moganite in altered rocks and in rocks that are older than 130 my.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnórsson S, Gunnlaugsson E, Svavarsson H (1983) The chemistry of geothermal waters in Iceland. III. Chemical geothermometry in geothermal investigations. Geochim Cosmochim Acta 47:567–577

    Google Scholar 

  • Boisen Jr. MB, Gibbs GV, Bukowinski MST (1994) Framework silica structures generated using simulated annealing with a potential energy function based on an H6Si2O7 molecule. Phys Chem Minerals 21:269–284

    Google Scholar 

  • CODATA Task Group (1976) CODATA recommended key values for thermodynamics, 1975. J Chem Thermodyn 8:603–605

    Google Scholar 

  • Dunn PJ, Fleischer M, Langley RH, Shigley JE, Zilczer JA (1985) New mineral names. Am Mineral 70:871–881

    Google Scholar 

  • Ellison AJG, Navrotsky A (1992) Enthalpy of formation of zircon. J Am Ceram Soc 75:1430–1433

    Google Scholar 

  • Flörke OW, Jones JB, Schmincke H-U (1976) A new microcrystalline silica from Gran Canaria. Z Kristallogr 143:156–165

    Google Scholar 

  • Flörke OW, Flörke U, Giese U (1984) Moganite A new microcrystalline silica-mineral. N Jb Mineral Ab 149:325–336

    Google Scholar 

  • Gislason SR, Heaney PJ, Oelkers EH, Schott J (1995) Dissolution rate and solubility of quartz and quartz/moganite mixtures (chalcedony). EUG Abstracts, in press

  • Godovikov AA, Nenasheva SN, Pavlyuchenko VS, Ripinen OI (1991 a) New finds of lutecite. Doklady Akad Nauk SSSR 320:428–433 (in Russian)

    Google Scholar 

  • Graetsch H, Flörke OW, Miehe G (1987) Structural defects in microcrystalline silica. Phys Chem Minerals 14:249–257

    Google Scholar 

  • Graetsch H, Topalovic I, Gies H (1994) NMR spectra of moganite and chalcedony. Eur J Mineral 6:459–464

    Google Scholar 

  • Heaney PJ, Post JE (1992) The widespread distribution of a novel silica polymorph in microcrystalline quartz varieties. Science 255:441–443

    Google Scholar 

  • Heaney PJ, Veblen DR, Post JE (1994) Structural disparities between chalcedony and macrocrystalline quartz. Am Mineral 79:452–460

    Google Scholar 

  • Heaney PJ (1995) Moganite as an indicator for vanished evaporites: A testament reborn? J Sedimentary Res A65:633–638

    Google Scholar 

  • Hemingway BS (1987) Quartz: Heat capacities from 340–1000 K and revised values for the thermodynamic properties. Am Mineral 72:273–279

    Google Scholar 

  • Henson NJ, Cheetham AK, Gale JD (1994) Theoretical calculations on silica frameworks and their correlation with experiment. Chem Mater 6:1647–1650

    Google Scholar 

  • Jambor JL, Burke EAJ (1990) New mineral names. Am Mineral 75:1431–1437

    Google Scholar 

  • Jambor JL, Grew ES (1993) New mineral names. Am Mineral 78:233–238

    Google Scholar 

  • Jambor JL, Burke EAJ, Grew ES, Puziewicz J (1993) New mineral names. Am Mineral 78:672–678

    Google Scholar 

  • Kingma KJ, Hemley RJ (1994) Raman spectroscopic study of microcrystalline silica. Am Mineral 79:269–273

    Google Scholar 

  • Larson AC, Von Dreele RB (1987) GSAS — Generalized Crystal Structure Analysis System. Los Alamos National Laboratory Report No. LA-UR-86-748

  • Liu M, Yund RA, Tullis J, Topor L, Navrotsky A (1995) Energy associated with dislocations: A calorimetric study using synthetic quartz. Phys Chem Minerals 22:67–73

    Google Scholar 

  • Miehe G, Graetsch H (1992) Crystal structure of moganite: a new structure type for silica. Eur J Mineral 4:693–706

    Google Scholar 

  • Miehe G, Graetsch H, Flörke OW (1984) Crystal structure and growth fabric of length-fast chalcedony. Phys Chem Minerals 10:197–199

    Google Scholar 

  • Miehe G, Graetsch H, Flörke OW, Fuess H (1988) Die monokline Kristallstruktur des SiO2-Minerals Moganit. Z Kristallogr 182:183–184

    Google Scholar 

  • Navrotsky A (1977) Progress and new directions in high temperature calorimetry. Phys Chem Minerals 2:89–104

    Google Scholar 

  • Navrotsky A, Petrovic I, Hu Y, Chen C-Y, Davis ME (1995) Little energetic limitation to microporous and mesoporous materials. Microporous Mater 4:95–98

    Google Scholar 

  • Petrovic I, Navrotsky A, Davis ME, Zones SI (1993) Thermochemical study of the stability of frameworks in high silica zeolites. Chem Mater 5:1805–1813

    Google Scholar 

  • Richet P, Bottinga Y, Denielou L, Petitet JP, Tequi C (1982) Thermodynamic properties of quartz, cristobalite and amorphous SiO2: drop calorimetry measurements between 1000 K and 1800 K and a review from 0 to 2000 K. Geochim Cosmochim Acta 46:2639–2658

    Google Scholar 

  • Robie RA, Hemingway BS, Fisher JR (1978) Thermodynamic properties of minerals and related substances at 298. 15 K and 1 bar (105 pascals) pressure and at higher temperatures. Geol Surv Bull 1452

  • Roy BN, Navrotsky A (1984) Thermochemistry of charge-coupled substitutions in silicate glasses: The systems M1/n/n+AlO2-SiO2 (M=Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Pb). J Am Ceram Soc 67:606–610

    Google Scholar 

  • Smith JV, Steele IM (1984) Chemical substitution in silica polymorphs. N Jb Min Mon 3:137–144

    Google Scholar 

  • Wiles DM, Young RA (1981) A new computer program for Rietveld analysis of X-ray powder diffraction patterns. J Appl Crystallogr 14:149–151

    Google Scholar 

  • Wright AF, Lehmann MS (1981) The structure of quartz at 25 and 590°C determined by neutron diffraction. J Solid State Chem 36:371–380

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrovic, I., Heaney, P.J. & Navrotsky, A. Thermochemistry of the new silica polymorph moganite. Phys Chem Minerals 23, 119–126 (1996). https://doi.org/10.1007/BF00202307

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00202307

Keywords

Navigation