Skip to main content
Log in

Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: involvement of the Embden-Meyerhof pathway

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The hyperthermophilic anaerobic eubacterium Thermotoga maritima was grown on glucose as carbon and energy source. During growth 1 mol glucose was fermented to 2 mol acetate, 2 mol CO2 and 4 mol H2. The molar growth yicld on glucose (Yglucose) was about 45 g cell dry mass/mol glucose. In the presence of elemental sulfur growing cultures of T. maritima converted 1 mol glucose to 2 mol acetate, 2 mol CO2 about 0.5 mol H2 and about 3.5 mol H2S. Yglucose was about 45 g/mol. Cell extracts contained all enzymes of the Embden-Meyerhof pathway: hexokinase (0.29 U/mg, 50°C), glucose-6-phosphate isomerase (0.56 U/mg, 50°C), phosphofructokinase (0.19 U/mg, 50° C), fructose-1,6-bisphosphate aldolase (0.033 U/mg, 50°C), triosephosphate isomerase (6.3 U/mg, 50°C), glyceraldehyde-3-phosphate dehydrogenase (NAD+ reducing: 0.63 U/mg, 50°C), phosphoglycerate kinase (3.7 U/mg, 50°C), phosphoglycerate mutase (0.4 U/mg, 50°C); enolase (4 U/mg, 80°C), pyruvate kinase (0.05 U/mg, 50°C). Furthermore, cell extracts contained pyruvate: ferredoxin oxidoreductasee (0.43 U/mg, 60°C); NADH: ferredoxin oxidoreductase (benzylviologen reduction: 0.46 U/mg, 80°C); hydrogenase (benzylviologen reduction: 15 U/mg, 80°C), phosphate acetyltransferase (0.13 U/mg, 80°C), acetate kinase (1.2 U/mg, 55°C), lactate dehydrogenase (0.16 U/mg, 80°C) and pyruvate carboxylase (0.02 U/mg, 50°C). The findings indicate that the hyperthermophilic eubacterium T. maritima ferments sugars (glucose) to acetate, CO2 and H2 involving the Embden-Meyerhof pathway, phosphate acetyltransferase and acetate kinase. Thus, the organism differs from the hyperthermophilic archaeon Pyrococcus furiosus which ferments sugars to acetate, CO2 and H2 involving a modified non-phosphorylated Entner-Doudoroff pathway and acetyl-CoA synthetase (ADP forming).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altekar W, Rangaswamy V (1991) Ketohexokinase (ATP: D-fructose 1-phosphotransferase) intiates fructose breakdown via the modified EMP pathway in halophilic archaebacteria. FEMS Microbiol Lett 83: 241–246

    Google Scholar 

  • Balch WF, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296

    Google Scholar 

  • Bode CH, Goebel H, Stähler H (1968) Zur Eliminierung von Trübungsfehlern bei der Eiweißbestimmung mit der Biuretmethode. Z Klin Chem Biochem 5:419–422

    Google Scholar 

  • Cline JD (1969) Spectrometric determination of hydrogen sulfide in natural waters. Limnol Oceonogr 14:454–458

    Google Scholar 

  • Danson MJ, Hough DW (1992) The enzymology of archaebacterial pathways of central metabolism. Biochem Soc Symp 58: 7–21

    Google Scholar 

  • Decker K, Jungermann K, Thauer RK (1970) Energy production in anaerobic organisms. Angew Chem (Int Edn) 9:138–158

    Google Scholar 

  • Dietrich G, Weiss N, Winter J (1988) Acetothermus paucivorans, gen. nov., sp. nov, a stricly anaerobic, thermophilic bacterium from scwage sludge, fermenting hexoses to acetate, CO2 and H2. Syst Appl Microbiol 10:174–179

    Google Scholar 

  • Dorn M, Andreesen JR, Gottschalk G (1978) Fermentation of fumarte and l-malate by Clostridium formicoaceticum. J Bacteriol 133:26–32

    Google Scholar 

  • Fuchs G, Stupperich E (1986) Carbon assimilation pathways in archaebacteria. Syst Appl Microbiol 7:364–369

    Google Scholar 

  • Hecht K, Wrba A, Jaenicke R (1989) Catalytic properties of thermophilic lactate dehydrogenase and halophilic malate dehydrogenase at high temperature and low water activity. Eur J Biochem 183:69–74

    Google Scholar 

  • Huber R, Stetter KO (1992) The order Thermotogales. In: Balows A, Trüger HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes. Springer, New York, pp 3809–3815

    Google Scholar 

  • Huber R, Langworthy TA, König H, Thomm M, Woese CR, Sleytr UB, Stetter KO (1986) Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch Microbiol 144:324–333

    Google Scholar 

  • Huber R, Woese CR, Langworthy TA, Fricke H, Stetter KO (1989) Thermosipho africanus gen. nov., represents a new genus of thermophilic eubacteria within the “Thermotogales”, Syst Appl Microbiol 12:32–37

    Google Scholar 

  • Huber R, Woese CR, Langworthy TA, Kristjansson JK, Stetter KO (1990) Fervidobacterium islandicum sp. nov., a new extremely thermophilic eubacterium belonging to the “Thermotogales”. Arch Microbiol 154:105–111

    Google Scholar 

  • Jannasch HW, Huber R, Belkin S, Stetter KO (1988) Thermotoga neapolitana sp. nov of the extremely thermophilic, eubacterial genus thermotoga. Arch Microbiol 150:103–104

    Google Scholar 

  • Janssen PH, Morgan HW (1992) Heterotrophic sulfur reduction by Thermotoga sp. strain FjSS3.B1. FEMS Microbiol Lett 96: 213–218

    Google Scholar 

  • Juszczak A, Aono S, Adams MWW (1991) The extremely thermophilic eubacterium, Thermotoga maritima, contains a novel iron-hydrogenase whose cellular activity is dependent upon tungsten. J Biol Chem 13834–13841

  • Kunst A, Draeger B, Ziegenhorn J (1981) Colorimetric methods with glucose oxidase and peroxidase. In: Bergmeyer H-U (ed) Methods of enzymatic analysis, 3rd edn, vol 6. Verlag Chemie, Weinheim, pp 178–185

    Google Scholar 

  • Ma K, Schicho RN, Kelly RM, Adams MWW (1993) Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor. Proc Natl Acad Sci USA 90:5341–5344

    Google Scholar 

  • Reeves RE, Warren LG, Susskind B, Lo HS (1977) An energyconserving pyruvate-to-acetate pathway in Entamoeba histolytica: pyruvate synthase and a new acetate thiokinase. J Biol Chem 252:726–731

    Google Scholar 

  • Schäfer T, Schönheit P (1991) Pyruvate metabolism of the hyperthermophilic archaebacterium Pyrococcus furiosus. Acetate formation from acetyl-CoA and ATP synthesis are catalyzed by an acetyl-CoA synthetase (ADP forming). Arch Microbiol 155:366–377

    Google Scholar 

  • Schäfer T, Schönheit P (1992) Maltose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic archaeon Pyrocossus furiosus: evidence for the operation of a novel sugar fermentation pathway. Arch Microbiol 158:188–202

    Google Scholar 

  • Schäfer T, Schönheit P (1993) Gluconeogenesis from pyruvate in the hyperthermophilic archaeon Pyrococcus furiosus: involvement of reactions of the Embden-Meyerhof pathway. Arch Microbiol 159:354–363

    Google Scholar 

  • Schäfer T, Selig M, Schönheit P (1993) Acetyl-CoA synthetase (ADP forming) in archaea, a novel enzyme involved in acetate formation and ATP synthesis. Arch Microbiol 159:72–83

    Google Scholar 

  • Schauder R, Kröger A (1993) Bacterial sulphur respiration. Arch Microbiol 159:491–497

    Google Scholar 

  • Schönheit P, Wäscher C, Thauer RK (1978) A rapid procedure for the purification of ferredoxin from Clostridia using polycthylene imine. FEBS Lett 89:219–222

    Google Scholar 

  • Schönheit P, Moll J, Thauer RK (1980) Growth parameters (Ks, μmax, Ys of Methanobacterium thermoautotrophicum. Arch Microbiol 127:59–65

    Google Scholar 

  • Schultes V, Deutzmann R, Jaenicke P (1990) Complete aminoacid sequence of glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima. Eur J Biochem 192:25–31

    Google Scholar 

  • Siebers B, Hensel R (1993) Glucose catabolism of the hyperthermophilic archaeum Thermoproteus tenax. FEMS Microbiol Lett 111:1–8

    Google Scholar 

  • Soutschek E, Winter J, Schindler F, Kandler O (1984) Acetomicrobium flavidum, gen. nov., sp. nov., a thermophilic, anaerobic bacterium from sewage sludge, forming acetate, CO2 and H2 from glucose. Syst Appl Microbiol 5:377–390

    Google Scholar 

  • Stetter KO (1993) Life at the upper temperature border. In: Tran Thanh Van J, Tran Thanh Van K, Mounolou JC, Schneider J, McKay C (eds) Frontiers of life. Editions Frontières, Gif-sur-Yvette, pp 195–219

    Google Scholar 

  • Stouthammer AH (1979) The search for correlation between theoretical and experimental growth yields. In: Quale JR (ed) Microbial biochemistry, vol 21. University Park Press, Baltimore, pp 1–47

    Google Scholar 

  • Tewes FJ, Thauer RK (1980) Regulation of ATP-synthesis in glucose fermenting bacteria involved in interspecies hydrogen transfer. In: Gottschalk G, Pfennig N, Werner H (eds), Anaerobes and anaerobic infections. Gustav Fischer, Stuttgart New York, pp 97–104

    Google Scholar 

  • Thauer RK, Morris G (1984) Metabolism of chemotrophic anaerobes: old views and new aspects. In: Kelly DP, Carr NG (eds) The microbe. Part II. Prokaryotes and eukaryotes. Society for General Microbiology Symposium 36. The Society for General Microbiology Ltd University Press, Cambridge, pp 123–168

    Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    Google Scholar 

  • Tomlinson GA, Koch TK, Hochstein LI (1974) The metabolism of carbohydrates by extremely halophilic bacteria: glucose metabolism via a modified Entner-Doudoroff pathway. Can J Microbiol 20:1085–1091

    Google Scholar 

  • Tomschy A, Glockshuber R, Jaenicke R (1993) Functional expression of d-glyceraldehyde 3-phosphate dehydrogenase from the hyperthermophilic eubacterium Thermotoga maritima in Escherichia coli. Eur J Biochem 214:43–50

    Google Scholar 

  • Windberger E, Huber R, Trincone A, Fricke H, Stetter KO (1989) Thermotoga thermarum sp. nov. and Thermotoga neapolitana occurring in African continental solfataric springs. Arch Microbiol 151:506–512

    Google Scholar 

  • Winter J, Zellner G (1990) Thermophilic anaerobic degradation of carbohydrates-metabolic properties of microorganisms from the different phases. FEMS Microbiol Rev 75:139–154

    Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya. Proc Natl Acad Sci USA 87:4576–4579

    Google Scholar 

  • Wrba A, Schweiger A, Schultes V, Jaenicke R, Závodszky P (1990) Extremely thermostable d-glyderaldehyde-3-phosphate dehydrogenase from the eubacterium Thermotoga maritima. Biochem 29:7584–7592

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schröder, C., Selig, M. & Schönheit, P. Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: involvement of the Embden-Meyerhof pathway. Arch. Microbiol. 161, 460–470 (1994). https://doi.org/10.1007/BF00307766

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00307766

Key words

Navigation