Skip to main content
Log in

Maltose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic archaeon Pyrococcus furiosus: evidence for the operation of a novel sugar fermentation pathway

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The hyperthermophilic anaerobe Pyrococcus furiosus was grown on maltose as energy and carbon source. During growth 1 mol maltose was fermented to 3–4 mol acetate, 6–7 mol H2 and 3–4 mol CO2. The presence of the following enzyme activities in cell extracts of maltose-grown P. furiosus indicate that the sugar is degraded to pyruvate and H2 by a modified “non-phosphorylated” Entner-Doudoroff-pathway (the values given in brackets are specific enzyme activities at 100 °C): Glucose: methyl viologen oxidoreductase (0.03 U/mg); 2-keto-3-deoxy-gluconate aldolase (0.03 U/mg); glyceraldehyde: benzyl viologen oxidoreductase (2.6 U/mg), glycerate kinase (2-phosphoglycerate forming) (0.48 U/mg), enolase (10.4 U/mg), pyruvate kinase (1.4 U/mg). Hexokinase, glucose-6-phosphate dehydrogenase, 2-keto-3-deoxy-6-phosphogluconate aldolase and phosphofructokinase could not be detected. Further conversion of pyruvate to acetate, CO2 and H2 involves pyruvate: ferredoxin oxidoreductase (0.4 U/mg; T=60°C with Clostridium pasteurianum ferredoxin as electron acceptor), hydrogen: methyl viologen ixodoreductase (3.4 U/mg) and ADP-dependent acetyl-CoA synthetase (1.9 U/mg). Phosphate acetyl transferase and acetate kinase could not be detected. The ADP-dependent acetyl-CoA synthetase catalyzes ATP synthesis via the mechanism of substrate level phosphorylation and apparently constitutes the only ATP conserving site during maltose catabolism in P. furiosus.

This novel pathway of maltose fermentation to acetate, CO2 and H2 in the anaerobic archaeon P. furiosus may represent a phylogenetically ancient pathway of sugar fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DTE:

dithioerythritol

MV:

methyl viologen

BV:

benzyl viologen

CHES:

cyclohexylamino-ethane sulfonic acid

ABTS:

2,2′-Azino-di-(3-ethylbenzthiazoliumsulfonate)

References

  • Achenbach-RichterL, GuptaR, ZilligW, WoeseCR (1988) Rooting the archaebacterial tree: the pivotal role of Thermococcus celer in archaebacterial evolution. System Appl Microbiol 10: 231–240

    Google Scholar 

  • AonoS, BryantFO, AdamsMWW (1989) A novel and remarkably thermostable ferredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus. J Bacteriol 171: 3433–3439

    Google Scholar 

  • BalchWE, FoxGE, MagrumLJ, WoeseCR, WolfeRS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43: 260–296

    Google Scholar 

  • BartelsM (1989) Glucoseabbau über einen modifizierten Entner-Doudoroff Weg bei dem thermoacidophilen Archaebakterium Sulfolobus acidocaldarius. Ph. D. Thesis, Medizinische Fakultät, Universität Lübeck, FRG

    Google Scholar 

  • BodeCH, GoebelH, StählerE (1968) Zur Eliminierung von Trübungsfehlern bei der Eiweißbestimmung mit der Biuretmethode. Z. Klin Chem Klin Biochem 5: 419–422

    Google Scholar 

  • Bonch-OsmolovskayaEA, StetterKO (1991) Interspecies hydrogen transfer in cocultures of thermophilic Archaea. Syst Appl Microbiol 14: 205–208

    Google Scholar 

  • BryantFO, AdamsMWW (1989) Characterization of hydrogenase from the hyperthermophilic archaebacterium, Pyrococcus furiosus. J Biol Chem 264: 5070–5079

    Google Scholar 

  • BudgenN, DansonMJ (1986) Metabolism of glucose via a modified Entner-Doudoroff pathway in the thermoacidophilic archaebacterium Thermoplasma acidophilum. FEBS Lett 196: 207–210

    Google Scholar 

  • CostantinoHR, BrownSH, KellyRM (1990) Purification and characterization of an α-glucosidase from a hyperthermophilic archaebacterium, Pyrococcus furiosus, exhibiting a temperature optimum of 105 to 115°C. J Bacteriol 172: 3654–3660

    Google Scholar 

  • DansonMJ (1989) Archaebacteria: the comperative enzymology of their central metabolic pathways. Adv Microb Physiol 29: 165–231

    Google Scholar 

  • DansonMJ (1988) Central metabolism of the archaebacteria: an overview. Can J Microbiol 35: 58–64

    Google Scholar 

  • DeckerK, JungermannK, ThauerRK (1970) Energy production in anaerobic organisms. Angew Chem (Int Edn) 9: 138–158

    Google Scholar 

  • DeRosaM, GambacortaA, NicolausB, GiardinaP, PoerioE, BuonocoreV (1984) Glucose metabolism in the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus. Biochem J 224: 407–414

    Google Scholar 

  • DornM, AndreesenJR, GottschalkG (1978) Fermentation of fumarate and l-malate by Clostridium formicoaceticum. J. Bacteriol 133: 26–32

    Google Scholar 

  • FialaG, StetterKO (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Arch Microbiol 145: 56–61

    Google Scholar 

  • FuchsG, WinterH, SteinerI, StupperichE (1983) Enzymes of gluconeogenesis in the autotroph Methanobacterium thermoautotrophicum. Arch Microbiol 136: 160–162

    Google Scholar 

  • GottschalkG (1986) Bacterial metabolism, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • GottschalkG, BenderR (1982) d-Gluconate dehydratase from Clostridium pasteurianum. Methods Enzymol 90: 283–287

    Google Scholar 

  • HenselR, LaumannS, LangJ, HeumannH, LottspeichF (1987) Characterization of two d-glyceraldehyde-3-phosphate dehydrogenases from the extremely thermophilic archaebacterium Thermoproteus tenax. Eur J Biochem 170: 325–333

    Google Scholar 

  • KayneFJ (1973) Pyruvate kinase. In: BoyerPD (ed) The enzymes, vol 8. Academic Press, New York, pp 353–382

    Google Scholar 

  • KerscherL, NowitzkiS, OesterheltD (1982) Thermoacidophilic archaebacteria contain bacterial-type ferredoxins acting as electron acceptors of 2-oxoacid: ferredoxin oxidoreductases. Eur J Biochem 128: 223–230

    Google Scholar 

  • KerstersK, DeLeyJ (1986) An easy screening assay for the enzymes of the Entner-Doudoroff pathway. Antonie van Leuwenhoek 34: 388–392

    Google Scholar 

  • KochR, SpreinatA, LemkeK, AntranikianG (1991) Purification and properties of a hyperthermoactive α-amylase from the archaeobacterium Pyrococcus woesei. Arch Microbiol 155: 572–578

    Google Scholar 

  • KrishnanG, AltekarW (1991) An unusual class I (Schiff base) fructose-1,6-bisphosphate aldolase from the halophilic archaebacterium Haloarcula vallismortis. Eur J Biochem 195: 343–350

    Google Scholar 

  • KunstA, DraegerB, ZiegenhornJ (1981) Colorimetric methods with glucose oxidase and peroxidase. In: BergmeyerH-U (ed) Methods of enzymatic analysis, 3rd edn, vol 6. Verlag Chemie Weinheim, pp 178–185

    Google Scholar 

  • MukundS, AdamsMWW (1990) Characterization of a tungsteniron-sulfur protein exhibiting novel spectroscopic and redox properties from the hyperthermophilic archaebacterium Pyrococcus furiosus. J Biol Chem 165: 11508–11516

    Google Scholar 

  • MukundS, AdamsMWW (1991) The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium, Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase. J Biol Chem 266: 14208–14216

    Google Scholar 

  • ReevesRE, WarrenLG, SusskindB, LoHS (1977) An energy-conserving pyruvate-to-acetate pathway in Entamoeba histolytica: pyruvate synthase and a new acetate thiokinase. J Biol Chem 252: 726–731

    Google Scholar 

  • SchäferG, AnemüllerS, MollR, MeyerW, LübbenM (1990) Electron transport and energy conservation in the archaebacterium Sulfolobus acidocaldarius. FEMS Microbiol Rev 75: 335–348

    Google Scholar 

  • SchäferT, SchönheitP (1991) Pyruvate metabolism of the hyperthermophilic archaebacterium Pyrococcus furiosus. Acetate formation from acetyl-CoA and ATP synthesis are catalyzed by an acetyl-CoA synthetase (ADP forming). Arch Microbiol 155: 366–377

    Google Scholar 

  • SchönheitP, WäscherC, ThauerRK (1978) A rapid procedure for the purification of ferredoxin from Clostridia using polyethyleneimine. FEBS Lett 89: 219–222

    Google Scholar 

  • SchönheitP, MollJ, ThauerRK (1980) Growth parameters (K, μmax, Ys) of Methanobacterium thermoautotrophicum. Arch Microbiol 127: 59–65

    Google Scholar 

  • SearcyDG, WhatleyFR (1984) Thermoplasma acidophilum: glucose degradative pathways and respiratory activities. Syst Appl Microbiol 5: 30–40

    Google Scholar 

  • SpringTG, WoldF (1975) Enolase from Escherichia coli. In: ColowickSP, KaplanNO (eds) Methods of enzymology, vol 17, part C. Academic Press, New York, pp 323–329

    Google Scholar 

  • StetterKO, FialaG, HuberR, HuberR, SegererA (1990) Hyperthermohilic microorganisms. FEMS Microbiol Rev 75: 117–124

    Google Scholar 

  • StouthamerAH (1979) The search for correlation between theoretical and experimental growth yields. In: QualeJR (ed) Microbial biochemistry, vol 21. University Park Press, Baltimore, pp 1–47

    Google Scholar 

  • ThauerRK, JungermannK, DeckerK (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41: 100–180

    Google Scholar 

  • ThauerRK, Möller-ZinkhanD, SpormannA (1989) Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Annu Rev Microbiol 43: 43–67

    Google Scholar 

  • TomlinsonGA, KochTK, HochsteinLI (1974) The metabolism of carbohydrates by extremely halophilic bacteria: glucose metabolism via a modified Entner-Doudoroff pathway. Can J Microbiol 20: 1085–1091

    Google Scholar 

  • WeissbachA, HurwitzJ (1959) The formation of 2-keto-3-deoxyheptonic acid in extracts of Escherichia coli B. J Biol Chem 234: 705–709

    Google Scholar 

  • WhiteH, StroblG, FeichtR, SimonH (1989) Carboxylic acid reductase: a new tungsten enzyme catalyses the reduction of non-activated carboxylic acids to aldehydes. Eur J Biochem 184: 89–96

    Google Scholar 

  • WhiteH, FeichtR, HuberC, LottspeichF, SimonH (1991) Purification and some properties of the tungsten-containing carboxylic acid reductase from Clostridium formicoaceticum. Biol Chem Hoppe Seyler 372: 999–1005

    Google Scholar 

  • WoeseCR (1987) Bacterial evolution. Microbiol Rev 51: 221–271

    Google Scholar 

  • WoeseCR, KandlerO, WheelisML (1990) Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya. Proc Natl Acad Sci USA 87: 4576–4579

    Google Scholar 

  • WoldF (1972) Enolase. In: BoyerPD (ed) The enzymes, vol 5. Academic Press, New York, pp 499–538

    Google Scholar 

  • ZinderSH, KochM (1984) Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Arch Microbiol 138: 263–272

    Google Scholar 

  • ZwicklP, FabryS, BogedaiC, HaasA, HenselR (1990) Glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaebacterium Pyrococcus woesei: Characterization of the enzyme, cloning and sequencing of the gene, and expression in Escherichia coli. J Bacteriol 172: 4329–4338

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schäfer, T., Schönheit, P. Maltose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic archaeon Pyrococcus furiosus: evidence for the operation of a novel sugar fermentation pathway. Arch. Microbiol. 158, 188–202 (1992). https://doi.org/10.1007/BF00290815

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00290815

Key words

Navigation