Skip to main content
Log in

Detection and characterization of natural transformation in the marine bacterium Pseudomonas stutzeri strain ZoBell

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Soil isolates of Pseudomonas stutzeri have been shown previously to acquire genes by natural transformation. In this study a marine isolate, Pseudomonas stutzeri strain ZoBell, formerly Pseudomonas perfectomarina, was also shown to transform naturally. Transformation was detected by the Juni plate method and frequencies of transformation were determined by filter transformation procedures. Maximum frequencies of transformation were detected for three independent antibiotic resistance loci. Transformation frequencies were on the order of 4×10-5 transformants per recipient, a frequency over 100 times that of spontancous antibiotic resistance. Transfer of antibiotic resistance was inhibited by DNase I digestion. Marine isolates achieved maximum competence 14 h after transfer of exponential cultures to filters on solid media, although lower levels of competence were detected immediately following filter immobilization. Like soil isolates, P. stutzeri strain ZoBell is capable of cell contact transformation, but unlike soil isolates where transformation frequencies are greater for cell contact transformation as compared to transformation with purified DNA, the maximum frequency of transformation achieved by cell contact in the marine strain was approximately 10-fold less than transformation frequencies with purified DNA. These studies establish the first marine model for the study of natural transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aardema BW, Lorenz MG, Krumbein WF (1983) Protection of sediment-adsorbed transforming DNA against enzymatic inactivation. Appl Environ Microbiol 46:417–420

    Google Scholar 

  • Barnhart BJ, Herriott RM (1963) Penetration of deoxyribonucleic acid into Haemophilus influenzae. Biochim Biophys Acta 76:25–39

    Google Scholar 

  • Baumann P, Bowditch RD, Bauman L, Beaman B (1983) Taxonomy of Marine Pseudomonas species: P. stanieri sp. nov.; P. perfectomarina sp. nov., nom. rev.; P. nautica, and P. doudoroffii. Int J Syst Bacteriol 33:857–865

    Google Scholar 

  • Bott KF, Wilson GA (1967) Development of competence in Bacillus subtilis transformation system. J Bacteriol 94: 562–570

    Google Scholar 

  • Carlson CA, Ingraham JL (1983) Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Appl Environ Microbiol 45:1247–1253

    Google Scholar 

  • Carlson CA, Pierson LS, Rosen JJ, Ingraham JL (1983) Pseudomonas stutzeri and related species undergo natural transformation. J Bacteriol 153:93–99

    Google Scholar 

  • Coughter JP, Stewart GJ (1989) Genetic exchange in the environment. Antonie van Leeuwenhoel 55:15–22

    Google Scholar 

  • DeFlaun MF, Davis D, Paul JH (1986) Simplified method for dissolved DNA determinations in aquatic environments. Appl Environ Microbiol 52:654–659

    Google Scholar 

  • DeFlaun MF, Paul JH, Jeffrey WH (1987) The distribution and molecular weight of dissolved DNA in subtropical estuarine and oceanic environments. Mar Ecol Progr Ser 33:29–40

    Google Scholar 

  • Griffith F (1928) The significance of pneumococcal types. J Hyg 27:113–159

    Google Scholar 

  • Juni E (1972) Interspecies transformation of Acinetobacter: genetic evidence for a ubiquitous genus. J Bacteriol 112:917–931

    Google Scholar 

  • Juni E (1974) Simple genetic transformation assay for rapid diagnosis of Moraxella osloensis. Appl Environ Microbiol 27:16–24

    Google Scholar 

  • Lorenz MG, Aardema BW, Krumbein WE (1981) Interaction of marine sediment with DNA and DNA availability to nucleases. Mar Biol 64:225–230

    Google Scholar 

  • Lorenz MG, Wackernagel W (1987) Adsorption of DNA to sand and variable degradation rates of adsorbed DNA. Appl Environ Microbiol 53:2945–2952

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning —A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Matsubara T, Frunzke K, Zumft WG (1982) Modulation by copper of the products of nitrite respiration in Pseudomonas perfectomarina. J Bacteriol 149:816–823

    Google Scholar 

  • Paul JH, Myers B (1982) Fluorometric determination of DNA in aquatic microorganisms by use of Hoechst 33258. Appl Environ Microbiol 43:1393–1399

    Google Scholar 

  • Paul JH, Jeffrey WH, DeFlaun MF (1987) Dynamics of extracellular DNA in the marine environment. Appl Environ Microbiol 53:170–179

    Google Scholar 

  • Rhodes M, Best A, Payne WJ (1963) Electron donors and cofactors for denitrification by Pseudomonas perfectomarina. Can J Microbiol 9:799–807

    Google Scholar 

  • Smith HO, Danner DB, Deich RA (1981) Genetic transformation. Annu Rev Biochem 50:41–68

    Google Scholar 

  • Sparling PF (1966) Genetic transformation of Neisseria gonorrhoeae to streptomycin resistance. J Bacteriol 92:1364–1371

    Google Scholar 

  • Stewart GJ, Carlson CA (1986). The biology of natural transformation. Ann Rev Microbiol 40:211–235

    Google Scholar 

  • Stewart GJ, Carlson CA, Ingraham JL (1983) Evidence for an active role of donor cells in natural transformation of Pseudomonas stutzeri. J Bacteriol 156:30–35

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to John L. Ingraham, Professor Emeritus of Microbiology at the University of California, Davis. Professor Ingraham was the first person to recognize natural transformation in Pseudomonas stutzeri and has continued to contribute to our understanding of the process over the past eight years. This understanding of the genetics of P. stutzeri is only one of the many areas of microbiology to which Professor Ingraham has contributed in his exceptional career

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, G.J., Sinigalliano, C.D. Detection and characterization of natural transformation in the marine bacterium Pseudomonas stutzeri strain ZoBell. Arch. Microbiol. 152, 520–526 (1989). https://doi.org/10.1007/BF00425480

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00425480

Key words

Navigation