Skip to main content
Log in

Attachment of PC12 Cells to Adhesion Substratum Induces the Accumulation of Glucose Transporters (GLUTs) and Stimulates Glucose Metabolism

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The levels of glucose transporters (GLUTs), specifically GLUT3 and GLUT1, increased dramatically in PC12 cells that were cultured on suitable adhesion substrata (poly-l-lysine [PLL]) and induced to differentiate with nerve growth factor (NGF). Closer examination of this response revealed that: (1) cellular attachment to PLL was sufficient to stimulate the increase in GLUT immunoreactivity, and (2) NGF alone was not effective unless the cells were cultured on PLL-treated surfaces. The response to PLL was detected as early as 4 hr after plating the cells and peaked within 24–48 hr. Other adhesion substrata, such as collagen and poly-l-ornithine, evoked a similar response, although the latter polymer was far less effective. The increase in GLUTs appeared to result from an accumulation of existing transporters because this response was not blocked by inhibiting protein synthesis. Cellular adhesion to PLL was also accompanied by a rapid activation of glucose metabolism. Thus, specific recognition of the adhesion substratum not only provides a context for cell attachment, but also elicits important functional changes in GLUT activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kety, S. S. 1957. The general metabolism of the brain in vivo. Pages 221-236, in Richter, D. (ed.) Metabolism of the Nervous System. Pergammon Press, London.

    Google Scholar 

  2. Sokoloff, L. 1976. Circulation and energy metabolism of the brain. Pages 388-413 in Siegel, G. J., Albers, R. W., Katzman, R., and Agranoff, B. W. (eds.) Basic Neurochemistry. Little, Brown and Co., Boston.

    Google Scholar 

  3. Lund-Andersen, H. 1979. Transport of glucose from blood to brain. Physiol. Rev. 59:305-352.

    Google Scholar 

  4. Kayano, T., Fukumoto, H., Eddy, R. L., Fan, Y.-S., Byers, M. G., Shows, T. B., and Bell, G. I. 1988. Evidence for a family of transporter-like proteins. Sequence and gene localization of a protein expressed in fetal skeletal muscle and other tissues. J. Biol. Chem. 263:15245-15248.

    Google Scholar 

  5. Mueckler, M. 1990. Family of glucose-transporter genes. Implications for glucose homeostasis and diabetes. Diabetes 39:6-11.

    Google Scholar 

  6. Klip, A., Tsakiridis, T., Marette, A., and Ortiz, P. A. 1994. Regulation of expression of glucose transporters by glucose: A review of studies in vivo and in cell cultures. FASEB J. 8:43-53.

    Google Scholar 

  7. Maher, F., Davies-Hill, T. M., Lysko, P. G., Henneberry, R. C., and Simpson, I. A. 1991. Expression of two glucose transporters, GLUT1 and GLUT3, in cultured cerebellar neurons: Evidence for neuron-specific expression of GLUT3. Mol. Cell. Neurosci. 2:351-360.

    Google Scholar 

  8. Yano, H., Seino, Y., Inagaki, N., Hinokio, Y., Yamamoto, T., Yasuda, K., Masuda, K., Someya, Y., and Imura, H. 1991. Tissue distribution and species difference of the brain type glucose transporter (GLUT3). Biochem. Biophys. Res. Comm. 174:470-477.

    Google Scholar 

  9. Nagamatsu, S., Kornhauser, J. M., Burant, C. F., Seino, S., Mayo, K. E., and Bell, G. I. 1992. Glucose transporter expression in brain. cDNA sequence of mouse GLUT3, the brain facilitative glucose transporter isoform, and identification of sites of expression by in situ hybridization. J. Biol. Chem. 267:467-472.

    Google Scholar 

  10. Nagamatsu, S., Sawa, H., Nakamichi, Y., Katahira, H., and Inoue, N. 1994. Developmental expression of GLUT3 glucose transporter in the rat brain. FEBS Lett. 346:161-164.

    Google Scholar 

  11. Vannucci, S. J., Seaman, L. B., Brucklacher, R. M., and Vannucci, R. C. 1994. Glucose transport in developing rat brain: Glucose transporter proteins, rate constants and cerebral glucose utilization. Mol. Cell. Biochem. 140:177-184.

    Google Scholar 

  12. Hogan, A., Heyner, S., Charron, M. J., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., Thorens, B., and Schultz, G. A. 1991. Glucose transporter gene expression in early mouse embryos. Development 113:363-372.

    Google Scholar 

  13. Smith, D. E., and Gridley, T. 1992. Differential screening of a PCR-generated mouse embryo cDNA library: glucose transporters are differentially expressed in early postimplantation mouse embryos. Development 116:555-561.

    Google Scholar 

  14. Takao, Y., Akazawa, S., Matsumoto, K., Takino, H., Akazawa, M., Trocino, R. A., Maeda, Y., Okuno, S., Kawasaki, E., Uotani, S., Yokota, A., and Nagataki, S. 1993. Glucose transporter gene expression in rat conceptus during high glucose culture. Diabetologia 36:696-706.

    Google Scholar 

  15. Shepard, T. H., Tanimura, T., and Robkin, M. A. 1970. Energy metabolism in early mammalian embryos. Dev. Biol. Suppl. 4:42-58.

    Google Scholar 

  16. Ellington, S. K. 1987. Development of rat embryos cultured in glucose-deficient media. Diabetes 36:1372-1378.

    Google Scholar 

  17. Vannucci, S. J. 1994. Developmental expression of GLUT1 and GLUT3 glucose transporters in rat brain. J. Neurochem. 62:240-246.

    Google Scholar 

  18. Hawkins, R. A., Williamson, D. H., and Krebs, H. A. 1971. Ketone-body utilization by adult and suckling rat brain in vivo. Biochem. J. 122:13-18.

    Google Scholar 

  19. Sokoloff, L. 1973. Metabolism of ketone bodies by the brain. Annu. Rev. Med. 24:271-280.

    Google Scholar 

  20. Yavin, E., and Yavin, Z. 1974. Attachment and culture of dissociated cells from rat embryo cerebral hemispheres on polylysinecoated surface. J. Cell. Biol. 62:540-546.

    Google Scholar 

  21. Letourneau, P. C. 1975. Possible roles for cell-to-substratum adhesion in neuronal morphogenesis. Dev. Biol. 44:77-91.

    Google Scholar 

  22. Turner, D. C., Flier, L. A., and Carbonetto, S. 1987. Magnesium-dependent attachment and neurite outgrowth by PC12 cells on collagen and laminin substrata. Dev. Biol. 121:510-525.

    Google Scholar 

  23. Angeletti, P. U., Luizzi, A., Levi-Montalcini, R., and Gandini-Attardi, D. 1964. Effect of a nerve growth factor on glucose metabolism by sympathetic and sensory nerve cells. Biochim. Biophys. Acta 90:445-450.

    Google Scholar 

  24. Cohen, S. 1959. Purification and metabolic effects of a nerve growth-promoting protein from snake venom. J. Biol. Chem. 234:1129-1137.

    Google Scholar 

  25. Dwyer, D. S., Liu, Y., Miao, S., and Bradley, R. J. 1996. Neuronal differentiation in PC12 cells is accompanied by diminished inducibility of Hsp70 and Hsp60 in response to heat and ethanol. Neurochem. Res. 21:659-666.

    Google Scholar 

  26. Greene, L. A., and Tischler, A. S. 1976. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA 73:2424-2428.

    Google Scholar 

  27. Fisher, M. D., and Frost, S. C. 1996. Translocation of GLUT1 does not account for elevated glucose transport in glucose-deprived 3T3-L1 adipocytes. J. Biol. Chem. 271:11806-11809.

    Google Scholar 

  28. Simpson, I. A., Chundu, K. R., Davies-Hill, T., Honer, W. G., and Davies, P. 1994. Decreased concentrations of GLUT1 and GLUT3 glucose transporters in the brains of patients with Alzheimer's disease. Ann. Neurol. 35:546-551.

    Google Scholar 

  29. Christopher, W. C., Colby, W. W., and Ullrey, D. 1976. Derepression and carrier turnover: evidence for two distinct mechanisms of hexose transport regulation in animal cells. J. Cell. Physiol. 89:683-692.

    Google Scholar 

  30. Yamada, K., Tillotson, L. G., and Isselbacher, K. J. 1983. Regulation of hexose carriers in chicken embryo fibroblasts. Effect of glucose starvation and role of protein synthesis. J. Biol. Chem. 258:9786-9792.

    Google Scholar 

  31. Haspel, H. C., Wilk, E. W., Birnbaum, M. J., Cushman, S. W., and Rosen, O. M. 1986. Glucose deprivation and hexose transporter polypeptides of murine fibroblasts. J. Biol. Chem. 261:6778-6789.

    Google Scholar 

  32. Mueckler, M. 1994. Facilitative glucose transporters. Eur. J. Biochem. 219:713-725.

    Google Scholar 

  33. Rosen, O. M., Smith, C. J., Fung, C., and Rubin, C. S. 1978. Development of hormone receptors and hormone responsiveness in vitro. Effect of prolonged insulin treatment on hexose uptake in 3T3-L1 adipocytes. J. Biol. Chem. 253:7579-7583.

    Google Scholar 

  34. Kletzien, R. F., and Perdue, J. F. 1974. Sugar transport in chick embryo fibroblasts. II. Alterations in transport following transformation by a temperature-sensitive mutant of the Rous sarcoma virus. J. Biol. Chem. 249:3375-3382.

    Google Scholar 

  35. Birnbaum, M. J., Haspel, H. C., and Rosen, O. M. 1987. Transformation of rat fibroblasts by FSV rapidly increases glucose transporter gene transcription. Science 235:1495-1497.

    Google Scholar 

  36. Flier, J. S., Mueckler, M., Usher, P., and Lodish, H. F. 1987. Elevated levels of glucose transport and transporter messenger RNA are induced by ras and src oncogenes. Science 235:1492-1495.

    Google Scholar 

  37. Rollins, B. J., Morrison, E. D., Usher, P., and Flier, J. S. 1988. Platelet-derived growth factor regulates glucose transporter expression. J. Biol. Chem. 263:16523-16526.

    Google Scholar 

  38. Hiraki, Y., Rosen, O. M., and Birnbaum, M. J. 1988. Growth factors rapidly induced expression of the glucose transporter gene. J. Biol. Chem. 263:13655-13662.

    Google Scholar 

  39. van Putten, J. P. M., and Krans, H. M. J. 1985. Glucose as a regulator of insulin-sensitive hexose uptake in 3T3 adipocytes. J. Biol. Chem. 260:7996-8001.

    Google Scholar 

  40. Tessier-Lavigne, M., and Goodman, C. 1996. The molecular biology of axon guidance. Science 274:1123-1133.

    Google Scholar 

  41. Ortiz, P. A., Honkanen, R. A., Klingman, D. E., and Haspel, H. C. 1992. Regulation of the functional expression of hexose transporter GLUT-1 by glucose in murine fibroblasts: role of lysosomal degradation. Biochemistry 31:5386-5393.

    Google Scholar 

  42. Schirmer, E. C., Farooqui, J., Polak, P. E., Szuchet, S. 1994. GRASP: A novel heparin-binding serum glycoprotein that mediates oligodendrocyte-substratum adhesion. J. Neurosci. Res. 39:457-473.

    Google Scholar 

  43. Ryser, H. J.-P., Hancock, R. 1965. Histones and basic polyamino acids stimulate the uptake of albumin by tumor cells in culture. Science 150:501-503.

    Google Scholar 

  44. Chang, S.-W., Westcott, J. Y., Henson, J. E., and Voelkel, N. F. 1987. Pulmonary vascular injury by polycations in perfused rat lungs. J. Appl. Physiol. 62:1932-1943.

    Google Scholar 

  45. Fromm, J. R., Hileman, R. E., Caldwell, E. E. O., Weiler, J. M., Linhardt, R. J. 1995. Differences in the interaction of heparin with arginine and lysine and the importance of these basic amino acids in the binding of heparin to acidic fibroblast growth factor. Arch. Biochem. Biophys. 323:279-287.

    Google Scholar 

  46. Wang, R., Kobayashi, R., and Bishop, J. M. 1996. Cellular adherence elicits ligand-independent activation of the Met cell-surface receptor. Proc. Natl. Acad. Sci. USA 93:8425-8430.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dwyer, D.S., Pinkofsky, H.B., Liu, Y. et al. Attachment of PC12 Cells to Adhesion Substratum Induces the Accumulation of Glucose Transporters (GLUTs) and Stimulates Glucose Metabolism. Neurochem Res 23, 1107–1116 (1998). https://doi.org/10.1023/A:1020768321358

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020768321358

Navigation