Skip to main content
Log in

Pattern dynamics and optimization by reaction diffusion systems

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Reaction-diffusion systems show a fast and rather complex response on patterns produced by external space- and/or time-dependent perturbations. For example, one-component autocatalytic reactions rapidly find the loci where the given space-dependent reaction rates have relatively high values by following a kind of Darwinian strategy (combining self-reproduction and diffusion). It is shown that a simulation of this strategy in combination with annealing (decreasing the diffusion rates in time) may be used as an alternative to thermodynamic annealing strategies. Many-component reactions, such as the light-sensitive Belousov-Zhabotinsky reaction, show a more complex response to patterns impressed by illumination, for example. The response behavior and possible applications to dynamic information processing are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Turing,Phil. Trans. Roy. Soc. B 237:37–72 (1952).

    Google Scholar 

  2. K. G. Kirby and M. Conrad,Bull. Math. Biol. 46:765–783 (1984); E. Libermanet al., Brain Res.338:33–44 (1985).

    Google Scholar 

  3. M. Conrad,Commun. ACM 28:464–480 (1985).

    Google Scholar 

  4. K. G. Kirby and M. Conrad, Physica16D (1986), to appear.

  5. M. Conrad and F. T. Hong, inProceedings International Symposium Future Electronic Devices (1985), pp. 89–94.

  6. L. Kuhnert,Nature 319:393–394 (1986);Naturwissenschaften 73:96–97 (1986).

    Google Scholar 

  7. W. Ebeling and A. Engel,Syst. Anal. Model. Simul. 3:377–385 (1986).

    Google Scholar 

  8. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi,Science 220:671–680 (1983).

    Google Scholar 

  9. S. Kirkpatrick,J. Stat. Phys. 34:975–986 (1984).

    Google Scholar 

  10. J. S. Nicolis,Kybernetes 14:167–172 (1985).

    Google Scholar 

  11. T. Hogg and B. A. Huberman,J. Stat. Phys. 41:115–123 (1985).

    Google Scholar 

  12. W. Ebeling, A. Engel, B. Esser, and R. Feistel,J Stat. Phys. 37:369–384 (1985).

    Google Scholar 

  13. W. Ebeling and R. Feistel,Ann. Physik 34:81–90 (1977).

    Google Scholar 

  14. R. Landauer,Helv. Phys. Acta 56:847–856 (1983).

    Google Scholar 

  15. W. Ebeling, L. Kuhnert, B. Roeder, and L. Schimansky-Geier,Math. Biol. Newsl. 1:6 (1986).

    Google Scholar 

  16. A. S. Mikhailovet al., Phys. Lett. 96A:453–457 (1983).

    Google Scholar 

  17. L. Schimansky-Geieret al., Ann. Phys. (Leipzig) 40:10–24, 277–286 (1983).

    Google Scholar 

  18. R. J. Field and R. M. Noyes,J. Chem. Phys. 60:1877–1883.

  19. L. Kuhnert, L. Pohlmann, H. J. Krug, and G. Wessler, inProceedings Conference Self-Organization by Nonlinear Irreversible Processes Kuhlungsborn 1985 (Springer-Verlag, Berlin, 1986).

    Google Scholar 

  20. G. Nicolis and I. Prigogine,Self-Organization in Non-Equilibrium Systems (Wiley, New York, 1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebeling, W. Pattern dynamics and optimization by reaction diffusion systems. J Stat Phys 45, 891–903 (1986). https://doi.org/10.1007/BF01020580

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01020580

Key words

Navigation