Skip to main content
Log in

Dual specificity kinases — a new family of signal transducers

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Phosphorylation/dephosphorylation reactions are one of the dynamic mechanisms through which cells modulate protein activity in response to environmental stimuli. The eukaryotic molecules which are responsible for the phosphorylation of serine, threonine and tyrosine residues appear to have co-ordinately evolved from simple prokaryotic enzymes which primarily respond to nutritional cues. In multicellular eukaryotes the complexity of data transfer greatly exceeds that of simple bacteria. The eukaryotic cell needs to exchange information with neighouring and distant sister cells. Positional, nutritional and hormonal data are transmitted from the extracellular milieu across the plasma membrane and into the cytoplasm. In certain cases the signal must pass into the nucleus or other subcellular organelles where it is decoded and the proper cellular response initiated. All of these events have been shown to have a protein kinase component and it seems likely that in mammalian cells over 1,000 different kinase molecules have evolved to form the requisite signal transducing networks. In this review we describe a previously unappreciated family of protein kinases, the dual specificity or DSK kinases, which play important roles in the regulation of normal cellular growth and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hunter T: Cell 50: 823–829, 1987

    Google Scholar 

  2. Abraham N, Veillette A: Cancer Investigation 9: 455–463, 1991

    Google Scholar 

  3. Moll T, Tebb G, Surana U, Robitsch H, Nasmyth K: Cell 66: 743–758, 1991

    Google Scholar 

  4. Gould KL, Nurse P: Nature 342: 39–45, 1989

    Google Scholar 

  5. Featherstone C, Russell P: Nature 349: 808–811, 1991

    Google Scholar 

  6. Lundgren K, Walworth N, Booher R, Dembski M, Kirschner M, Beach D: Cell 64: 1111–1122, 1991

    Google Scholar 

  7. Coleman TR, Tang Z, Dunphy WG: Cell 72: 919–929, 1993

    Google Scholar 

  8. Nadin-Davis SA, Nasim A: EMBO J 7: 985–993, 1988

    Google Scholar 

  9. Stern DF, Zheng P, Beidler DR, Zerillo C: Mol Cell Biol 11: 987–1001, 1991

    Google Scholar 

  10. Dailey D, Schieven GL, Lim MY, Marquardt H, Gilmore T, Thorner J, Martin GS: Mol Cell Biol 10: 6244–6256, 1990

    Google Scholar 

  11. Errede B, Gartner A, Zhou Z, Nasmyth K, Ammerer G: Nature 362: 261–264, 1993

    Google Scholar 

  12. Howell B, Afar DEH, Lew J, Douville E, Icley P, Gray D, Bell JC: MCB 11: 568–572, 1991

    Google Scholar 

  13. Ben-David Y, Letwin K, Tannock L, Bernstein A, Pawson T: EMBO J 10: 317–325, 1991

    Google Scholar 

  14. Icely PL, Gros P, Bergeron JM, Devault A, Afar DEH, Bell JC: JBC 266: 16073–16077, 1991

    Google Scholar 

  15. Douville EMJ, Afar DEH, Howell B, Letwin K, Tannock L, Ben-David Y, Pawson T: MCB 12: 2681–2689, 1992

    Google Scholar 

  16. Letwin K, Mizzen L, Motro B, Ben-David Y, Bernstein A, Pawson T: EMBO J 11: 3521–3531, 1992

    Google Scholar 

  17. Nakamura T, Sugino K, Kurosawa N, Sawai M, Takio K, Eto Y, Iwashita S, Muramatsu M, Titani K, Sugino H: JBC 267: 18924–18928, 1992

    Google Scholar 

  18. Wilks AF, Harpur A, Kurban RR, Ralph SJ, Zurcher G, Ziemiecki A: Mol Cell Biol 11: 2057–2065, 1991

    Google Scholar 

  19. Thomas G: Cell 68: 1–4, 1992

    Google Scholar 

  20. Crews CM, Alessandrini A, Erikson RL: Science 258: 478–480, 1992

    Google Scholar 

  21. Tsuda L, Inoue YH, Yoo M, Mizuno M, Hata M, Lim Y, Adachi-Yamada T, Ryo H, Masamune Y, Nishida Y: Cell 72: 407–414, 1993

    Google Scholar 

  22. Seger R, Ahn NG, Boulton T, Yancopoulos G, Panayotatos N, Radziejewska E, Ericsson L, Bratlein RL, Cobb M, Krebs EG: PNAS 88: 6142–6146, 1991

    Google Scholar 

  23. Velazquez L, Fellous M, Stark G, Pellegrini S: Cell 70: 313–322, 1993

    Google Scholar 

  24. Mills G, Schmandt R, McGill M, Amendola A, Hill M, Jacobs K, May C, Rodricks A, Campbell S, Hogg D: JBC 267: 16000–16006, 1992

    Google Scholar 

  25. Lindberg RA, Quinn AM, Hunter T: TIBS 17: 114–119, 1992

    Google Scholar 

  26. McBurney MW, Jones-Villeneuve EMV, Edwards MKS, Anderson PJ: Nature 299: 165–167, 1982

    Google Scholar 

  27. Hanks SK, Quinn AM, Hunter T: Science 241: 42–52, 1988

    Google Scholar 

  28. Atherton-Fessler S, Parker LL, Geahlen RL, Piwnica-Worms H: Mol Cell Biol 13: 1675–1685, 1993

    Google Scholar 

  29. Kosako H, Nishida E, Gotoh Y: EMBO 12: 787–794, 1993

    Google Scholar 

  30. Pelech SL, Sanghera JS: TIBS 17: 233–238, 1992

    Google Scholar 

  31. Rabinow L, Birchler JA: EMBO 8: 879–889, 1989

    Google Scholar 

  32. Jansen G, Mahadevan M, Amemeiya C, Wormskamp N, Segers B, Hendriks W, O'Hoy K, Baird S, Sabourin L, Lennon G, Jap PL, Iles D, Coerwinkel M, Hofker M, Carrano AV, deJong PJ, Korneluk RG, Wieringa B: Nature Genetics 1: 361, 1992

    Google Scholar 

  33. Lindberg RA, Fischer WH, Hunter T: Oncogene 8: 351–360, 1993

    Google Scholar 

  34. Meurs EF, Galabru J, Barber GN, Katze MG, Hovanessian AG: PNAS 90: 232–236, 1993

    Google Scholar 

  35. Koromilas AE, Roy S, Barber GN, Katze MG, Sonenberg N: Science 257: 1685–1689, 1992

    Google Scholar 

  36. Edery I, Petryshyn R, Sonenberg N: Cell 56: 303–312, 1989

    Google Scholar 

  37. Dever TE, Feng L, Wek, Cigan M, Donahue T, Hinnebusch: Cell 68: 585–596, 1992

    Google Scholar 

  38. Kaufman R, Davies M, Pathak VK, Hershey JWB: MCB 9: 946–958, 1989

    Google Scholar 

  39. Koch CA, Anderson D, Moran MF, Ellis C, Pawson T: Science 252: 668–674, 1991

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Douville, E., Duncan, P., Abraham, N. et al. Dual specificity kinases — a new family of signal transducers. Cancer Metast Rev 13, 1–7 (1994). https://doi.org/10.1007/BF00690414

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00690414

Key words

Navigation