Skip to main content
Log in

A sedimentary facies model for perennial and meromictic saline lakes: Holocene Medicine Lake Basin, South Dakota, USA

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Medicine lake is a small (about 1 km2), shallow (up to 10 m deep), saline (50–170 g l−1) and meromictic lake formed after the retreat of the Wisconsin ice in the north American Great Plains. Based on a detailed sedimentological analysis of cores, we describe and interpret 13 sedimentary subfacies grouped in 9 associations which characterize the following lacustrine subenvironments: clastic littoral (freshwater and saline), springs, microbial mats, bench slope, and pelagial (oxic, alternating oxic-anoxic, anoxic and hypersaline, and organic-dominated). Lateral distribution and vertical evolution of subfacies in our model are controlled by climate fluctuations, climate-related limnological parameters (lake level, TDS and brine composition, and redox conditions), and autocyclic processes (progressive infilling of the basin and higher sedimentation rate in the pclagial realm). Microbial and chemical processes govern deposition in this system, and meromixis plays a decisive role in lake dynamics. Phototropic bacterial plate communites at the chemocline dominated as pelagial organic producers during stable meromictic periods, whereas benthic microbial communities developed during mixed water periods. Water stratification during the Holocene was mainly controlled by three parameters: 1) basin morphometry, 2) lake level, and 3) differences in TDS values between mixolimnion and monimolimnion waters. Sedimentary facies analyses is a powerful descriptive and interpretative tool that greatly contributes to deciphering the high resolution paleoenvironmental information archived in lake sequences. Depositional and paleoenvironmental models provide a dynamic framework for integrating paleolimnological data and other proxy paleorecords. Medicine lake serves as a facies model for shallow, perennial hypersaline, meromictic lakes in modern and ancient lacustrine basins. The sediment sequence from Medicine lake cores is consistent with the general paleoclimatic evolution of the northern Great Plains since the retreat of ice sheets. Our study reveals a plethora of rapid fluctuations in the water cycle both during the middle and the late Holocene. These augment prior paleoclimate reconstructions based on diatom studies of the lower Holocene freshwater to saline transition and on pollen profiles which show little variability during the subsequent long prairie grass episode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen P. & J. Collinson, 1986. Lakes. In H. Reading (ed) Sedimentary environments and facies. Blackwell Scientific Publications, Oxford: 63–94.

    Google Scholar 

  • Allen, K., 1992. Geochemical stratigraphy of Medicine Lake, South Dakota: Paleoclimatic implications of the freshwater/saline transition. Ms. thesis, University of Minnesota, 102 pp.

  • Allen, K., 1994. Early-Holocene geochemical evolutionof saline Medicine Lake, South Dakota. J. Paleolimnol. 10: 69–84.

    Google Scholar 

  • Anadon, P., L. Cabrera & R. Julia, 1988. Anoxic-oxic cyclical lacustrine sedimentation in the Miocene Rubielos de Mora Basin, Spain. In Fleet, A. J., K. Kelts & M. Talbot (eds), Lacustrine petroleum source rocks. Geological Society Special Publication 40: 353–367.

    Google Scholar 

  • Barnosky, C. W., 1989. Post glacial vegetation and climate in the northwestern Great Plains of Montana. Quat. Research 31: 520–528.

    Google Scholar 

  • Bartlein P. C. & C. Whitlock, 1993. Paleoclimatic interpretation of the Elk lake pollen record. In Bradbury, J. P. & W. E. Dean (eds), Elk Lake, Minnesota: Evidence for rapid change in the north-central United States. Boulder Colorado, Geological Society of America, Special Paper 276: 275–294.

    Google Scholar 

  • Bauld, J., 1981. Occurrence of benthic microbial mats in saline lakes. Hydrobiologia 81: 87–111.

    Google Scholar 

  • Bauld, J., 1986. Benthic microbial communities of Australian saline lakes. In de Deckker P. & W. D. Williams (eds), Limnology in Australia, CSIRO/Dr W. Junk, East Melbourne/Dordrecht: 95–111.

    Google Scholar 

  • Beaver, R. T., 1973. The geology of the Medicine Lake area and its relationship to lake water quality. M. Sc. Thesis, Univ. of S.D., 77 pp.

  • Bowler, J. M. & J. T. Teller, 1986. Quaternary evaporites and hydrologic changes, Lake Tyrrel, northwest Victoria. Austr. J. Earth Sci. 33: 43–63.

    Google Scholar 

  • Bradbury, J. P., W. W. Dean & R. Y. Anderson, 1993. Holocene climatic and limnologic history of the north-central United States as recorded in the varved sediments of Elk Lake, Minnesota: a synthesis. In J. P. Bradbury & W. E. Dean (eds), Elk Lake, Minnesota: Evidence for rapid change in the north-central United States. Boulder Colorado, Geological Society of America, Special Paper 276: 309–328.

    Google Scholar 

  • Bradley, W. H. & H. P. Eugster, 1969. Geochemistry and paleolimnology of the trona deposits and associated authigenic minerals of the Green River Formation of Wyoming. Professional Paper USGS, 496-B: 1–71.

    Google Scholar 

  • Bunn, S. & D. Edward, 1984. Seasonal meromixis in three hypersaline lakes on Rotnest Island, Western Australia. Aust. J. mar. Freshwat. Res. 35: 261–265.

    Google Scholar 

  • Burke, C., 1990. Interactions of benthic microbial communities with the overlying waters in saline lakes of Yalgorup National Park. Ph. D. Dissertation, University of Western Australia, 201 pp.

  • Burne, R. V., J. Bauld, & P. De Deckker, 1980. Saline lake charophythes and their geological significance. J. Sed. Petr., 50: 281–293.

    Google Scholar 

  • Callender, E., 1968. The postglacial sedimentology of Devils lake, North Dakota. Ph. D. Thesis, University of North Dakota.

  • Cohen, Y., W. E. Krumbein & M. Shilo, 1977. Solar Lake (Sinai) 3: Bacterial distribution and production. Limnol. Oceanogr. 22: 621–634.

    Google Scholar 

  • COHMAP members, 1988. Major climatic changes of the last 18,000 years: observations and model simulations. Science 241: 1043–1052.

    Google Scholar 

  • De Deckker, P., 1983. Australian salt lakes: their history, chemistry, and biota — a review. Hydrobiologia 105: 231–244.

    Google Scholar 

  • De Deckker, P., 1988. Large Australian lakes during the last 20 million years: sites for petroleum source rock or metal ore deposition, or both? In Fleet, A. J., K. Kelts & M. R. Talbot (eds), Lacustrine Petroleum Source Rocks. Geological Society Special Publication 40: 45–58.

    Google Scholar 

  • De Deckker, P., J. Bauld & R. V. Burne, 1982. Pillie Lake, Eyre Peninsula, South Australia: modern environment and biota, dolomite sedimentation, and Holocene history. Trans. R. Soc. S. Aust. 106(4): 169–181.

    Google Scholar 

  • Dean, W. E., 1981. Carbonate minerals and organic matter in sediments of modern north-temperate hard-water lakes. In Ethridge, F. G. & R. M. Flores (eds), Recent and ancient nonmarine depositional environments: models for exploration. SEPM Sp. Publ. 31: 213–231.

    Google Scholar 

  • Dean, W. E., 1993. Physical properties, mineralogy, and geochemistry of Holocene varved sediments from Elk lake, Minnesota. In J. P. Bradbury & W. E. Dean (eds), Elk Lake, Minnesota: Evidence for rapid change in the north-central United States. Boulder Colorado, Geological Society of America, Special Paper 276: 135–158.

    Google Scholar 

  • Dean, W. E. & T. D. Fouch, 1983. Lacustrine environment. In P. A. Scholle, D. G. Bebout & C. H. Moore (eds), Carbonate depositional environments. AAPG Memoir 33: 96–130.

    Google Scholar 

  • Demaison, G. J. & G. T. Moore, 1980. Anoxic environments and oil source bed genesis. Bulletin of the American Association of Petroleum Geologist 64: 1179–1209.

    Google Scholar 

  • Donovan, R. N., 1975. Devonian lacustrine limestones at the margin of the Orcadian Basin, Scotland. Q. J. Geol. Soc. London 131: 489–510.

    Google Scholar 

  • Drummond, C. N., B. H. Wilkinson, K. C. Lohmann & G. R. Smith, 1993. Effect of regional topography and hydrology on the lacustrine isoyopic record of Miocene paleoclimate in the Rocky Mountains. Palaeogeogr., Palaeoclimat., Palaeoecol. 101: 67–79.

    Google Scholar 

  • Eugster, H. A. & K. Kelts, 1983. Lacustrine chemical sediments. In A. S. Goudie & K. Pye (eds), Chemical Sediments and Geomorphology. Academic Press, London: 321–368.

    Google Scholar 

  • Eugster, H. P. & L. A. Hardie, 1978. Saline Lakes. In A. Lerman (ed), Lakes, Chemistry, Geology, Physics. Springer, New York, 237–293.

    Google Scholar 

  • Eugster, H. P., 1966. Sodium-carbonate — bicarbonate minerals as indicators of PCO2. Journal of Geophysical Research 71: 3369–3377.

    Google Scholar 

  • Eugster, H. P., 1980. Lake Magadi, Kenya, and its precursors. In A. Nissembaum (ed), Hypersaline brines and evaporitic environments. Developments in Sedimentology 28: 195–232, Elsevier, Amsterdam.

    Google Scholar 

  • Farnsworth, R. K., E. S. Thompons & E. L. Peck, 1982. Evaporation Atlas for the contiguous 48 United States. US National Oceanic and Atmospheric Administration tecnical report NWS 33.

  • Fontes, J. Ch., F. Gasse, Y. Callot, J-C. Plaziat, P. Carbonell, P. A. Dupeuble & I. Kaczmarska, 1985. Freshwater to marine-like environments from Holocene lakes in northern Sahara. Nature 317: 608–610.

    Google Scholar 

  • Forester, R. M., L. D. DeLorme & J. P. Bradbury, 1987. Mid-Holocene climate in northern Minnesota. Quaternary Research 28: 263–273.

    Google Scholar 

  • Freeze, R. A. & J. A. Cherry, 1979. Groundwaters. Prentice-Hall Inc., Edgewoods Cliffs, 604 pp.

    Google Scholar 

  • Fritz, P., A. V. Morgan, U. Eicher & J. H. McAndrews, 1987. Stable isotope, fossil Coleoptera and pollen stratigraphy in Late Quaternary sediments from Ontario and New York State. Palaeogeogr., Palaeoclimatol., Palaeoecol. 58: 183–202.

    Google Scholar 

  • Fritz, S. C., S. Juggins, R. W. Battarbee & D. R. Engstrom, 1991. Reconstruction of past changes in salinity and climate using a diatom-based transfer function. Nature 352: 706–708.

    Google Scholar 

  • Garber, R. A., Y. Levy & G. M. Friedman, 1987. The sedimentology of the Dead Sea. Carbonates and Evaporites 2: 43–57.

    Google Scholar 

  • Gierlowski-Kordesch, E. & K. Kelts, 1994. Global Geological Record of Lake Basins. Cambridge University Press, 220 pp.

  • Glenn, C. R. & K. Kelts, 1991. Sedimentary rhythms in lake deposits. In G. Einsele, W. Ricken & A. Seilacher (eds), Cycles and events in Stratigraphy, Springer-Verlag, Berlin Heildererg: 188–221.

    Google Scholar 

  • Grey, K., L. S. Moore, R. V. Burne, B. K. Pierson & J. Bauld, 1990. Lake Thetis, Western Australia: an example of saline lake sedimentation dominated by Benthic Microbial Processes. Aust. J. Mar. Freshwater Res. 41: 275–300.

    Google Scholar 

  • Hammer, U. T., 1984. The saline lakes of Canada. In F. Taub (ed) Lakes and reservoirs, ecosystems of the world. Elsevier, Amsterdam, 23: 521–540.

    Google Scholar 

  • Hanselmann, K. W., 1986. Microbially mediated processes in environmental chemistry: lake sediments as model systems. Chimia 40: 146–159.

    Google Scholar 

  • Hansen, D. S., 1990. Water resources of Codington and Grant counties, South Dakota. US Geol. Surv. Water-Resources Investigations Report 89–4147, 47 pp.

  • Hardie, L. A., J. P. Smoot & H. P. Eugster, 1978. Saline lakes and their deposits: a sedimentological approach. In A. Matter & M. E. Tucker (eds), Modern and Ancient Lake Sediments. Intern. Assoc. Sed. Spec. Publ. 2: 7–42.

    Google Scholar 

  • Hayden, J. F., 1972. A limnological investigation of a meromictic lake (Medicine Lake, S.D.) with special emphasis on pelagic primary production. M.S. thesis, Univ. of S.D., 82 pp.

  • Herczeg A. L. & R. G. Fairbanks, 1987. Anomalous carbon isotope fractionation between atmospheric CO2 and dissolved inorganic carbon induced by intense photosynthesis. Geochimica et Cosmochimica Acta 51: 895–899.

    Google Scholar 

  • Hutchinson, G. E., 1957. A treatise in Limnology. I, Geography, Physics and Chemistry. John Wiley and Sons, N.Y.

    Google Scholar 

  • Jellison R., L. Miller, J. Melack & G. Dana, 1993. Meromixis in hypersaline Mono Lake, California. 2. Nitrogen fluxes. Limnology and Oceanography 38: 1020–1039.

    Google Scholar 

  • Jellison, R. & J. Melack, 1993. Meromixis in hypersaline Mono Lake, California. 1. Stratification and vertical mixing during the onset, persistence, and breakdown of meromixis. Limnology and Oceanography 38: 1018–1019.

    Google Scholar 

  • Katz, A., Y. Kolodny & A. Nissenbaum, 1977. The geochemical evolution of the Pleistocene Lake Lisan — Dead Sea system. Geochimica et Cosmochimica Acta 41: 1609–1626.

    Google Scholar 

  • Kelts, K. & K. J. Hsü, 1978. Freshwater carbonate sedimentation. In A. Lerman (ed), Lakes: chemistry, geology and physics. Springer-Verlag, N.Y.: 295–323.

    Google Scholar 

  • Kelts, K. & M. Shahrabi, 1986. Holocene sedimentology of hypersaline lake Urmia, northwestern Iran. Palaeogeogr., Palaeoclimatol., Palaeoecol. 54: 105–130.

    Google Scholar 

  • Kelts, K. & M. R. Talbot, 1990. Lacustrine carbonates as geochemical archives of environmental change and biotic-abiotic interactions. In M. M. Tilzer & C. Serruya (eds), Ecological Structure and Function in Large Lakes. Berlin, Springer: 290–317.

    Google Scholar 

  • Kelts, K., 1988. Environments of deposition of lacustrine petroleum source rocks: an introduction. In A. J. Fleet, K. Kelts & M. R. Talbot (eds), Lacustrine Petroleum Source Rocks, Geological Society Special Publication 40: 3–26.

    Google Scholar 

  • Kempe, S. & E. T. Degens, 1979. Varves in the Black Sea and in Lake Van (Turkey). In C. H. Schlüchter (ed), Moraines and varves — origin, genesis, classification. A. A. Balkema, Rotterdam: 309–318.

    Google Scholar 

  • Krumbein, W. E., Y. Cohen & M. Shilo, 1977. Solar Lake (Sinai). 4. Stromatolitic cyanobaterial mats. Limnology and oceanography 22(4): 635–656.

    Google Scholar 

  • Last, W. & T. H. Schweyen, 1984. Late Holocene history of Waldsea Lake, Saskatchewan, Canada. Quat. Res. 24: 219–234.

    Google Scholar 

  • Last, W. M. & L. A. Slezak, 1986. Paleohydrology, sedimentology and geochemistry of two meromictic saline lakes in southern Saskatchewan. Geogr. Phys. Quat. 11: 5–15.

    Google Scholar 

  • Last, W. M. & P. De Deckker, 1990. Modern and Holocene carbonate sedimentology of two saline volcanic maar lakes, southern Australia. Sedimentology 37: 967–982.

    Google Scholar 

  • Last, W. M., 1982. Holocene carbonate sedimentation in Lake Manitoba, Canada. Sedimentology 29: 691–704.

    Google Scholar 

  • Last, W. M., 1988. Sedimentolgy of a saline playa in the northern Great Plains, Canada. Sedimentology 36: 109–123.

    Google Scholar 

  • Last, W. M., 1990. Paleochemistry and paleohydrology of Ceylon Lake, a salt-dominated playa basin in the northern Great Plains, Canada. J. Paleolimn. 4: 219–238.

    Google Scholar 

  • Last, W. M., 1991. Sedimentology, geochemistry and evolution of saline lakes of the Northern Great Plains. Sedimentary and Paleolimnological records of saline lakes Post Conference Field Trip Excursion Guidebook, 150 pp.

  • Manega, P. C. & S. Bieda, 1987. Modern sediments of Lake Natron, Tanzania. Sciences Géologiques Bull. 40: 83–95.

    Google Scholar 

  • McDonald, G. M., 1989. Postglacial paleoecology of the forest-grassland ecotone of southern Alberta: new insights on vegetation and climate change in the Canadian Rocky Mountains and adjacente foothills. Palaeogeogr., Palaeoclimatol., Palacoecol. 73: 155–173.

    Google Scholar 

  • McKenzie, J. A., 1985. Carbon isotopes and productivity in the lacustrine and marine environment. In W. Stumm (ed), Chemical processes in lakes. New York, Wiley: 99–118.

    Google Scholar 

  • Mees, F., D. Verschuren, R. Nijs & H. Dumont, 1991. Holocene evolution of the crater lake at Malha, Northwest Sudan. Journal of Paleolimnology 5: 227–253.

    Google Scholar 

  • Melack, J. M., 1981. Photosynthetic activity of phytoplankton in tropical African soda lakes. Hydrobiologia 81: 71–85.

    Google Scholar 

  • Mori, S., Y. Saijo & T. Mizuno, 1984. Limnology of Japanese lakes and ponds. In F. Taub (ed), Lakes and reservoirs. Ecosystems of the world. Elsevier, Amsterdam, 23: 303–330.

    Google Scholar 

  • Müller, G., G. Irion & U. Forstner, 1972. Formation and diagenesis of inorganic Ca-Mg carbonates in the lacustrine environment. Naturwissenschaften 59: 158–164.

    Google Scholar 

  • Müller, G., & F. Wagner, 1978. Holocene carbonate evolution in Lake Balaton (Hungary): a response to climate and impact of man. In A. Matter & M. E. Tucker (eds), Modern and ancient lake sediments. International Association of Sedimentologists, Special Publication No. 2: 57–81.

  • Murphy, D. & B. Wilkinson, 1980. Carbonate deposition and facies distribution in a central Michigan marl lake. Sedimentology 27: 123–135.

    Google Scholar 

  • Neev, D. & K. O. Emery, 1967. The Dead Sea: depositional processes and environments of evaporites. Bulletin of the Geological Survey of Israel, 41, 147 pp.

  • Oremland, R. S., J. E. Cloern, Z. Sofer, R. L. Smith, C. W. Culberston, J. Zehr, L. Miller, B. Cole, R. Harvey, N. Iveren, M. Klug, D. J. Des Marais & G. Rau, 1988. Microbial and biochemical processes in Big Soda Lake, Nevada. In A. J. Fleet, K. Kelts & M. R. Talbot (eds), Lacustrine Petroleum Source Rocks. Geological Society Special Publication 40: 59–75.

    Google Scholar 

  • Parnell, J., 1988. Significance of lacustrine cherts for the environment of source-rock deposition in the Orcadian Basin, Scotland. In: A. J. Fleet, K. Kelts & M. R. Talbot (eds), Lacustrine Petroleum Source Rocks, Geological Society Special Publication 40: 205–217.

    Google Scholar 

  • Radle, N. J., 1981. Vegetation history and lake level changes at a saline lake in northeastern South Dakota. M.Sc. Thesis, Univ. of Minn., 126 pp.

  • Radle, N. J., C. M. Keister & R. W. Battarbee, 1989. Diatom, pollen and geochemical evidence for the paleosalinity of Medicine Lake, S. Dakota, during the Late Wisconsin and early Holocene. J. Paleolimn., 2: 159–172.

    Google Scholar 

  • Renaut, R. & R. Owen, 1991. Shore-zone sedimentation and facies in a closed rift lake: the Holocene beach deposits of Lake Bogoria, Kenya. In P. Anadón, L. Cabrera & K. Kelts (eds), Lacustrine Facies Analysis. Sp. Publ. IAS 13: 175–195.

    Google Scholar 

  • Renaut, R., J. Tiercelin & R. Owen, 1986. Mineral precipitation and diagenesis in the sediments of the Lake Bogoria basin, Kenya Rift Valley. In L. E. Frostick, R. W. Renaut, I. Reid & J. J. Tiercelin (eds), Sedimentation in the African rift. Geological Society Special Publication 25: 159–176. Blackwell, Oxford.

    Google Scholar 

  • Renaut, R. W. & P. Long, 1989. Sedimentology of the saline lakes of the Cariboo Plateau, Interior British Columbia, Canada. Sedimentary Geology 64: 239–264.

    Google Scholar 

  • Smith, G. I., I. Friedman & R. J. McLaughin, 1987. Studies of Quaternary saline lakes — III. Mineral, chemical and isotopic evidence of salt solution and crystallization processes in Owens Lake, California, 1969–1971. Geochim. Cosmochim. Acta 51: 811–827.

    Google Scholar 

  • Smith, M., 1990. Lacustrine Oil shale in the Geologic record. In B. Katz (ed), Lacustrine Basin Exploration — Case studies and modern analogs. AAPG Memoir 50: 43–60.

    Google Scholar 

  • Smoot, J. & T. Lowestein, 1991. Depositional environments of nonmarine evaporites. In J. Melvin (ed), Evaporites, petroleum and mineral resources. Developments in Sedimentology 50: 189–348. Elsevier, Amsterdam.

    Google Scholar 

  • Spencer, R. J., M. J. Baedecker, H. P. Eugster, R. M. Forester, M. B. Goldhaber, B. F. Jones, K. Kelts, J. Mckenzie, D. B. Madsen, S. L. Rettig, M. Rubin & C. J. Bowser, 1984. Great Salt Lake, and precursors, Utah: the last 30,000 years. Contributions to Mineralogy and Petrology 86: 321–334.

    Google Scholar 

  • Steinhorn, I., 1985. The disapperance of the long-term meromictic stratification of the Dead Sea. Limnology and Oceanography 30: 451–472.

    Google Scholar 

  • Stockdale, R. G., 1971. A geologic study of the chemical quality of Medicine Lake. M.S. thesis, Univ. of S.D., 59 pp.

  • Stuiver, M., 1970. Oxygen and carbon isotope ratios of fresh-water carbonates as climatic indicators. Journal of Geophysical Research 75: 5247–5257.

    Google Scholar 

  • Talbot, M., 1988. The origins of lacustrine oil source rocks: evidence from the lakes of tropical Africa. In A. Fleet, K. Kelts & M. Talbot (eds), Lacustrine petroleum source rocks. Geological Society Special Publication 40: 29–43.

    Google Scholar 

  • Talbot, M. R. & K. Kelts, 1986. Primary and diagenetic carbonates in the anoxic sediments of Lake Bosumtwi, Ghana. Geology 14: 912–916.

    Google Scholar 

  • Teller, J. T. & W. M. Last, 1990. Paleohydrological indicators in playas and salt lakes, with examples from Canada, Australia, and Africa. Palaeogeogr., Palaeoclimatol., Palaeoecol. 76: 215–240.

    Google Scholar 

  • Tiercelin, J. J., G. Perinet, J. Le Fournier, S. Bieda & P. Robert, 1982. Lacs du rift est-Africain, examples de transition eaux douceseaux salées: le lac Bogoria, rift Gregory, Kenya. Memoiré Societé Géologique de France, 144: 217–230.

    Google Scholar 

  • Tipton, M. J., F. A. Schmer, J. C. Schmulbach, D. W. Ryland, J. F. Hayden & R. T. Beaver, 1972. Investigations of lake water quality in eastern South Dakota with remote sensing techniques. Research Project Technical Completion Report B-o22-SDAK, Univ. od S.D., 123 pp.

  • Treese, K. & B. Wilkinson, 1982. Peat-marl deposition in a Holocene paludal — lacustrine basin — Sucker Lake, Michigan. Sedimentology 29: 375–390.

    Google Scholar 

  • U.S. National Oceanic and Atmospheric Administration, 1989. Annual summary, climatological data, South Dakota 94 (13).

  • Valero Garcés, B., K. Kelts & E. Ito (1995). Oxygen and carbon isotope trends and sedimentological evolution of a meromictic and saline lacustrine system: the Holocene Medicine Lake Basin, North American Great Plains, USA. Palaeogeogr., Palaeoclimatol., Palaeoecol. (in press).

  • Vance, R. E., R. W. Mathews & J. J. Clague, 1992. 7000 year record of lake-level change on the northern Great Plains: a high-resolution proxy of past climate. Geology 20: 879–882.

    Google Scholar 

  • Warren, J. K., 1982. The hydrologic setting, occurrence and significance of gypsum in late Quaternary salt lakes in South Australia. Sedimentology 29: 609–637.

    Google Scholar 

  • Watts, W. A. & R. C. Bright, 1968. Pollen, seed, and mollusk analysis of a sediment core from Pickerel Lake, northeastern South Dakota. Geol. Soc. Amer. Bull. 79: 855–876.

    Google Scholar 

  • Warren, J. K., 1982. The hydrologic setting, occurrence and significance of gypsum in late Quaternary salt lakes in South Australia. Sedimentology 29: 609–637.

    Google Scholar 

  • Webb, T. III, 1985. Holocene palynology and climate. In A. D. Hecht (ed), Paleoclimate analysis and modeling. New York, John Wiley and Sons: 163–195.

    Google Scholar 

  • Wirtz, M. 1932. The algal flora of Medicine Lake, Codington county, South Dakota. Ms. Sc. Thesis, University of Minnesota, 65 pp.

  • Wright, H. E. Jr., 1992. Patterns of Holocene Climatic Change in the Midwestern United States. Quaternary Research 38: 129–134.

    Google Scholar 

  • Wright, H. E., 1967. A square-rod piston sampler for lake sediments. J. Sed. Petrol. 37: 975–976.

    Google Scholar 

  • Wright, V. P., 1990. Lacustrine carbonates. In M. E. Tucker & V. P. Wright (eds), Carbonate Sedimentology. Blackwell Scientific Publications, Oxford: 164–190.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valero-Garcés, B.L., Kelts, K.R. A sedimentary facies model for perennial and meromictic saline lakes: Holocene Medicine Lake Basin, South Dakota, USA. J Paleolimnol 14, 123–149 (1995). https://doi.org/10.1007/BF00735478

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00735478

Key words

Navigation