Skip to main content
Log in

The significance and future potential of using microbes for assessing ecosystem health: The Great Lakes example

  • Published:
Journal of Aquatic Ecosystem Health

Abstract

An overview of current status of microbial research in the Great Lakes consisting of structural, toxicological, and cytological aspects is presented. A variety of techniques for the identification and enumeration of food-web parameters such as bacteria, autotrophic picoplankton, heterotrophic nanoflagellates, ciliates, and various size fractions of phytoplankton have been evaluated. An extensive lakewide survey of the Great Lakes conducted in 1991 indicated high bacterial abundance in Lake Erie and the Detroit River, and lowest numbers in the oligotrophic Georgian Bay and Lake Superior. The autotrophic picoplankton were lowest in the contaminated ecosystems of the Detroit River, St. Clair River, and Lake St. Clair. This persistent sensitivity of the autotrophic picoplankton to environmental perturbation make them ideal candidates as early warning indicators of ecosystem health. This is the first time that such a comprehensive strategy has been attempted encompassing all important components of the microbial food-web in the Great Lakes. These results clearly demonstrate the significance and potential of microbes in providing a multi-trophic, dynamic, and holistic picture of the aquatic ecosystems. Furthermore, the necessity of monitoring microbial food-web parameters is recommended and emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azam, F., T.Fenchel, J. G.Field, J. S.Gray, L. A.Meyer-Reil & F.Thingstad, 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.

    Google Scholar 

  • Beaver, J. R. & T. L.Crisman, 1989. The role of ciliated Protozoa in pelagic freshwater ecosystems. Microb. Ecol. 17: 111–136.

    Google Scholar 

  • Bergh, O., K. Y.Borsheim, G.Bratbak & M.Heldal, 1989. High abundance of viruses found in aquatic environments. Nature 340: 467–468.

    Google Scholar 

  • Beveridge, T. J., 1989. The structure of bacteria. In: J. S.Poindexter & E. R.Leadbetter (eds), Bacteria in Nature, Volume 3, Structure, Physiology, and Genetic Adaptability. pp. 1–65. Plenum Press, New York.

    Google Scholar 

  • Bird, D. F. & J.Kalff, 1984. Empirical relationships between bacterial abundance and chlorophyll concentrations in fresh and marine waters. Can. J. Fish. Aquat. Sci. 41: 1015–1023.

    Google Scholar 

  • Bloem, J. & M. J. B.Bär-Gilissen, 1989. Bacterial activity and protozoan grazing potential in a stratified lake. Limnol. Oceanogr. 34: 297–309.

    Google Scholar 

  • Brock, T. D., 1978. Use of fluorescence microscopy for quantifying phytoplankton, especially filamentous blue-green algae. Limnol. Oceanogr. 23: 158–160.

    Google Scholar 

  • Caron, D. A., 1983. Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy, and comparison with other procedures. Appl. Environ. Microbiol. 46: 491–498.

    Google Scholar 

  • Caron, D. A., F. R.Pick & D. R. S.Lean, 1985. Chroococcoid cyanobacteria in Lake Ontario: vertical and seasonal distributions during 1982. J. Phycol. 21: 171–175.

    Google Scholar 

  • Carr, N. G. & B. A.Whitton (eds), 1982. The Biology of Cyanobacteria. Univ. California Press, Berkeley, 688 pp.

    Google Scholar 

  • Carrick, H. J. & G. L.Fahnenstiel, 1989. Biomass, size structure, and composition of phototrophic and heterotrophic nanoflagellate communities in Lakes Huron and Michigan. Can. J. Fish. Aquat. Sci. 46: 1922–1928.

    Google Scholar 

  • Chin-Leo, G. & D. L.Kirchman, 1988. Estimating bacterial production in marine waters from the simultaneous incorporation of thymidine and leucine. Appl. Environ. Microbiol. 54: 1934–1939.

    Google Scholar 

  • Corliss, J. O., 1979. The Ciliated Protozoa. Pergamon Press, Oxford, 455 pp.

    Google Scholar 

  • Costerton, J. W., 1988. Structure and plasticity of various organization levels in the bacterial cell. Can. J. Microbiol. 34: 513–521.

    Google Scholar 

  • Crumpton, W. G. & R. G.Wetzel, 1981. A method for preparing permanent mounts of phytoplankton for critical microscopy and cell counting. Limnol. Oceanogr. 26: 976–980.

    Google Scholar 

  • Davis, C. C., 1966. Plankton studies in the largest great lakes of the World. Great Lakes Research Division. Publication No. 14. Ann Arbor. pp. 1–54.

  • Davis, P. G. & J. M.Sieburth, 1982. Differentiation between phototrophic and heterotrophic nanoplankton populations in marine waters by epifluorescence microscopy. Ann. Inst. Oceanogr., Paris 58(S): 249–260.

    Google Scholar 

  • Dodge, J. D., 1973. The Fine Structure of Algal Cells. Academic Press, London, 261 pp.

    Google Scholar 

  • Fahnenstiel, G. L., L.Sicko-Goad, D.Scavia & E. F.Stoermer, 1986. Importance of picoplankton in Lake Superior. Can. J. Fish. Aquat. Sci. 43: 235–240.

    Google Scholar 

  • Fliermans, C. B. & E. L.Schmidt, 1975. Fluorescence microscopy: Direct detection, enumeration and spatial distribution of bacteria in aquatic systems. Arch. Hydrobiol. 76: 33–42.

    Google Scholar 

  • Haas, L. W., 1982. Improved epifluorescence microscopy for observing planktonic microorganisms. Ann. Inst. Oceanogr., Paris 58(S): 261–266.

    Google Scholar 

  • harlow, H. E. & P. V. Hodson, 1988. Chemical contamination of Hamilton Harbour: A review. Can. Tech. Rep. Fish. Aquat. Sci. 16031–16091.

  • Hartig, J. H. & R. L.Thomas, 1988. Development of plans to restore degraded areas in the Great Lakes. Environmental Manager 12(3): 327–347.

    Google Scholar 

  • Hobbie, J. E., R. D.Daley & S.Jasper, 1977. Use of Nuclepore filters for cointing bacteria by epifluorescence microscopy. Appl. Environ. Microbiol. 33: 1225–1228.

    Google Scholar 

  • I.J.C. (International Joint Commission), 1977. Annual Report of the Water Quality Objectives Subcommittee and Task Force on the Scientific Basis for Water Quality Criteria 1976. Appendix A to the Great Lakes Water Quality Board, International Joint Commission, Windsor, Ontario: 1–83.

    Google Scholar 

  • I.J.C., 1987. Guidance on characterization of toxic substances problems in Areas of Concern in the Great Lakes Basis. Report to the Great Lakes Water Quality Board, Windsor, Ontario, 179 pp.

  • Johson, P. W. & J. M.Sieburth, 1979. Chroococcoid cyanobacteria in the sea: A ubiquitous and diverse phototrophic biomass. Limnol. Oceanogr. 24: 928–935.

    Google Scholar 

  • Johnson, P. W. & J. M.Sieburth, 1982. In-situ morphology and occurrence of eucaryotic phototrophs of bacterial size in the picoplankton of estuarine and oceanic waters. J. Phycol 18: 318–327.

    Google Scholar 

  • Kirchman, D. L., E.K'nees & R.Hodson, 1985. Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Appl. Environ. Microbiol. 49: 599–607.

    Google Scholar 

  • Klut, M. E. & J. G.Stockner, 1990. Virus-like particles in an ultraoligotrophic lake on Vancouver Island, British Columbia. Can. J. Fish. Aquat. Sci. 47: 725–730.

    Google Scholar 

  • Legner, M. & W. G.Sprules, 1993. Preservation and computer-aided microscopic analysis of planktonic protozoa and algac. J. Aquat. Ecosyst, Health 2: 221–227.

    Google Scholar 

  • Leppard, G. G., 1992. Evaluation of electron microscope techniques for the description of aquatic colloids. Chapter 6 Volume 1. IUPAC, Environmental Chemistry Series. J.Buffle & H. P.VanLeeuwen (eds), Lewis Publ, Chelsa, MI. pp. 231–289.

    Google Scholar 

  • Leppard, G. G. & M.Munawar, 1992. The ultrastructural indicators of aquatic ecosystem health? J. Aquat. Ecosyst. Health 1: 309–317.

    Google Scholar 

  • Leppard, G. G., D.Urciuoli & F. R.Pick, 1987. Characterization of cyanobacterial picoplankton in Lake Ontario by transmission electron microscopy. Can. J. Fish. Aquat. Sci. 44: 2173–2177.

    Google Scholar 

  • Mayfield, C. I., 1975. A simple fluorescence-staining technique for in situ soil microorganisms. Can. J. Microbiol. 21: 727–729.

    Google Scholar 

  • Mayfield, C. I., 1977. A fluorescence-staining method for microscopically counting variable microorganisms in soil. Can. J. Microbiol. 23: 75–83.

    Google Scholar 

  • McManus, G. B. & J. A.Fuhrman, 1988. Control of marine bacterioplankton populations: measurement and significance of grazing. Hydrobiologia 159: 51–62.

    Google Scholar 

  • MISA (Municipal-Industrial Strategy for Abatement), 1987. The Public review of the MISA white paper and the Ministry of the Environment's response to it. 55 pp.

  • Montagnes, D. J. S. & D. H.Lynn, 1987. A quantitative protargol stain (QPS) for ciliates: method description and test of its quantitative nature. Mar. Microbiol. Food Webs 2: 83–93.

    Google Scholar 

  • Munawar, M. & G. L.Fahnenstiel, 1982. The abundance and significance of ultraplankton and micro-algae at an offshore station in central Lake Superior. Can. Tech. Rep. Fish. Aquat. Sci. 1153(I–IV): 1–13.

    Google Scholar 

  • Munawar, M. & I. F.Munawar, 1975. The abundance and significance of phytoflagellates and nannoplankton in the St. Lawrence Great Lakes. Verh. Internat. Verein Limnol. 19: 705–723.

    Google Scholar 

  • Munawar, M. & I. F.Munawar, 1976. A lakewide study of phytoplankton biomass and its species composition in Lake Erie, April-December 1970. J. Fish. Res. Board Can. 33(3): 581–600.

    Google Scholar 

  • Munawar, M. & I. F.Munawar, 1978. Phytoplankton of Lake Superior, 1973. J. Great Lakes Res. 4: 415–442.

    Google Scholar 

  • Munawar, M. & I. F.Munawar, 1981. A general comparison of the taxonomic composition and size analyses of the phytoplankton of the North American Great Lakes. Verh. Int. Ver. Limnol. 21: 1695–1716.

    Google Scholar 

  • Munawar, M. & I. F.Munawar, 1980. The importance of using standard techniques in the surveillance of phytoplankton indicator species for the establishment of long range trends in the Great Lakes: A preliminary example. Lake Erie. Proc. First Biological Surveillance Symposium, 22nd Conference in Great Lakes Research, Rochester, New York, May 1979. An. Tech. Rep. Fish. Aquat. Sci. 976: 59–86.

    Google Scholar 

  • Munawar, M. & I. F.Munawar, 1982. Phycological studies in Lakes Ontario, Erie, Huron and Superior. Can. J. Bot. 60: 1837–1858.

    Google Scholar 

  • Munawar, M. & I. F.Munawar, 1986. The seasonality of phytoplankton in the North American Great Lakes a comparative synthesis. In: M.Munawar & J. F.Talling (eds), Seasonality of Freshwater Phytoplankton: A Global Perspective. pp. 85–115. Development in Hydrobiology 33. Dr W. Junk Publishers, Dordrecht. Reprinted from Hydrobiologia 138.

    Google Scholar 

  • Munawar, M. & I. F.Munawar, 1987. Phytoplankton bioassays for evaluating toxicity of in situ sediment contaminants. In: R. L.Thomas, R.Evans, A.Hamilton, M.Munawar, T.Reynoldson & M. H.Sadar (eds), Ecological Effects of In Situ Sediment Contaminants. pp. 87–105. Developments in Hydrobiology 39. Dr. W. Junk Publishers, Dordrecht. Reprinted from Hydrobiologia 149.

    Google Scholar 

  • Munawar, M. & A.Nauwerck, 1971. The composition and horizontal distribution of phytoplankton in Lake Ontario during the year 1970. Internat. Assoc. Great Lakes Res., Proc. 14th Conf. Great Lakes Res. 14: 69–78.

    Google Scholar 

  • Munawar, M. & R. L.Thomas, 1989. Sediment toxicity testing in two areas of concern of the Laurentian Great Lakes: Toronto (Ontario) and Toledo (Ohio) Harbours. In: P. G.Sly & B. T.Hart (eds), Sediment/Water Interactions IV. Developments in Hydrobiology 50. Kluwer Academic Publishers, Dordrecht. Reprinted from Hydrobiologia 176/177.

    Google Scholar 

  • Munawar, M. & T.Weisse, 1989. Is the “microbial loop” an early warning indicator of anthropogenic stress? In: M.Munawar, G.Dixon, C. I.Mayfield, T.Reynoldson & M. H.Sadar (eds), Environmental Bioassay Techniques and their Application. pp. 163–174. Developments in Hydrobiology 54. Kluwer Academic Publishers, Dordrecht. Reprinted from Hydrobiologia 188/189.

    Google Scholar 

  • Munawar, M., P. Stadelmann & I. F. Munawar, 1974. Phytoplankton biomass, species composition and primary production at a nearshore and a midlake station of Lake Ontario during IFYGL. Internat. Assoc. Great Lakes Res. Proc. 17th Conf. Great Lakes Res. pp. 629–652.

  • Munawar, M., I. F. Munawar, L. R. Culp & G. Dupuis, 1978. Relative importance of nannoplankton in Lake Superior phytoplankton biomass and community metabolism. In: M. Munawar (ed), Limnology of Lake Superior. J. Great Lakes Res. 4(3–4): 462–480.

  • Munawar, M., I. F. Munawar, W. Norwood & C. Mayfield, 1987a. Significance of autotrophic picoplankton in the Great Lakes and their use as early indicators of contaminant stress. In: M. Munawar (ed), Proc. Internat. Symp. on Phycology of Large Lakes of the World. Arch. Hydrobiol. Beih. Ergebn. Limnol./Advances in Limnology 25: 141–155.

  • Munawar, M., I. F. Munawar, P. E. Ross & C. Mayfield, 1987b. Differential sensitivity of nutural phytoplankton size assembleges to metal mixture toxicity. In: M. Munawar (ed), Proc. Internat. Symp. on Phycology of Large Lakes of the World. Arch. Hydrobiol. Beih. Ergebn. Limnol./Advances in Limnology 25: 123–139.

  • Munawar, M., P. T. S.Wong & G.-Y.Rhee, 1988. The effects of contaminants on algae: An overview. In: N. W.Schmidtke (ed), Toxic Contamination in Large Lakes. pp. 113–160. Lewis Publishers Inc., Chelsa, Michigan.

    Google Scholar 

  • Munawar, M., I. F.Munawar & L.McCarthy, 1988. Seasonal succession of phytoplankton size assemblages and its ecological implications in the North American Great Lakes. Verh. Internat. Limnol. 23: 659–671.

    Google Scholar 

  • Munawar, M., I. F.Munawar & G. G.Leppard, 1989a. Early warning assays: An overview of toxicity testing with phytoplankton in the North American Great Lakes. In: M.Munawar, G.Dixon, C. I.Mayfield, T.Reynoldson & M. H.Sadar (eds), Environmental Bioassay Techniques and their Application. pp. 237–246. Developments in Hydrobiology 54. Kluwer Academic Publishers, Dordrecht. Reprinted from Hydrobiologia 188/189.

    Google Scholar 

  • Munawar, M., I. F.Munawar, C. I.Mayfield & L. H.McCarthy, 1989b. Probing ecosystem health: A multi-disciplinary and multitrophic assay strategy. In: M.Munawar, G.Dixon, C. I.Mayfield, T.Reynoldson & M. H.Sadar (eds), Environmental Bioassay Techniques and their Application. pp. 93–116. Developments in Hydrobiology 54. Kluwer Academic Publishers, Dordrecht. Reprinted from Hydrobiologia 188/189.

    Google Scholar 

  • Munawar, M., G. G.Leppard & I. F.Munawar, 1991. Ecotoxicology of stressed environments: structural and functional strategy. Verh. Internat. Verein. Limnol. 24: 3080–3086.

    Google Scholar 

  • Munawar, M., I. F.Munawar, P.Ross & R.Dermott, 1992. Exploring aquatic ecosystem health: a multi-trophic and an ecosystemic approach. J. Aquat. Ecosyst. Health. 1: 237–252.

    Google Scholar 

  • Munawar, M., I. F.Munawar, L.McCarthy, W.Page & G.Gilron, 1993. Assessing the impact of sewage effluent health of the Toronto waterfront (Ashbridges Bay), Lake Ontario. J. Ecosyst. Health 2: 287–315.

    Google Scholar 

  • Pick, F. R. & D. A.Caron, 1987. Picoplankton and nanoplankton biomass in Lake Ontario: Relative contribution of phototrophic and heterotrophic communities. Can. J. Fish. Aquat. Sci. 44: 2164–2172.

    Google Scholar 

  • Porter, K. G. & Y. S.Feig, 1980. The use of Dapi for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943–948.

    Google Scholar 

  • Proctor, L. M. & J. A.Fuhrman, 1990. Viral mortality of marine bacteria and cyanobacteria. Nature 343: 60–62.

    Google Scholar 

  • Rao, S. S., R. E.Kwiatkowski & A. A.Jurkovic, 1979. Distribution of bacteria and chlorophyll a at a nearshore station in Lake Ontario. Hydrobiologia 66: 33–39.

    Google Scholar 

  • Reid, F. M. H., 1983. Biomass estimation of components of the marine nanoplankton and picoplankton by the Utermöhl settling technique. J. Plankton Res. 5: 235–252.

    Google Scholar 

  • Scavia, D. & G. A.Laird, 1987. Bacterioplankton in Lake Michigan: Dynamics, controls, and significance to carbon flux. Limnol. Oceanogr. 32: 1017–1033.

    Google Scholar 

  • Scavia, D., G. A.Laird & G. L.Fahnenstiel, 1986. Production of planktonic bacteria in Lake Michigan. Limnol. Oceanogr. 31: 612–626.

    Google Scholar 

  • Severn S. R. T., M. Munawar & C. I. Mayfield, 1989. Measurements of sediment toxicity of autotrophic and heterotrophic picoplankton by epifluorescence microscopy. In: P. G. Sly & B. T. Hart (eds), Sediment/Water Interactions IV. pp. 525–530. Developments in Hydrobiology 50. Reprinted from Hydrobiologia 176/177.

  • Sherr, E. B., 1989. And now, small is plentiful. Nature 340(6233): 429.

    Google Scholar 

  • Sherr, E. B. & B. F.Sherr, 1988. Role of microbes in pelagic food webs: a revised concept. Limnol. Oceanogr. 33(5): 1225–1227.

    Google Scholar 

  • Simon, M., 1990. Improved assessment of bacterial production: Combined measurements of protein synthesis via leucine and cell multiplication via thymidine incorporation. Ergebn. Limnol. (in press).

  • Simon, M. & F.Azam, 1989. Protein content and protein synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51: 201–213.

    Google Scholar 

  • Sprules, W. G.,& M.Munawar, 1986. Structural patterns in aquatic ecosystems. Can. J. Fish. Aquat. Sci. 9: 1789–1794.

    Google Scholar 

  • Sprules, W. G., S. B.Brandt, D. J.Stewart, M.Munawar, E. H.Jin & J.Love, 1991. Biomass size spectrum of the Lake Michigan pelagic food web. Can. J. Fish Aquat. Sci. 48: 105–115.

    Google Scholar 

  • Stockner, J. G., 1988. Phototrophic picoplankton: An overview from marine and fresh water ecosystems. Limnol. Oceanogr. 33: 765–775.

    Google Scholar 

  • Stockner, J. G. & N. J.Antia, 1986. Algal picoplankton from marine and fresh water ecosystems: A multidisciplinary perspective. Can. J. Fish. Aquat. Sci. 43: 2472–2503.

    Google Scholar 

  • Taylor, W. D. & M. L.Heynen, 1987. Seasonal and vertical distribution of Ciliophora in Lake Ontario. Can. J. Fish. Aquat. Sci. 44: 2185–2191.

    Google Scholar 

  • Vollenweider, R. A., 1969. A manual on methods for measuring primary production in aquatic environments. IBP handbook. 12. Blackwell Scient. Publ., Oxford.

    Google Scholar 

  • Vollenweider, R. A., M.Munawar & P.Stadelmann, 1974. A comparative review of phytoplankton and primary production in the Laurentian Great Lakes. J. Fish. Res. Bd. Can. 31: 739–762.

    Google Scholar 

  • Vreeland, V., E.Zablackis, B.Doboszewski & W. M.Laetsch, 1987. Molecular markers for marine algal polysaccharides. In: M. A.Ragan & C. J.Bird (eds), Twelfth International Seaweed Symposium. pp. 155–160. Developments in Hydrobiology 41. Dr W. Junk Publishers, Dordrecht. Reprinted from Hydrobiologia 151/152.

    Google Scholar 

  • Weisse, T. & H.Müller, 1990. Significance of heterotrophic nonoflagellates and ciliates in large lakes: Evidence from Lake Constance. In: M. M.Tilzer & C.Serruya (eds). Functional and Structural Properties of Large Lakes. pp. 691. Science Tech. Publ., Madison.

    Google Scholar 

  • Weisse, T., & M.Munawar, 1989. Evaluation of the microbial loop in the North American Great Lakes. Can. Tech. Rep. Fish. Aquat. Sci. 1709. pp. i-v, 1–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munawar, M., Munawar, I.F., Weisse, T. et al. The significance and future potential of using microbes for assessing ecosystem health: The Great Lakes example. J Aquat Ecosyst Stress Recov 3, 295–310 (1994). https://doi.org/10.1007/BF00115288

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00115288

Key words

Navigation