Skip to main content
Log in

Mössbauer, magnetic, X‐ray fluorescence and transmission electron microscopy study of natural magnetic materials from speleothems: haematite and the Morin transition

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Detrital magnetic materials within cave stalagmitic formations, e.g., haematite or magnetite, carry remanence whose vector is of value in dating. Magnetometry measurements on a particular haematite‐bearing sample reveal that remanence was substantially restored and/or conserved on rewarming after cooling below the Morin transition temperature. Mössbauer measurements indicate the presence of two types of haematite, distinguished primarily by particle size. The majority is small in size, partially exhibiting superparamagnetism, and does not undergo a Morin transition above liquid nitrogen temperature. Superparamagnetic goethite is the second major component. Mine haematite samples of surface location with different color and mineralogical composition have also been studied. Possible relations between the mineralogical composition of the mine samples and detrital stalagmitic magnetic material, the modifications and the origin of this mineralization are discussed. Special attention is paid to the “irreversible” Morin transition in large enough (>20 nm) haematite particles and the possible loss of natural remanent magnetization and hence of palaeomagnetic records.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Dunlop, Rep. Progr. Phys. 53 (1990) 707.

    Article  ADS  Google Scholar 

  2. E. Murad and J.H. Johnston, in: Mössbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 2, ed. G.J. Long (Plenum, New York/London, 1987) p. 507.

    Google Scholar 

  3. R.M. Cornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses (VCH, Weinheim, 1996) p. 146.

    Google Scholar 

  4. L. D'Onofrio, E. Jaimes, F. Gonzalez-Jimenez and F. Urbani, in: Proc. of the ICAME'97 Conf., Hyp. Interact. C 3 (1998) 364.

    Google Scholar 

  5. E. Murad, Hyp. Interact. 117 (1998) 39.

    Article  Google Scholar 

  6. A.H. Morrish, G.B. Johnston and N.A. Curry, Phys. Lett. 7 (1963) 177.

    Article  ADS  Google Scholar 

  7. W. Kündig, H. Bömmel, G. Constabaris and R.H. Lindquist, Phys. Rev. 142 (1966) 327.

    Article  ADS  Google Scholar 

  8. T. Nakamura, T. Shinjo, Y. Endoh, N. Yamamoto, M. Shiga and Y. Nakamura, Phys. Lett. 12 (1964) 178.

    Article  ADS  Google Scholar 

  9. R.C. Nininger Jr. and D. Schroer, J. Phys. Chem. Solids 39 (1978) 137.

    Article  Google Scholar 

  10. N. Kawai, F. Ono and K. Hirooka, J. Appl. Phys. 39 (1968) 712.

    Article  Google Scholar 

  11. F. Stacey and S. Baneryee, The Physical Principles of Rock Magnetism, Development in Solid Earth Geophysics, Vol. 5 (Elsevier Science, Amsterdam/London/New York, 1974).

    Google Scholar 

  12. T. Zem?ík, J. Lauermannová and Raclavský, in: Proc. of the 5th Internat. Conf. on Mössbauer Spectroscopy, Part 2, Bratislava (1973) (Czechoslovak Atomic Energy Commission, Nuclear Information Center, 1975) p. 392.

    Google Scholar 

  13. D.D. Amarasiriwardena, E. De Grave, L.H. Bowen and S.B. Weed, Clays Clay Minerals 34 (1986) 250.

    Google Scholar 

  14. R.A. Brandt, NORMOS-90 Mössbauer Fit. Progr. Pack., Duisburg, Germany (1994).

  15. J. Macicek, Adv. in X-Ray Anal. 35 (1992) 687.

    Google Scholar 

  16. S.S. Hafner, in: Mössbauer Spectroscopy, ed. U. Gonser (Springer, Berlin, 1975) p. 167.

    Google Scholar 

  17. J.S. Van Wieringer, Phys. Lett. A 26 (1968) 370.

    Article  ADS  Google Scholar 

  18. W. Meisel, in: Proc. of the 5th Internat. Conf. on M¨ossbauer Spectroscopy, Part 1, Bratislava (1973) (Czechoslovak Atomic Energy Commission, Nuclear Information Center, 1975) p. 200.

  19. E. De Grave and A. Van Alboom, Phys. Chem. Minerals 18 (1991) 337.

    Google Scholar 

  20. V. Rusanov, V. Angelov, V. Jordanov and S. Ormandjiev, Phys. Chem. Minerals 18 (1992) 517.

    Article  Google Scholar 

  21. E. De Grave, L.H. Bowen and G.G. Robbrecht, in: Solid State Chemistry, eds. R. Metselaar, H.J.M. Heijligers and J. Schoonman, Studies in Inorganic Chemistry, Vol. 3 (Elsevier, Amsterdam, 1982) p. 71.

    Google Scholar 

  22. A.G. Latham, D.C. Ford, H.P. Schwarcz and T. Birchall, Phys. Earth Plan. Inter. 56 (1989) 34.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rusanov, V., Gilson, R., Lougear, A. et al. Mössbauer, magnetic, X‐ray fluorescence and transmission electron microscopy study of natural magnetic materials from speleothems: haematite and the Morin transition. Hyperfine Interactions 128, 353–373 (2000). https://doi.org/10.1023/A:1012668623559

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012668623559

Keywords

Navigation