Skip to main content
Log in

Production biology of copepods and cladocerans in three south-east Sri Lankan low-land reservoirs and its comparison to other tropical freshwater bodies

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Production, biomass and productivity of the microcrustacean zooplanktonpopulations of three low-land reservoirs, Tissawewa (eutrophic), Ridiyagama(moderately eutrophic), and Muruthawela (mesotrophic) in South-east SriLanka were studied. The temporal variation of zooplankton production wasstudied in Tissawewa on basis of fortnightly sampling on five fixed samplingstations for 2 years. Zooplankton production was relatively high, mainlybecause of high copepod production predominantly realised due to twocalanoid copepods, Phyllodiaptomus annae and Heliodiaptomus viduus. Abouthalf of the copepod production was contributed by the naupliar instarstages, whereas the contribution of the eggs was generally much smaller(<20%). In contrast, the cladoceran production consisted for ca50–70% of egg production. The results of this study werecompared with those from more than twenty other tropical and subtropicalwaterbodies reported in the literature by deriving empirical relationshipsbetween mean phytoplankton biomass and mean zooplankton biomass andproduction. Mean zooplankton biomass and annual zooplankton production werefound to be positively related to mean phytoplankton biomass, and meanphytoplankton biomass proved to be a good predictor of mean zooplanktonbiomass (r2 = 0.58) and a moderate good predictor ofannual zooplankton production (r2 = 0.43). However,the relationships between the mean phytoplankton biomass and zooplankton P/Bwere not significant neither for small-bodied and large-bodied cladoceransnor for copepods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allanson, B. R., 1979. Lake Sibaya. Monographiae Biologicae Vol. 36. Dr W. Junk Publishers, The Hague, 364 pp.

    Google Scholar 

  • Amarasinghe, P. B., M. Boersma & J. Vijverberg, 1997. The effect of temperature, and food quantity and quality on the growth and development rates in laboratory-cultured copepods and cladocerans from a Sri Lankan reservoir. Hydrobiologia, 350: 131–144.

    Google Scholar 

  • Anderson, D. H. & A. C. Benke, 1994. Growth and reproduction of the cladoceran Ceriodaphnia dubiafrom a forested floodplain swamp. Limnol. Oceanogr. 39: 1517–1527.

    Google Scholar 

  • Aravindan, C. M., 1993. Preliminary trophic model of Veli Lake, Southern India. In Christensen, V. & D. Pauly (eds), Trophic Models of Aquatic Ecosystems, ICLARM, Manila, Philippines: 87–89.

    Google Scholar 

  • Bailey-Watts, A. E., 1974. The algal plankton of Loch Leven, Kinross. Proc. r. Soc. Edinb. (B) 74: 135–156.

    Google Scholar 

  • Banse, K. & S. Mosher, 1980. Adult body mass and annual production/ biomass relationships of field populations. Ecol. Monogr. 50: 355–379.

    Google Scholar 

  • Bays, J. S. & T. L. Crismann, 1983. Zooplankton and trophic state relationships in Florida lakes. Can. J. Fish. aquat. Sci. 40: 1813–1819.

    Google Scholar 

  • Benke, A. C., 1993.Edgardo Baldi Memorial Lecture: Concepts and patterns of invertebrate production in running waters. Verh. int. Ver. Limnol. 25: 15–38.

    Google Scholar 

  • Boersma, M. & J. Vijverberg, 1994a. The effect of preservation methods on the carbon content of Daphnia. Arch. Hydrobiol. 130: 241–247.

    Google Scholar 

  • Boersma, M. & J. Vijverberg, 1994b. Seasonal variations in condition of two Daphniaspecies and their hybrid in a eutrophic lake: evidence for food limitation under field conditions. J. Plankton Res. 16: 1793–1809.

    Google Scholar 

  • Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norw. J. Zool. 24: 419–456.

    Google Scholar 

  • Burgis, M. J., 1974. Revised estimates for the biomass and production of zooplankton in Lake George, Uganda. Freshwat. Biol. 4: 535–541.

    Google Scholar 

  • Burgis, M. J., 1978. Case studies of lake ecosystems at different latitudes: The tropics. The Lake George ecosystems. Verh. int. Ver. Limnol. 20: 1139–1152.

    Google Scholar 

  • Campbell, C. E. & R. Knoechel, 1988. Zooplankton communities and trophic structure of lakes on the Avalon Peninsula, Newfoundland, Canada. Verh. int. Ver. Limnol. 23: 297–305.

    Google Scholar 

  • Carmouze, J. P., J. R. Durand & C. Léveque, 1983. Lake Chad–Ecology and Productivity of a Shallow Tropical Ecosystem. Monographiae Biologicae 53, Dr W. Junk Publishers, The Hague.

    Google Scholar 

  • Culver, D. A., M. M. Boucherle, D. J. Bean & J. W. Fletcher, 1985. Biomass of freshwater crustacean zooplankton from length–weight regressions. Can. J. Fish. aquat. Sci. 42: 1380–1390.

    Google Scholar 

  • Degnbol, P., 1993. The pelagic zone of central Lake Malawi–A trophic box model. In Christensen, V. & D. Pauly (eds), Trophic Models of Aquatic Ecosystems, ICLARM, Manila, Philippines: 110–115.

    Google Scholar 

  • Delos Reyes, M. R., 1993. Fishpen culture and its impact on the ecosystem of Laguna de Bay, Philippines. In Christensen, V. & D. Pauly (eds), Trophic Models of Aquatic Ecosystems, ICLARM, Manila, Philippines: 74–84.

    Google Scholar 

  • Dumont, H. J., I. Van de Velde & S. Dumont, 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from plankton periphyton and benthos of continental waters. Oecologia 19: 75–97.

    Google Scholar 

  • Duncan, A., 1985. Body carbon in daphnids as an indicator of the food concentrations available in the field. Arch. Hydrobiol. Beih. 21: 81–90.

    Google Scholar 

  • Fernando, C. H., 1980. The species and size composition of tropical freshwater zooplankton with special reference to the Oriental region (South East Asia). Int. Revue ges. Hydrobiol. 65: 411–426.

    Google Scholar 

  • Gras, R. & L. Saint-Jean, 1983. Production du zooplankton du Lac Tchad. Revue Hydrobiol. trop. 16: 57–77.

    Google Scholar 

  • Gulati, R. D., K. Siewertsen & G. Postema, 1985. Zooplankton structure and grazing activities in relation to food quality and concentration in Dutch lakes. Arch. Hydrobiol. Beih. 21: 91–102.

    Google Scholar 

  • Hanson, J. M. & R. H. Peters, 1984. Emperical prediction of crustacean zooplankton biomass and profundal macrobenthos biomass in lakes. Can. J. Fish. aquat. Sci. 41: 439–445.

    Google Scholar 

  • Hart, R. C., 1987. Population dynamics and reproduction of five crustacean zooplankters in a subtropical reservoir during years of contrasting turbidity. Freshwat. Biol. 18: 287–318.

    Google Scholar 

  • Hart, R. C. & B. R. Allanson, 1975. Preliminary estimates of production by a calanoid copepod in subtropical Lake Sibaya. Verh. int. Ver. Limnol. 19: 1434–1441.

    Google Scholar 

  • Hecky, R. E., 1984. African lakes and their trophic efficiencies: a temporal perspective. In Meyers, D. G., J. R. Strickler. Am. Assoc. Adv. Sci., Westview, Boulder: 405–448.

    Google Scholar 

  • Hillbricht-Ilkowska, A., I. Spondniewska, T. Weglenska & A. Karabin, 1972. The seasonal variation of some ecological efficiencies and production rates in the plankton community of several Polish lakes of different trophy. In Kajak, Z. & A. Hillbricht-Ilkowska (eds), Productivity Problems of Freshwaters, PWN Warszawa-Krakow: 111–127.

  • Irvine, K. & R. Waya, 1993. Predatory behaviour of the cyclopoid copepod Mesocyclops aequatorialis aequatorialisin Lake Malawi, a deep tropical lake. Verh. int. Ver. Limnol. 25: 877–881.

    Google Scholar 

  • Jamaludin, B. I., 1993. Spatial and temporal patterns in the zooplankton in Senenyih and Kenyir reservoir Malaysia and an estimation of zooplankton production. M.Sc. Thesis Wageningen Agricultural University, The Netherlands, 66 pp.

  • Jayatunga, Y. N. A. & A. Duncan, 1990. Body carbon weight–length relationship for four tropical cladoceran species grown under well defined food level and temperature. Ceylon J. Sci. (Bio. Sci.) 21: 34–40.

    Google Scholar 

  • Kolding, J., 1993. Trophic interrelationships and community structure at two different periods of Lake Turkana, Kenya: a comparison using the ECOPATH II box model. In Christensen, V. & D. Pauly (eds), Trophic Models of Aquatic Ecosystems, ICLARM, Manila, Philippines: 116–123.

    Google Scholar 

  • Lee, F. G., R. A. Jones & W. Rast, 1981. Alternative approach to trophic state classification for water quality management. International Joint Commission, Washington, D.C., Department of Civil Engineering, Occasional Paper 66: 5–65.

    Google Scholar 

  • Lévêque, C. & L. Saint-Jean, 1983. Secondary production (zooplankton and benthos). In Carmouze, J. P., J. R. Durand & C. Lévêque (eds), Lake Chad–Ecology and Productivity of a Shallow Tropical Ecosystem, Dr W. Junk Publishers, The Hague: 385–424.

    Google Scholar 

  • Lewis, W. M. Jr., 1979. Zooplankton Community Analysis: Studies on a Tropical System. Springer-Verlag, New York, Heidelberg, Berlin, 163 pp.

    Google Scholar 

  • Lewis, W. M. Jr., 1987. Tropical limnology. Ann. Rev. Ecol. Syst. 18: 159–184.

    Google Scholar 

  • Lynch, M., 1989. The life history consequences of resource depression in Daphnia pulex. Ecology 70: 246–256.

    Google Scholar 

  • Lynch, M., 1992. The life history consequences of resource depression in Ceriodaphnia quadrangulaand Daphnia ambigua. Ecology 73: 1620–1629.

    Google Scholar 

  • Machena, C., J. Kolding & R. A. Sanyanga, 1993. A prelimenary assessment of the trophic structure of Lake Kariba, Africa. In Christensen, V. & D. Pauly (eds), Trophic Models of Aquatic Ecosystems: 130–137.

  • Malthus, T. J. & S. F. Mitchell, 1990. On the occurrence, causes and potential consequences of low zooplankton to phytoplankton ratios in New Zealand lakes. Freshwat. Biol. 22: 383–394.

    Google Scholar 

  • Masundire, H. M., 1994. Mean individual dry weight and length–weight regressions of some zooplankton of Lake Kariba. Hydrobiologia 272: 231–238.

    Google Scholar 

  • Mavuti, K. M., 1994. Durations of development and production estimates by two crustacean zooplankton species Thermocyclops oblongatusSars (Copepoda) and Diaphanosoma excisumSars (Cladocera), in Lake Naivasha, Kenya. Hydrobiologia 272: 185–200.

    Google Scholar 

  • McCauley, E. & J. Kalff, 1981. Emperical relationships between phytoplankton and zooplankton biomass in lakes. Can. J. Fish. aquat. Sci. 38: 458–463.

    Google Scholar 

  • Mengestou, S. & C. H. Fernando, 1991. Biomass and production of the major dominant crustacean zooplankton in a tropical Rift Valley lake, Awasa, Ethiopia. J. Plankton Res. 13: 831–851.

    Google Scholar 

  • Mills, E. L. & A. Schavione Jr., 1982. Evaluation of fish communities trough assessment o zooplankton populations and measures of lake productivity. N. Am. J. Fish. Mgmt 2: 14–27.

    Google Scholar 

  • Moreau, J., W. Ligtvoet & M. L. D. Palomares, 1993a. Trophic relationship in the fish community of Lake Victoria, Kenya, with emphasis on the impact of nile perch (Lates niloticus). In Christensen, V. & D. Pauly (eds), Trophic Models of Aquatic Ecosystems, 144–152.

  • Moreau, J., B. Nyakageni, M. Pearce & P. Petit, 1993b. Trophic relationships in the pelagic zone of Lake Tanganyika (Burundi sector). In Christensen, V. & D. Pauly (eds), Trophic Models of Aquatic Ecosystems. ICLARM, Manila, Philippines: 138–143.

    Google Scholar 

  • Morgan, N. C., T. Backiel, G. Bretschko, A. Duncan, A. Hillbricht-Illkowska, Z. Kajak, J. F. Kitchell, P. Larsson, C. Leveque, A. Nauwerck, F. Schiemer & J. E. Thorpe, 1980. Secondary production. In Le Cren, E. D. & R. H. Lowe-McConnell (eds), The Functioning of Freshwater Ecosystems. Cambridge University Press: 247–340.

  • Omori, M., 1978. Some factors affecting on dry weight, organic weight and concentration of carbon and nitrogen in freshly prepared and in preserved zooplankton. Int. Rev. Gesamt. Hydrobiol. 63: 261–269.

    Google Scholar 

  • Pace, M. L. & J. D. Orcutt, Jr., 1981. The relative importance of protozoans, rotifers and crustaceans in a freshwater community. Limnol. Oceanogr. 26: 822–830.

    Google Scholar 

  • Persson, G. & G. Ekbohm, 1980. Estimation of dry weight in zooplankton populations: Methods applied to crustacean populations from lakes in the Kuokkel Area, Northern Sweden. Arch. Hydrobiol. 89: 225–246.

    Google Scholar 

  • Piet, G. J., J. Vijverberg & W. L. T. van Densen, in press. Foodweb structure of a Sri Lanka reservoir. In van Densen, W. L. T. & R. H. Low-McConnel (eds), Lacustrine Fish Communities in S.E. Asia and Africa, Ecology and Exploitation. Samarar Publishing Limited, Tresaith, UK.

  • Plante, C. & J. A. Downing, 1989.Production of freshwater invertebrate populations in lakes. Can. J. Fish. aquat. Sci. 46: 1489–1498.

    Google Scholar 

  • Pont, D., 1983. Recherches quantitatives sur le peuplement de copépodes, cladocéres et ostracodes des rizières de Camargue. Ph.D. thesis Faculté St. Charles Université de Provence Aix,Marseille.

  • Riemann, B., P. Simonsen & L. Stensgaard, 1989. The carbon chlorophyll content of phytoplankton from various nutrient regimes. J. Plankton Res. 11: 1037–1045.

    Google Scholar 

  • Rigler, F. H. & J. A. Downing, 1984. The calculation of secondary productivity. In Downing, J. A. & F. H. Rigler (eds), A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters, chapter 2. IBP Hand Book no. 17, Black. Sci. Publ., London, 501 pp.

    Google Scholar 

  • Roff, J. C. & M. J. Tremblay, 1984. Singular, mass-specific P/B ratios cannot be used to estimate copepod production. Reply with additional notes on P/B ratios. Can. J. Fish. aquat. Sci. 41: 8320–8330.

    Google Scholar 

  • Rognerud, S. & G. Kjellberg, 1990. Long-term dynamics of the zooplankton community in Lake Mjfsa, the largest lake in Norway. Verh. int. Ver. Limnol. 24: 580–585.

    Google Scholar 

  • Rosen, R. A., 1981. Length–dry weight relationships of some freshwater zooplankton. J. Freshwat. Ecol. 1: 225–229.

    Google Scholar 

  • Saint-Jean, L. & C. A. Bonou, 1994. Growth, production, and demography of Moina micrurain brackish tropical fishponds (Layo, Ivory Coast). Hydrobiologia 272: 125–146.

    Google Scholar 

  • Salonen, K., 1979. A versatile method for the rapid and accurate determination of carbon by high temperature combustion. Limnol. Oceanogr. 24: 177–183.

    Google Scholar 

  • Salonen, K. & J. Sarvala, 1985. Combination of freezing and formaldehyde fixation, a superior preservation method for biomass determination of aquatic invertebrates. Archiv fur Hydrobiologie 103: 217–230.

    Google Scholar 

  • Santer, B., 1993. Potential importance of algae in the diet of adult Cyclops vicinus. Freshwat. Biol. 30: 269–278.

    Google Scholar 

  • Saunders, J. F. & W. M. Lewis Jr., 1988. Dynamics and control mechanisms in a tropical zooplankton community (Lake Valencia, Venezuela). Ecol. Monogr. 58: 337–353.

    Google Scholar 

  • Schram, M. D., G. R. Ploskey & E. H. Schmitz, 1981. Dry weight loss in Ceriodaphnialoss in Ceriodaphnia lacustrisfollowing formalin preservation. Trans. am. Microsc. Soc. 100: 326–329.

    Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1995. Biometry, the principles and practice of statistics in biological research (3rd edn). Freeman Company, New York, 887 pp.

    Google Scholar 

  • Sprules, W. G., S. B. Brandt, D. J. Stewart, M. Munawar, E. H. Jin & J. Love, 1991. Biomass size spectrum of the Lake Michigan pelagic food web. Can. J. Fish. aquat. Sci. 48: 105–115.

    Google Scholar 

  • Statsoft, 1992. CSS: Statistica. Volume I, Conventions and statistics I. Statsoft Inc., Tulsa, Oklahoma, 679 pp.

    Google Scholar 

  • Tóth, L. G. & N. P. Zankai, 1985. Feeding of Cyclops vicinus (Uljanin) (Copepoda: Cyclopoida) in Lake Balaton on the basis of gut content analyses. Hydrobiologia 122: 251–260.

    Google Scholar 

  • Vareschi, E.& J. Jacobs, 1984. The ecology of lake Nakuru (Kenya). V. Production and consumption of consumer organisms. Oecologia 61: 83–98.

    Google Scholar 

  • Vareschi, E. & A. Vareschi, 1984. The ecology of Lake Nakuru (Kenya). IV. Biomass and distribution of consumer organisms. Oecologia 61: 70–82.

    Google Scholar 

  • Vijverberg, J., 1980. Effect of temperature in laboratory studies on development and growth of Cladocera and Copepoda from Tjeukemeer, The Netherlands. Freshwat. Biol. 10: 317–340.

    Google Scholar 

  • Vijverberg, J., 1989. Culture techniques for studies on the growth, development and reproduction of copepods and cladocerans under laboratory and in situ conditions: a review. Freshwat. Biol. 21: 317–373.

    Google Scholar 

  • Vijverberg, J. & A. F. Richter, 1982a. Population dynamics and production of Daphnia hyalinaLeydig and Daphnia cucullata Sars in Tjeukemeer. Hydrobiologia 95: 235–259.

    Google Scholar 

  • Vijverberg, J. & A. F. Richter, 1982b. Population dynamics and production of Acanthocyclops robustus(Sars) and Mesocyclops leuckarti(Claus) in Tjeukemeer. Hydrobiologia 95: 261–274.

    Google Scholar 

  • Walline, P. D., S. Pisanty, M. Gophen & T. Berman, 1993. The ecosystem of Lake Kinneret, Israel. In Christensen, V. & D. Pauly (eds), Trophic models of aquatic ecosystems. ICLARM, Manila, Philippines: 103–109.

    Google Scholar 

  • Widmer, C., T. Kitter & P. J. Richarson, 1975. A survey of the biological limnology of Lake Titicaca. Verh. int. Ver. Limnol. 19: 1504–1510.

    Google Scholar 

  • Winberg, G. G, K. Patalas, J. C. Wright, A. Hillbricht-Ilkowska, W. E. Cooper & K. H. Mann, 1971a. Methods for calculating productivity. In Edmondson, W. T. & G. G. Winberg (eds), A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters, Chapter 7, 296–317. IBP Handbook No. 17. Blackwell Scientific Publ., Edinburgh, 358 pp.

    Google Scholar 

  • Winberg, G. G., et al., 1971b. Symbols, units and conversion factors in studies of freshwater productivity. IBP Central Office London, 23 pp.

  • Yan, N. D. & R. Strus, 1980. Crustacean zooplankton communities of acidic, metal-contaminated lakes near Sudbury, Ontario. Can. J. Fish. aquat. Sci. 37: 2282–229.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amarasinghe, P.B., Vijverberg, J. & Boersma, M. Production biology of copepods and cladocerans in three south-east Sri Lankan low-land reservoirs and its comparison to other tropical freshwater bodies. Hydrobiologia 350, 145–162 (1997). https://doi.org/10.1023/A:1003035831790

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003035831790

Navigation